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ABSTRACT

An optical imager that exploits off-center image rotation to encode both the lateral and depth coordi-
nates of point sources in a single snapshot can perform 3D localization and tracking of space debris.
When actively illuminated, unresolved space debris, which can be regarded as a swarm of point sources,
can scatter a fraction of laser irradiance back into the imaging sensor. Determining the source locations
and fluxes is a large-scale sparse 3D inverse problem, for which we have developed efficient and effective
algorithms based on sparse recovery using non-convex optimization. Numerical simulations illustrate
the efficiency and stability of the algorithms.

1. INTRODUCTION

We consider 3D localization and tracking of space debris at optical wavelengths by using a space-
based telescope, which is an important and challenging task in space surveillance. Since the optical
wavelength is much shorter than the radio wavelength, optical detection and localization is expected
to attain far greater precision than the more commonly employed radar systems. However, the shorter
field depth of optical imaging systems may limit their performance to a shorter range of distances.
An integrated system consisting of a radar system for performing radio detection, localization, and
ranging of space debris at larger distances, which cues in an optical system when debris reach shorter
distances, may ultimately provide optimal performance for detecting and tracking debris at distances
ranging from tens of kilometers down to hundreds of meters.

A stand-alone optical system based on the use of a light-sheet illumination and scattering concept
[1] for spotting debris within meters of a spacecraft has been proposed. A second system can localize
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all three coordinates of an unresolved, scattering debris [2, 3] by utilizing either parallex between two
observatories or a pulsed laser ranging system or a hybrid system. For parallex, two observatories
receive debris scattered optical signals simultaneously. For the pulsed laser, the ranging system is
coupled to a single imaging observatory. The hybrid system utilizes both approaches in which the laser
pulse transmitted from one of the two observatories is received at time-gated single-photon detectors
with good parallax information at both the observatories. However, to the best of our knowledge
there is no other proposal for a full 3D debris localization and tracking optical or optical-radar system
working in the range of tens to hundreds of meters. Prasad [4] has proposed the use of an optical
imager that exploits off-center image rotation to encode in a single image snapshot both the range z
and transverse (x, y) coordinates of a swarm of unresolved sources such as small, sub-centimeter class
space debris, which when actively illuminated can scatter a fraction of laser irradiance back into the
imaging sensor.

Image data taken with a specially designed point spread function (PSF) that encodes, via a simple
rotation, changing source distance can be employed to acquire a three dimensional (3D) field of unre-
solved sources like space debris. By imposing spiral phase retardation with a phase winding number
that changes in regular integer steps from one annular zone to the next of an aperture-based phase
mask, one can create an image of a point source that has an approximate rotational shape invariance
with changing source distance, provided the zone radii have a square root dependence on their indices.
Specifically, when the distance of the source from the aperture of such an imaging system changes,
the off-center, shape-preserving PSF merely rotates by an amount roughly proportional to the source
misfocus from the plane of best focus. The following general model based on the rotating PSF image
describes the spatial distribution of image brightness for M point sources describes the observed 2D
image:

G(x, y) = N

(
M∑
i=1

Hzi(x− xi, y − yi)fi + b

)
, (1)

where N is the noise operator and b is the uniform background value. Here Hi(x − xi, y − yi) is the
rotating PSF for the i-th point source of flux fi and 3D position coordinates (xi, yi, zi) with the depth
information zi encoded in Hi, and (x, y) is the position in the image plane.

A simple approach to effect such PSF rotation, which was originally proposed by Prasad [5] in 2013,
utilizes an annular phase mask design of spiral phases with winding numbers that are regularly spaced
from one annular zone to the next. Such a mask can be easily mounted on a telescope. When actively
illuminated by a laser, unresolved space debris, which can be regarded as a swarm of point sources, can
scatter a fraction of the laser irradiance back into the imaging sensor. The technique is well suited to
optically localize small, sub-centimeter class space debris, which we may call microdebris, at distances
of hundreds of meters.

