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ABSTRACT

Left Ventricular Hypertrophy (LVH) is a major cardiovascular risk
factor, linked to heart failure, arrhythmia, and sudden cardiac death,
often resulting from chronic stress like hypertension. Electrocar-
diography (ECG), while varying in sensitivity, is widely accessible
and cost-effective for detecting LVH-related morphological changes.
This work introduces a bilateral signal warping (BSW) approach to
improve ECG-based LVH diagnosis. Our method creates a library
of heartbeat prototypes from patients with consistent ECG patterns.
After preprocessing to eliminate baseline wander and detect R peaks,
we apply BSW to cluster heartbeats, generating prototypes for both
normal and LVH classes. We compare each new record to these ref-
erences to support diagnosis. Experimental results show promising
potential for practical application in clinical settings.

Index Terms— Left Ventricular Hypertrophy, Bilateral Signal
Warping, Prototype Generation, Electrocardiography, Explainability

1. INTRODUCTION

Left Ventricular Hypertrophy (LVH) is a critical marker of cardio-
vascular health, characterized by an increase in the mass of the left
ventricle in response to chronic stressors. This heart condition is
prevalent in people with risk factors such as obesity and diabetes,
and also commonly occurs in many patients with untreated hyper-
tension [1, 2, 3]. As LVH serves as a strong predictor of cardiovas-
cular diseases, including heart failure, arrhythmia, and sudden car-
diac death, early screening and management are essential to control
morbidity and mortality [4, 5].

Electrocardiography (ECG) is a widely accessible and cost-
effective screening tool for LVH, despite its varying sensitivity
and specificity [5, 6]. Recently, advances in artificial intelligence
(AI) and healthcare data digitization have led to automated LVH
diagnostic algorithms using ECG with accuracy on par with expert
physicians [5, 7, 8]. However, these methods are often criticized as
“black-box” systems, often lacking interpretability and reliability in
clinical settings [9, 10]. The difficulty in understanding which fea-
tures drive neural network decisions complicates validation, limits
transparency, and poses potential risks to patient safety. This moti-
vates the development of computer-aided methods that can “mimic”
physician diagnostics and therefore provide supporting evidence for
each decision [11, 12, 13], which has been successfully applied to
electroencephalograms[14].

Inspired by Sir William Osler’s words, “The good physician
treats the disease; the great physician treats the patient who has
the disease”, we recognize that doctors often compare patient cases
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to reach diagnostic conclusions. This raises the question: which pa-
tients should serve as prototypes for such comparisons? To solve
this, we introduce a bilateral signal warping (BSW) approach in
this work to enhance explainable ECG-based LVH diagnosis. Our
method constructs a library of heartbeat prototypes by first extract-
ing representative signal patterns for each selected patient candidate.
BSW is then applied to group and warp these signals to generate
distinct prototypes for normal and LVH cases. These normal and
abnormal prototypes act as references to which new ECG records
can be compared, thus enabling explainable LVH diagnosis based
on both quantitative and visual patient comparison.

2. RELATED WORKS

2.1. Left Ventricular Hypertrophy Detection

The ECG waveform contains identifiable points essential for track-
ing cardiac cycle phases, including ventricular depolarization [4]. In
LVH cases, the QRS complex often shows increased amplitude due
to the greater electrical load required by hypertrophied ventricular
walls. Common voltage-based criteria for LVH diagnosis include the
Modified Cornell Criteria, which indicates LVH when the R wave in
lead aVL exceeds 1.2 mv, and the Sokolow-Lyon Criteria, where the
sum of the S wave in lead V1 and the R wave in lead V5 or V6
surpasses 3.5 mv [4, 15]. There exist additional non-voltage indica-
tors, such as a left ventricular “strain” pattern marked by ST segment
depression and T wave inversion in left-sided leads [6, 16].

Machine learning methods, including traditional and deep learn-
ing approaches, have been used to detect LVH through feature ex-
traction techniques like Fourier or wavelet transforms [2], along with
features around the R and S waves to encode ECG signals effec-
tively [5]. While these methods reliably differentiate LVH from
normal ECG signals, they heavily rely on engineered features —
a contrast to clinical diagnosis, where physicians assess ECG signal
patterns directly rather than isolated characteristics.

