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Abstract
Fractional-order derivative is attractingmore andmore interest from researchers work-
ing on image processing because it helps to preserve more texture than total variation
when noise is removed. In the existingworks, the Grunwald–Letnikov fractional-order
derivative is usually used, where the Dirichlet homogeneous boundary condition can
only be considered and therefore the full lower triangular Toeplitz matrix is generated
as the discrete partial fractional-order derivative operator. In this paper, a modified
truncation is considered in generating the discrete fractional-order partial derivative
operator and a truncated fractional-order total variation (tFoTV)model is proposed for
image restoration. Hopefully, first any boundary condition can be used in the numerical
experiments. Second, the accuracy of the reconstructed images by the tFoTV model
can be improved. The alternating directional method of multiplier is applied to solve
the tFoTV model. Its convergence is also analyzed briefly. In the numerical experi-
ments, we apply the tFoTV model to recover images that are corrupted by blur and
noise. The numerical results show that the tFoTV model provides better reconstruc-
tion in peak signal-to-noise ratio (PSNR) than the full fractional-order variation and
total variation models. From the numerical results, we can also see that the tFoTV
model is comparable with the total generalized variation (TGV) model in accuracy. In
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addition, we can roughly fix a fractional order according to the structure of the image,
and therefore, there is only one parameter left to determine in the tFoTVmodel, while
there are always two parameters to be fixed in TGV model.

Keywords Image restoration · Fractional-order derivative · Truncated
fractional-order total variation model · Total variation · Total generalized variation ·
Alternating directional method of multiplier

Mathematics Subject Classification 65K10

1 Introduction

In 1992, Rudin et al. [1] first proposed the following minimization problem (the
ROF model) for image noise removal:

min
u∈BV (Ω)

{
λJ (u) + 1

2
‖u − f ‖22

}
, (1.1)

where J (u) = ‖∇u‖1, Ω ⊂ R
2 is an open and bounded domain, and f ∈ L2(Ω) is

the known noisy image. The deblurring problem can bemodeled to solve the following
adapted ROF minimization problem

min
u∈BV (Ω)

{
λJ (u) + 1

2
‖Au − f ‖22

}
, (1.2)

where A is a blurring operator and f here is the known corrupted image by blur and
noise. From then, the total variation (TV)-based regularization methods have been
the absolutely leading methods for image restorations because of its good property in
meanwhile preserving edges and removing noise. However, some texture structure is
lost in the reconstruction process and the recovered image has a staircase effect, which
is not hoped. Therefore, high-order total variation models are studied to deduce the
staircase effect, for example, the Lysaker, Lundervold, Tai (LLT) model [2] named
by the authors, the combined first- and second-order functional model [3,4] and the
total generalized variation (TGV)model [5,6]. Recently, the fractional-order derivative
category [7–9] begins to attract the interest from researchers in image processing. It
also plays a role of higher- or lower-order derivative operator depending on the choice
of the fractional order. The fractional-order variation regularizers have been studied
in edge detection [10], image denoising problems [11–20], image deblurring [21],
image segmentation [22], and image inpainting problem [23], etc. In all these papers,
the fractional-order variation models have been shown to be efficient.

In this paper, we consider the following fractional-order variation-based minimiza-
tion problem:

min
u

{
λJα(u) + 1

2
‖Au − f ‖22

}
, (1.3)
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where Jα(u) = ‖ |∇αu| ‖1,∇αu = (∇α
x u,∇α

y u) and |∇αu| =
√

(∇α
x u)2 + (∇α

y u)2.