Following the Fourier optics model, the incoherent PSF for a clear aperture containing a phase
mask with optical phase retardation, ψ(s), is given by

Hz(s) =
1

π

∣∣∣∣∫ P (u)exp
[
ι(2πu · s + ζu2 − ψ(u))

]
du

∣∣∣∣2 ,
where ζ = π(l0−z)R2

λl0z
is defocus parameter. Here ι =

√
−1 and l0, and P (s) denote the distance between

the lens and the best focus point and the indicator function for the pupil of radius R, respectively,
while s with polar coordinates (s, φs) is a scaled version of the image-plane position vector, r, namely
s = r

λzI/R
. Here r is measured from the center of the geometric (Gaussian) image point located at



rI . The pupil-plane position vector ρ is normalized by the pupil radius, u = ρ
R . For the single-lobe

rotating PSF, ψ(u) is chosen to be the spiral phase profile defined as

ψ(u) = lφu, for

√
l − 1

L
≤ u ≤

√
l

L
, l = 1, · · ·, L,

in which L is the number of concentric annular zones in the phase mask. We evaluate (??) by using
the fast Fourier transform.

We discuss here the problem of 3D localization of closely spaced point sources from simulated noisy
image data obtained by using such a rotating-PSF imager. The localization problem is discretized on
a cubical lattice where the coordinates and values of its nonzero entries represent the 3D locations and
fluxes of the sources, respectively. Finding the locations and fluxes of a few point sources on a large lat-
tice is evidently a large-scale sparse 3D inverse problem. For the Gaussian and Poisson statistical noise
models, we describe the results of simulation using novel non-convex sparse optimization algorithms to
extract both the 3D location coordinates and fluxes of individual debris particles from noisy rotating-
PSF imagery. For the Gaussian noise case, which describes conventional CCD sensors operating at
low per-pixel photon fluxes and large read-out noise, a continuous exact `0 (CEL0) penalty term [6]
added to a least-squares data fitting term constitutes an `0-sparsity non-convex optimization protocol
with promising results. For the Poisson noise case, which characterizes an EMCCD sensor operated in
the photon-counting (PC) regime, we show that an iteratively reweighted `1 (IRL1) algorithm based
on the sum of a Kullback-Leibler I-divergence data fitting term and a novel non-convex penalty term
[7] performs well [8]. Image data of the type we discuss here could be acquired by a combined active
illumination - imaging system that can be mounted on a space asset in order to optically monitor its
debris neighborhood. Further work involving snapshot multi-spectral imaging for material character-
ization and higher 3D resolution and localization of space microdebris via a sequence of snapshots is
underway.

The rest of the paper is organized as follows. In Section 2, we propose non-convex optimization
methods to solve the point source localization problem for both Gaussian and Poisson noise models. In
Section 3, our non-convex optimization algorithms are developed. A new iterative scheme for estimating
the flux values for the Poisson noise case is also proposed in this section. Numerical experiments,
including comparisons with other optimization methods, are discussed in Section 4. Some concluding
remarks are made in Section 5.

2. NON-CONVEX OPTIMIZATION MODELS FOR GAUSSIAN AND
POISSON NOISE

Here, we build forward models for the problem based in part on the approach developed in [9]. In order
to estimate the 3D locations of the point sources, we assume their distribution is approximated by a
discrete lattice X ∈ Rm×n×d. The indices of the nonzero entries of X are the 3-dimensional locations
of the point sources and the values at these entries correspond to the fluxes, i.e., the energy emitted
by the illuminated point source. The 2D observed image G ∈ Rm×n can be represented as

G = N (T (A ∗ X ) + b1) ,

where b is background signal, 1 is a matrix of 1s of size the same as the size of G and N is the noise
operator. Here A ∗ X is the convolution of X with the 3D PSF A. This 3D PSF A is a cube which
is constructed by a sequence of images with respect to different depths of the points. Each slice is the



image corresponding to a point source at the origin in the (x, y) plane and at depth z. The dictionary
A is constructed by sampling depths at regular intervals in the range, ζi ∈ [−πL, πL], over which the
PSF performs one complete rotation about the geometric image center before it begins to break apart.
The i-th slice of dictionary is Hzi with certain depth zi. Here T is an operator for extracting the last
slice of the cube A ∗ X since the observed information is a snapshot, and N is the noise operator.

In order to recover X , we need to solve a large-scale sparse 3D inverse problem given as follows:

min
X
D(T (A ∗ X ) + b,G) +R(X ), (2)

where R(X ) is a regularization, or penalty, term to approximate the `0 pseudo-norm which gives the
number of nonzero entries in X . Here D is a certain data-fitting term based on the noise model.