2.2. Time Warping

Time warping methods, especially Dynamic Time Warping (DTW),
are widely applied for aligning sequences with temporal varia-
tions [17]. DTW computes the optimal alignment between two
time series X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yM}
by minimizing the cumulative distance Di,j over a warping path
W = {w1, w2, . . . , wK}, where each wk = (ik, jk) specifies the
alignment between the ik-th element of X and the jk-th element of
Y . The distance function is recursively defined as:

Di,j = ∥xi − yj∥+min(Di−1,j , Di,j−1, Di−1,j−1),



Fig. 1: Proposed Prototype Generation Pipeline: The ECG data is preprocessed with baseline wander removal and R peak detection, followed
by selection of high-quality signals and computation of mean heartbeats per record. Finally, BSW is applied hierarchically to generate
dynamic heartbeat prototypes for the library.

where Di,j represents the cumulative alignment cost at point (i, j)
in the two-dimensional grid spanned by X and Y .

In ECG analysis, DTW aligns signals with morphological vari-
ability, which enables prototype generation by adjusting non-linear
time shifts. For instance, DTW-based prototypes in [18] classify
normal and arrhythmic cases using alignment cost statistics. How-
ever, DTW ignores amplitude variations, which is essential for ECG
interpretation. Two-dimensional signal warping [19] addresses this
by jointly adjusting time and amplitude, which enhances QT inter-
val variability detection for myocardial infarction analysis. Yet, its
non-separable formulation is hardly interpretable. In particular, it
restricts explicit differentiation of time and amplitude changes.

In [20], a simple and efficient method is proposed to account for
both amplitude and time shifts, using

r(t)f(t) ≈ g(t+ s(t)), (1)

where r(t) adjusts amplitude and s(t) controls time shifts. Here,
f(t) and g(t) are the signals to be aligned, and the optimization is
achieved through a minimization function, with r(t) and s(t) as the
targets. This minimization function L(r, s) comprises four parts:

L(r, s) =
∫ T
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+ wr
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0

(
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2
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(2)

The first term aligns r(t)f(t) closely with g(t + s(t)), accounting
for both amplitude scaling and time shifting. The second and third
terms encourage smoothness in the functions r(t) and s(t), prevent-
ing abrupt changes across time. The fourth term constrains s(t)
within [smin, smax]. Here, (·)+ denotes the ReLU function, which en-
sures only shifts beyond these bounds contribute to the penalty [20].
Initially designed for epidemiological signals, this bilateral signal
warping (BSW) method can be reformulated for ECG signals.

3. METHODOLOGY

This section introduces our proposed pipeline for constructing a
heartbeat prototype library (see Fig. 1). We begin with prepro-
cessing steps to remove baseline wander and detect R peaks for
individual heartbeat segmentation. Next, we assess heartbeat vari-
ability to select consistent patient data for generating representative
prototypes. We then apply BSW to cluster heartbeat prototypes for
healthy individuals and LVH patients, with each cluster represented
by a signal weighted by its degree of occurrence to capture both
common and rare cases. Finally, we validate the library by mapping
new patient data to the prototypes, employing BSW statistics to
quantify similarity to the closest prototype for diagnostic purposes.

3.1. Eligible Candidates Selection

To construct a reliable heartbeat prototype library, it is essential to
only use “regular” patients with stable and consistent heartbeats, as
irregular or noisy patterns can compromise the integrity of reference
prototypes. To systematically identify these candidates, we develop
a metric to evaluate ECG signal regularity that allows us to exclude
patients with excessive heartbeat variability.

Given an ECG signal with n heartbeats, let H = {hi(t) | i =
1, . . . , n; t = 1, . . . , T} represent the set of all heartbeats, where
T is the length of each resampled heartbeat. We calculate the mean
variability of heartbeats v(H), which captures temporal oscillations
across all hi(t), as follows:

v(H) =
1

T

T∑
t=1

√√√√ 1

n− 1

n∑
i=1

(
hi(t)− ĥt

)2

,

where ĥt is the mean amplitude at each time step t across all heart-
beats. To account for amplitude differences among ECG leads, we
normalize v(H) by calculating the average activity a(H):

a(H) =
1

n

n∑
i=1

√√√√ 1

T − 1

T∑
t=1

(
hi(t)− hi

)2
,



(a) Lead II

(b) Lead aVR

Fig. 2: Visualization of Bilateral Signal Warping for ECG Heart-
beats: The first two columns display the ECG signals before and af-
ter warping, while the last column presents the output r(t) and s(t).
The shadowed areas emphasize the P, R, and T waves, respectively.

where hi is the mean value of each heartbeat hi(t). The final heart-
beat variability

vh(H) =: v(H)/a(H).

serves as a measure of heartbeat consistency across ECG records. By
selecting low vh patients based on a predefined threshold, we can
maintain high-quality, uniform heartbeat patterns in the prototype
library. The mean heartbeat of these qualified candidates is then
utilized in subsequent analyses. This metric supports both initial
patient screening and ongoing quality assurance that helps ensure
the library’s integrity as new data are integrated.