In the following sections, we consider the Gaussian and Poisson noise cases. For notation purposes
we define `2− `k to denote the inverse problem (2), where D = `2 denotes the least squares fitting term
and R = `k denotes the regularization term, with k = 0 or 1. We extend this notation to define R =
CEL0 and R = NC to denote specific non-convex regularization terms.

2.1 `2-CEL0 (Gaussian noise case)

When conventional CCD sensors operate at low per-pixel photon fluxes with large read-out noise, the
noise N can be described as Gaussian noise. The noise is data-independent, which leads to the use of
least squares for the data-fitting term, i.e.,

D(T (A ∗ X ) + b,G) :=
1

2
‖T (A ∗ X ) + b−G‖2F ,

where ‖X‖F is the Frobenius norm of X, which is equal to the `2 norm of the vectorized X. For
the regularization term, we choose the continuous exact `0 (CEL0) penalty, as described in [6]. It is
a non-convex term approaching the `0 norm for linear least squares data fitting problems. R(X ) is
constructed as

R(X ) := ΦCEL0(X ) =

m,n,d∑
u,v,w=1

φ(‖T (A ∗ δuvw)‖, µ, ;Xuvw),

where φ(a, µ, ;u) = µ− a2

2

(
|u| −

√
2µ
a

)2
1{|u|≤√2µ

a

}, 1{u∈E} :=

{
1 if u ∈ E;

0 others.
(see Fig. 1(a) and δuvw

is a 3D tensor whose only nonzero entry is at (u, v, w) with value 1. Here µ is the regularization
parameter and u ∈ 1, · · · ,m, v ∈ 1, 2, · · · , n, w ∈ 1, · · · , d.

The minimization problem amounts to

min
X≥0

1

2
‖T (A ∗ X ) + b−G‖2F +

m,n,d∑
u,v,w=1

φ(‖T (A ∗ δuvw)‖, µ, ;Xuvw)

 . (3)

To emphasize that our non-convex optimization model is based on the use of a least squares data fitting
(`2) term and the CEL0 regularization term, we designate our optimization model (3) as `2-CEL0.

We note that `2-CEL0 has many good properties and it does not need any strict requirements on
the least squares data-fitting term. The global minimizers of the `0 penalty model with a least squares
data-fitting term (`2-`0) are contained in the set of global minimizers of `2-CEL0 (3). A minimizer
of (3) can be transformed into a minimizer of `2-`0. Moreover, some local minimizers of `2-`0 are not
critical points of `2-CEL0, which means `2-CEL0 can avoid some local minimizers of `2-`0 .
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Fig. 1: Non-convex regularization approaching to `0 pseudo-norm with different value of a. Here the
left subfigure is the function for `2-CEL0 in with µ = 1, the right subfigure is the function for KL-NC
in Poisson noise case.

2.2 KL-NC (Poisson noise case)

Here we consider the Poisson noise case for which the data fitting term is the I-divergence. This term
is is also known as Kullback-Leibler (KL) divergence [10], and can be expressed as follows for our case:

D(T (A ∗ X ) + b, g) := DKL(T (A ∗ X ) + b,G),

where DKL(z, g) = 〈g, ln g
z 〉+ 〈1, z − g〉. For the regularization term, the good properties of the CEL0

penalty term fail as the deta-fitting term is no longer least squares, therefore, we consider a new
non-convex function (see [11, 7, 12, 13]), using specifically

R(X ) := µ

m,n,d∑
i,j,k=1

θ(a;Xijk) = µ

m,n,d∑
i,j,k=1

|Xijk|
a+ |Xijk|

,

where a is fixed and determines the degree of non-convexity. (see Fig. 1(b)) Thus, the minimization
problem amounts to

min
X≥0

〈1, T (A ∗ X )−G ln(T (A ∗ X ) + b 1)〉+ µ

m,n,d∑
i,j,k=1

|Xijk|
a+ |Xijk|

 . (4)

Here, θ(a; t) = lim
ε→1

θε(a; t), where θε(t) = |t|
a+ε|t| . Since θε(t) represents the `1 norm when ε = 0, we

observe that the process of increasing non-convexity as ε increases from 0 to 1.

Remark: To emphasize that our non-convex optimization model is based on the use of a KL data
fitting (KL) term and a non-convex (NC) regularization term, we designate our optimization model
(4) as KL-NC.

3. DEVELOPMENT OF OUR ALGORITHMS

Note that our optimization models for both the Gaussian and Poission noise cases are non-convex, due
to the regularization terms. We first consider an iterative reweighted `1 algorithm (IRL1) [14] to solve



the optimization problems. This is a majorization-minimization method which solves a series of convex
optimization problem with a weighted-`1 regularization term. It considers the problem (see Algorithm
3, in [14])

min
x∈X

F (x) := F1(x) + F2(G(x)),

where X is the constraint set. F is a lower semicontinuous (lsc) function, extended, real-valued,
proper, while F1 is proper, lower-semicontinous, and convex and F2 is coordinatewise nondecreasing,
i.e. F2(x) ≤ F2(x + tei) with x, x + tei ∈ G(X) and t > 0, where ei is the i-th canonical basis unit
vector. The function F2 is concave on G(X). The IRL1 iterative scheme [14, Algorithm 3] isw

l = ∂F2(y), y = G(xl),

xl+1 = argmin
x∈X

{
F1(x) + 〈wl, G(x)〉

}
,

where ∂ stands for subdifferential.

For the Gaussian noise case (3), we choose

F1(X ) =
1

2
‖T (A ∗ X ) + b1−G‖2F ;

F2(X ) = µ− ‖ai‖
2

2

(
Xijk −

√
2µ

‖ai‖

)2

1{Xijk≤√2µ
‖ai‖

};

G(X ) = |X |;
X = {X | Xijk ≥ 0 for all i, j, k}.

Remark: The minimization problem in each iteration of IRL1 is a weighted `1 model with non-
negative constraints. In [9], the `1 model without nonnegative constraints is solved by the alternating
direction method of multipliers (ADMM).

For the Poisson noise case (4), we can choose the same G(X ) and X as Gaussian noise case, but
F1 and F2 are as follows:

F1(X ) = 〈1, T (A ∗ X )−G log(T (A ∗ X ) + b 1)〉;

F2(X ) = µ

m,n,d∑
i,j,k=1

Xijk
a+ Xijk

.

Therefore, we compute the partial derivative of wl and get wlijk = aµ

(a+X̂ lijk)
2 , ∀i, j, k. Here wl 6= 0 is

finite, since a, µ 6= 0, and all Xijk ≥ 0 owning to the constraint X. According to [11, 15], these terms
satisfy the requirements of the algorithm.

For real data, the point sources may be not on a grid, which means the discrete model may not be
accurate. In order to avoid missing point sources, the regularization parameter µ is kept small, which
can potentially lead to over-fitting. Our optimization solution generally contains tightly clustered
point sources, so we need to regard any such cluster of point sources as a single point source. The
same phenomenon has been observed in [9, 16, 17]. We apply a post-processing approach following
[17]. The method is based on the well-defined tolerance distance for recognizing clustered neighbors.
We compute the centroid of each cluster, which we regard as a single point source.



3.1 Flux estimation

In the Poisson noise case, our numerical results show that the flux values are generally underestimated.
In [9, 16], least squares fitting is used for improving the resolution as well as updating the corresponding
fluxes. However, our problem is not a Gaussian-noise problem, and in fact an additive Poisson noise as
used in these paper. Our Poisson noise is data-dependent, which cannot constrain, with least squares,
the observed data to match the regenerated image T (A ∗X ∗), in which X ∗ is the scene estimate. Our
aim is thus to estimate the source fluxes from the KL data-fitting term appropriate to the Poisson noise
model after the source 3D positions have already been accurately estimated.