3.2. Dynamic Prototype Generation

We propose bilateral signal warping (BSW) to construct a general-
ized prototype library from the mean heartbeats of eligible patients.
This method improves upon the initial time warping approach, which
is restricted to two time series, by addressing non-bipartite matching
problems through an iterative process.

Consider a set of n patients P = {p1, ..., pn}, where pi repre-
sents the mean heartbeat of patient i, n = 2m, and m ∈ N∗. We
construct an n×n matrix D = {dij} to quantify the affinity between
pi and pj . This affinity is defined by assessing the variability of r(t)
and s(t), derived from the time warping of pi and pj by (1). In par-
ticular, given that the amplitude of the QRS complex in the ECG
signal is a crucial indicator for evaluating LVH, we pay greater at-
tention to the changes of r(t) within the interval containing the QRS
complex. The affinity is computed as the summation of the weighted
standard deviation of r(t) and the standard deviation of s(t).

The BSW aims to minimize the total distance between matched
elements in each iteration through a non-bipartite matching on P .
By calculating the reciprocal of each distance, we can utilize the
Blossom method [21] to find augmenting paths and the Primal-Dual
method [22] to identify a maximum weight matching, thus determin-
ing the most similar heartbeat pairs in each iteration.

Recognizing that each ECG lead may contain multiple heartbeat
prototypes, we set thresholds for r(t) and s(t). If the thresholds are
satisfied, we warp the pair and use 1

2
(
√

r(t)f(t− s(t)
2

)+ 1√
r(t)

g(t+
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2

)) as the warped heartbeat for the next iteration. Conversely, if a
heartbeat lacks an optimal match, it is designated as a potential new
prototype or deemed unsuitable for warping in the current iteration,
enabling it to proceed unaltered to the next round. Ultimately, the
process converges, yielding the desired prototype library for a typical

lead, with the degree of occurrence for each prototype determined by
the number of patients contributing to its creation.

4. EXPERIMENTS

4.1. Data Selection and Preprocessing

We conducted experiments using the PTB-XL 12-lead ECG dataset
[23], which includes 9,069 patients with normal heart function and
456 diagnosed with LVH. Each ECG record is 10 seconds in length,
sampled at 500 Hz. We calculated heartbeat variability vh for each
patient, selecting those with vh < 0.3 across all 12 leads. Due to
class imbalance, we randomly sampled 256 records from the healthy
group to balance against the smaller number of LVH cases, resulting
in 215 LVH and 256 normal records for prototype generation.

ECG signals are sensitive to noise, particularly baseline wan-
der, which can impact time warping robustness. To address this, we
applied a 4th-order Butterworth high-pass filter to remove baseline
drift. For R peak detection, we used NeuroKit2 [24], customized for
our 12-lead data. Given that R peak directions vary across leads, we
combined signals from leads I, II, V4, V5, and V6 (which typically
have upward R peaks) and subtracted lead aVR (which shows down-
ward R peaks) to enhance R peak prominence. Each heartbeat was
segmented from the midpoint between two R peaks to the next, re-
sampled to 500 samples, and averaged within each lead to compute
a representative heartbeat, resulting in 12 heartbeat patterns for one
patient.

4.2. Implementation Details

For BSW (refer to (2)), parameters wr and ws, which regulate the
smoothness of r(t) and s(t), are set to 20 and 10−4, respectively,
with a stricter constraint on r(t) to preserve morphological attributes
of each heartbeat. Bounds smin and smax are set to −100 and 100.
The parameter wo, set to 1010, is triggered only if s(t) falls outside
this range, which is uncommon. For affinity calculation, weights for
computing the weighted standard deviation of r(t) are derived from
the smoothed gradient of the original signals. The threshold for r(t)
is dynamically set to 0.015 times the initial ECG amplitude range,
while a fixed threshold of 20 is applied to s(t).