Let the PSF corresponding to the i-th source be arranged as the column vector hi. The stacking
of the P column vectors in the same sequence as the source labels for the P sources then defines a
system PSF matrix H, with H = [h1,h2, · · · ,hP ] ∈ RK×P , where K is the total number of pixels
in the vectorized data array, so K = mn. The vectorized observed image is denoted by g ∈ RK×1.
The uniform background is denoted as the vector b1 with 1 ∈ RK×1. The flux vector is denoted as
f ∈ RP×1. Here the problem is overdetermined, i.e., the number of point sources P is much smaller
than the number of available data K = mn. Therefore we need to do some refinement of the estimates
by minimizing directly data fitting term. Since the negative log-likelihood function for the Poisson
model, up to certain data dependent terms, is simply the KL divergence function,

DKL(Hf + b1,g) = 〈1, Hf+b1− g log(Hf + b1)〉 ,

its minimization with respect to the flux vector f , performed by setting the gradient of DKL with
respect to f (see [15]) zero. This yields the nonlinear relation

∇DKL(Hf + b1,g) =HT1−
K∑
i=1

gi

eTi (Hf + b1)
HTei

=
K∑
i=1

eTi (Hf + b1− g)

eTi (Hf + b1)
HTei = 0,

(5)

where ei is the i-th canonical basis unit vector. Consider now an iterative solution of (5), which may
be expressed as the equality

f = fG +K(f), (6)

where K(f) =
K∑
i=1

eTi (Hf+b 1−g)eTi Hf

eTi (Hf+b1)
H+ei and H+ = (HTH)−1HT . Here fG = H+(g−b1) is the solution

corresponding to the Gaussian noise model. This suggests the following fixed point iterative scheme

fn+1 = fG +K(fn), n = 1, 2, · · · (7)

for estimating the flux.

4. NUMERICAL RESULTS

In this section, we apply our optimization approaches to solving simulated rotating PSF problems for
point source localization and compare them to some other optimization methods. The codes of our
algorithm and the others with which we compared our method were written in MATLAB 9.0 (R2016a),
and all the numerical experiments were conducted on a typical personal computer with a standard CPU
(Intel i7-6700, 3.4GHz).



The fidelity of localization is assessed in terms of the recall rate, defined as the ratio of the number
of identified true positive point sources over the number of true positive point sources, and the precision
rate, defined as the ratio of the number of identified true positive point sources over the number of all
point sources obtained by the algorithm; see [18].

To distinguish true positives from false positives for the estimated point sources, we need to deter-
mine the minimum total distance between thm and true point sources. Here all 2D simulated observed
images are described by 96-by-96 matrices. We set the number of zones of the spiral phase mask
responsible for the rotating PSF at L = 7 and the aperture-plane side length as 4 which sets the pixel
resolution in the 2D image (FFT) plane as 1/4 in units of λzI/R. The dictionary corresponding to
our discretized 3D space contains 21 slices in the axial direction, with the corresponding values of the
defocus parameter, ζ, distributed uniformly over the range, [−21, 21]. According to the Abbe-Rayleigh
resolution criterion, two point sources that are within (1/2)λzI/R of each other and lying in the same
transverse plane cannot be separated in the limit of low intensities. In view of this criterion and our
choice of the aperture-plane side length and if we assume conservatively that our algorithm does not
yield any significant super-resolution, we must regard two point sources that are within 2 image pixel
units of each other as a single point source. Analogously, two sources along the same line of sight (i.e.,
with the same x, y coordinates) that are axially separated from each other within a single unit of ζ
must also be regarded as a single point source.

As for real problems, our simulation does not assume that the point sources are on the grid points.
Rather, a number of point sources are randomly generated in a 3D continuous image space with certain
fluxes. We consider a variety of source densities, from 5 point sources to 40 point sources in the same
size space. For each density, we randomly generate 20 observed images and use them for training the
parameters in our algorithm, and then test 50 simulated images with the well-selected parameters.
The number of photons emitted by each point source follows a Poisson distribution with mean of 2000
photons.

For adding Gaussian noise, we use the MATLAB command

G = I0 + b + sigma*randn(Np),

where b is the uniform background noise which we set to a typical value 5. Here, I0 is the 2D original
image formed by adding all the images of the point sources without noise, and Np = 96 is the size of
the images. The noise level is denoted as sigma. We choose sigma to be 10% of the highest pixel value
in original image I0. Here, randn is the MATLAB command for the Gaussian distribution with the
mean as 0 and standard deviation as 1.

For the Poisson noise case, we apply Poisson noise not as additive noise as done in [9], but rather
as data-dependent Poisson noise by using the MATLAB command

G = poissrnd(I0+b),

where poissrnd is the MATLAB command whose input is the mean of the Poisson distribution.