4.3. Prototype Validation

Fig. 2 presents the application of time warping to two ECG heart-
beats. Unlike DTW, the proposed BSW is sensitive to both ampli-
tude and temporal shifts, enabling a more delicate non-linear merg-
ing of the signals compared to simple averaging. The resulting pro-
totype libraries are depicted in Fig. 3. Notably, prototypes derived
from LVH signals often exhibit abnormally high R waves in left-
sided leads such as V6 and deep S waves in right-sided leads like V1,
indicating that the ventricular depolarization is amplified [25, 15]. In
addition, our library also contains some rare prototypes, including
those with secondary ST-T changes like inverted T-waves in left-
sided leads I and V6, which indicate the presence of a left ventric-
ular “strain” pattern [4, 16]. These diverse prototypes are preserved
to serve as reliable references for accommodating incoming patients
with similar atypical symptoms.

To validate the potential applications of the generated proto-
types, we employ them as references for diagnosing incoming ECG
records. We formulate the distance metric d based on the warping re-
sults r(t) and s(t) of an unknown patient’s heartbeat pattern relative



(a) Lead I, Normal (b) Lead V1, Normal (c) Lead V6, Normal

(d) Lead I, LVH (e) Lead V1, LVH (f) Lead V6, LVH

Fig. 3: Heartbeat Prototypes for Normal and LVH from Lead I, V1, and V6. Each panel presents two subfigures: The left figures show
individual heartbeats (grey) with averaged waveforms (red), while the right figures display BSW-generated prototypes, where darker colors
indicate higher occurrence rates. Unlike simple averaging, BSW captures both common and rare prototypes, preserving diverse patterns that
would otherwise be lost.

Fig. 4: Comparison of Normalized Confusion Matrices: We com-
pare our prototype matching method versus two common voltage-
based diagnostic criteria for LVH detection. In contrast to both of
these criteria, which reduce false positives at the cost of many false
negatives, our approach mitigates this trade-off by enabling direct
examination of the closest prototypes.

to the prototypes as:

d = 10× (∥r(t)− 1∥∞ + σ(r(t))) +
∥s(t)∥∞ + σ(s(t))

500
,

where σ(·) denotes the standard deviation. We assign a higher
weight to the changes in r(t) as the diagnosis of LVH largely de-
pends on amplitude variations in the waveform. We calculate d to
identify the closest two prototypes from both the healthy and LVH
libraries per lead, yielding distance sets for each class. Noting that
LVH is primarily evident in chest leads V1, V5, and V6, the final
decision metric is the summed distances from these leads. If the
total distance from the healthy set exceeds that from the LVH set,
the patient is classified as having LVH.

The classification was conducted on a test dataset of 100 normal
and 100 LVH patients, with confusion matrices compared across var-
ious diagnostic criteria (see Fig. 4). Compared to the first two crite-
ria, which prioritize reducing false positives but yielding many false
negatives, our method reduces these effects by allowing doctors to
examine the closest prototype directly. In practice, observing that no
single automatic method is sufficient by itself, our approach serves as
a complementary tool, providing visual support that assists doctors
in making reliable final decisions. Fig. 5 presents a case misclas-
sified by the Sokolow-Lyon Criteria, where our prototype matching
method identified leads V1 and V5 as closer to LVH prototypes.

(a) Lead V1

(b) Lead V5

Fig. 5: A LVH patient that is misdiagnosed as healthy by Sokolow-
Lyon criteria: In fact, the patient shows a closer proximity of leads
V1 and V5 to the LVH prototypes generated by BSW, compared to
the normal prototypes.

5. CONCLUSION

This study presents a bilateral signal warping method for generating
ECG prototypes that effectively differentiate between LVH and nor-
mal heart function. Our approach yields distinct prototypes that align
closely with established LVH criteria and can serve as reference
standards for diagnosing new ECG records. Experimental results
demonstrate that these prototypes enhance LVH diagnosis through
prototype matching and also offer valuable support as a diagnostic
aid for clinicians. Future research will expand this method to en-
compass more cardiac diseases and investigate its applicability to
other periodic biomedical signals, such as photoplethysmography.
Beyond assisting human specialists in making diagnosis, it is also
expected that prototype-based explanations can be integrated into
machine learning systems, bridging the gap between model predic-
tions and the need for human-interpretable insights.
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