4.1 3D localizations for the Gaussian noise case

In this subsection, we consider Gaussian noise and test our CEL0 based algorithm for several point-
source densities. Fig. 2 gives an example of 30 point sources.
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Fig. 2: Gaussian noise case: Localizations for the 30 point sources case. “◦” denotes the location of
the ground truth point source and “+” the location of the estimated point source.
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Fig. 3: Gaussian noise case: Localizations from 2 algorithms (30 point sources). In (a), (b) and (c),
“◦” denotes the location of the ground truth point source and “+” the location of the estimated point
source.



In Fig. 2, many PSF images are overlapping whose corresponding point sources are very close. Our
algorithm estimates the clusters of these point sources but estimates more point sources than their
ground-truth number.

Next, we compare our algorithm with `2-`1 (least squares fitting term with `1 regularization model).
In Fig. 3, we again consider the 30 point sources case. We see that `2-`1 has more false positives than
our algorithm although it detects all the ground truth point sources.

For more comparison, we test 50 different random images and compute the average of recall and
precision rate in each density case for both algorithms; see Tab. 1.

Tab. 1: Gaussian noise case: Comparisons of `2-`1 with our `2-CEL0. All the results are with post-
processing.

`2-`1 `2-CEL0

No. Sources Recall Prec. Time Recall Prec. Time

5 95.60% 72.41% 20.27 98.00% 83.19% 20.86

10 94.80% 64.04% 19.99 95.80% 79.72% 20.93

15 90.80% 61.68% 20.09 93.20% 77.68% 20.92

20 86.60% 57.72% 20.24 89.30% 72.12% 20.25

30 88.80% 47.51% 19.97 87.20% 58.77% 21.12

40 81.50% 42.03% 19.95 77.40% 52.87% 21.09

In Tab. 1, our algorithm is better than `2-`1 almost for all cases especially in precision rate. For
example, in 5 to 15 point sources case, the precision rate in our algorithm has over 10% higher than
the one in `2-`1. In the high-density cases, like those with 30 and 40 sources, both methods have more
than 5 false positives. We mitigate the latter by further post-processing based on machine learning
technique, as in [9]. Here we must emphasize the advantage of our algorithm as providing a better
initial guess than `2-`1 with similar cost time. We set the maximum number of iterations for `2-`1 at
800, which guaranteed its convergence, and for CEL0 regularization, we set the maximum number of
inner and outer iterations at 400 and 2, respectively.

4.2 3D localizations for the Poisson noise case

Fig. 4 shows another instance of 30 point sources, but for the case of Poisson noise and with many
overlapping rotating PSF images. Such overlap in the presence of data-dependent Poisson noise makes
the problem very difficult. The number and 3D locations of point sources is not easily obtained from
observation. In this specific case, our algorithm still identifies all the true point sources correctly, but
produces 9 false positives. From Fig. 4(b), we can see that these false positives come from the serious
PSF overlapping.

Next, we compare our model with three other optimization models: KL-`1 (KL data fitting with `1
regularization); `2-`1 (least squares fitting term with `1 regularization) and `2-NC (least squares fitting
term with non-convex regularization model). For all these comparisons, we do the same post-processing
and estimation of flux values after solving the corresponding optimization problem.

Both the initial guesses of X and U0 are set as 0 for all these methods. In order to do the comparison,
we plot the localizations for the four optimization models as well as the ground truth in the same
space; see Fig. 5 which correspond to the case of 30 point sources. From Fig. 5, we see the overfitting
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Fig. 4: Poisson noise case: Localizations for the 30 point sources case. “◦” is the location of the ground
truth point source and “+” is the location of the estimated point source.

of the `1 regularization models (KL-`1 and `2-`1). Before post-processing, the localizations of these
two algorithms spread out the PSFs a lot and have many false positives. After post-processing, both
algorithms are improved, especially KL-`1. However, in comparison to the non-convex regularization
(KL-NC and `1-NC), they still have many more false positives. Among the four algorithms, our
approach (KL-NC) performs the best in terms of the recall and precision rates.

We tested four algorithms for the Poisson noise case with a number of point source densities, namely
5, 10, 15, 20, 30 and 40, and computed the average recall and precision rates of 50 images for each
density and for each algorithm; see Tab. 2. The results show superior results of our method in terms
of both recall and precision rates, with the best recall and precision rates in each case labeled by bold
fonts. As in the above discussion, our non-convex regularization tends to eliminate more false positives,
and this increases the precision rate. The KL data-fitting term, on the other hand, improves the recall
rate as we see by comparing the results of KL-NC with `2-NC. Before post-processing, we see that all
the algorithms have low precision rates, especially the two employing the `1 regularization model at
less than 10%.

Tab. 2: Poisson noise case: Comparisons of `2-`1, `2-NC and KL-`1 with our KL-NC.

`2-`1 `2-NC KL-`1 KL-NC

No. Sources Recall Prec. Recall Prec. Recall Prec. Recall Prec.

5 100.00% 68.91% 97.60% 89.15% 98.93% 58.64% 100.00% 97.52%

10 99.60% 55.95% 94.80% 83.51% 99.40% 65.24% 99.40% 93.69%

15 98.67% 56.28% 92.80% 84.77% 98.93% 58.64% 98.40% 88.60%

20 97.70% 56.50% 95.20% 80.92% 98.10% 57.82% 97.70% 87.49%

30 96.00% 55.74% 93.93% 77.77% 94.00% 56.22% 96.20% 79.75%

40 93.80% 52.68% 95.40% 59.34% 93.70% 54.29% 95.00% 73.35%

We now compare the results of the estimations of the flux f by these four algorithms, considering
specifically the case of 15 point sources. In Fig. 6, we plot the fluxes of ground truth as well as the
fluxes of the estimated point sources for the true positive point sources. For the false positive point
sources, we only show the estimated fluxes. Both `1 models underestimate the fluxes. The rotating
PSF images for false positives carry the energy away from the true positive source fluxes. In non-convex
models, we also have similar observations when we have false positives. For example, in Fig. 6(d), we
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Fig. 5: Poisson noise case: 3D estimated results from 4 algorithms (30 point sources).



0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

true

est

(a) `2-`1

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

120

140

160

true

est

(b) `2-NC

0 5 10 15 20 25

0

20

40

60

80

100

120

140

160

true

est

(c) KL-`1

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

120

140

160

true

est

(d) KL-NC

Fig. 6: Poisson noise case: Tests on estimating flux values. The bar graph with no value ground truth
part corresponds to a false positive.

see the flux on the fifth bar is underestimated more than the others. We note that its rotating PSF is
overlapping with the image of a false positive. The more false positives an algorithm recovers the more
they will spread out the intensity, leading to more underestimated fluxes for the true positives.

We also tested 50 different observed images for each density, and analyzed the relative error in the
estimated flux values, which we define as

error =
fest − ftru

ftru
,

where (fest, ftru) is the pair which contains the flux of an identified true positive and the corresponsing
ground truth flux. In Fig. 7, we plot the histogram of the relative errors on these four optimization
models in the 30 point sources case. We still see the advantage of KL-NC over other algorithms in
this respect. The distribution of relative errors mostly lies within [0, 0.1]. For the `1 regularization
algorithms, the distribution of the relative error spreads out and there are many cases with error higher
than 0.3.

5. CONCLUSIONS AND FUTURE WORK

We have proposed non-convex optimization algorithms for the 3D localization of a swarm of randomly
spaced point sources using a rotating PSF which has a single lobe in the image of each point source.
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Fig. 7: Histogram of relative errors of flux values in the 30 point sources case.

It has advantages over the double-lobe rotating PSF, e.g. [9, 19, 20, 21], especially in cases where the
point source density is high. In addition, for the Poisson-noise case we have proposed a new iterative
scheme for refining the estimates of the source fluxes after the sources have been localized.

These techniques can be applied to other rotating PSFs as well as other depth-encoding PSFs
for accurate 3D localization and flux recovery of point sources in a scene from its image data under
both the Gaussian and Poisson noise models. Applications include not only 3D localization of space
debris, but also super-resolution 3D single-molecule localization microscopy, e.g. [18, 22]. Tests of our
algorithms based on real data collected using phase masks fabricated for both applications are currently
being planned. In addition, work involving snapshot multi-spectral imaging, which will permit accurate
material characterization, as well as higher 3D resolution and localization of space micro-debris via a
sequence of snapshots, is underway.
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