When the noise is removed, the fractional-order derivative can be treated as a high-pass
filter.Whenα is larger, its high-pass capability is stronger.We need to choose an appro-
priate α to restrain the oscillatory components such that the texture can pass the filter.
Therefore, we fix α ∈ [1, 2] as in [11,12,19,20]. The readers can consult [24] for more
details on the high-pass property of the fractional-order derivative when α ∈ [1, 2].
When α = 1, (1.3) is actually the TV regularization model (1.2). In this paper, we first
introduce amodified truncation to generate a truncated fractional-order derivative oper-
ator and then apply it to (1.4) to derive the following tFoTVmodel for image restoration

min
u

{
λJ tα(u) + 1

2
‖Au − f ‖22

}
. (1.4)

Here J tα(u) = ‖ |∇α,t u| ‖1,∇α,t u = (∇α,t
x u,∇α,t

y u) denotes the truncated fractional-
order gradient, which will be introduced in Sect. 2. Then, we apply the alternating
directionmethod ofmultipliers (ADMM), pioneered byGlowinski andMarrocco [25],
Gabay and Mercier [26], to solve the tFoTV model (1.4). In the numerical section,
we first test the tFoTV, original full FoTV and the TV models on noise removal to
show the efficiency of the truncation. Next, we test the tFoTV model, TV model and
TGV model to restore the blurred image corrupted by Gaussian noise. The numerical
results show that our tFoTV model produces more accurate reconstructions in peak
signal-to-noise ratio (PSNR) than the TV model and it is comparable with the TGV
model in accuracy. Particularly, the fractional order can be roughly fixed from the
structure of the tested images, which make the implementation of ADMM for tFoTV
model easier to tune than the TGV model.

The rest of the paper is organized as follows: In Sect. 2, we introduce the discrete
fractional-order derivative, our modified truncation, and also give some notations.
In Sect. 3, we mainly derive the ADMM algorithm and linearized ADMM for (1.4)
under different boundary conditions. In Sect. 4, we provide a brief interpretation to
the convergence. Section 5 shows the numerical comparison results. In Sect. 6, we
give some conclusions.

2 Truncated Fractional-Order Derivative and Notations

Wedenote our images by two-dimensionalmatrix of size n×nwith i and j denoting
the columnand the rowpixel coordinates. X is theEuclidean spaceR

n×n . As in [12,24],
we use the definition of the Grunwald–Letnikov fractional-order derivative [8] in this
paper. If u ∈ X ,∇αu is a vector in Y = X×X . For the simplification, we give themain
formula of the fractional derivative of u ∈ R

n×n at ui, j . The discrete fractional-order
derivative at a pixel (i, j) is defined as (∇αu)i, j = ((∇α

x u)i, j , (∇α
y u)i, j ), where

(∇α
x u)i, j =

∞∑
s=0

ωα
s ui−s, j , (∇α

y u)i, j =
∞∑
s=0

ωα
s ui, j−s , (2.1)

where the Dirichlet homogeneous boundary condition can only be considered. ωα
s is

the real coefficient defined by
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ωα
s = (−1)s

Γ (α + 1)

Γ (s + 1)Γ (α − s + 1)
=

{
1, s = 0,
(−1)s α(α−1)···(α−s+1)

s! , s = 1, 2, · · · .
(2.2)

The generalized binomial coefficients, defined in (2.2) in terms of theGamma function,
can be computed by the following recurrence relationships

ωα
0 = 1; ωα

s = ωα
s−1 ·

(
1 − α + 1

s

)
, s = 1, 2, · · · (2.3)

and make the following equality hold:

∞∑
s=0

ωα
s = 0.

Notice that when α = 1 and α = 2, ωα
s always equals zero when s � 2 and s � 3,

respectively. When α ∈ (1, 2), the coefficients never vanishes. The partial fractional-
order derivative operators∇α

x ,∇α
y can be obtained by the followingKronecker product:

∇α
x = In ⊗Uα, ∇α

y = Uα ⊗ In,

where ⊗ denotes the Kronecker product and In is the nth-order identity matrix. If
the Dirichlet homogeneous boundary condition is considered, the partial fractional-
order derivative matrices ∇α

x ,∇α
y are both matrices of block Toeplitz with Toeplitz

blocks. Uα is an n × n Toeplitz lower triangular matrix whose first column is
(ωα

0 , ωα
1 , · · · , ωα

n−1)
�.When α ∈ (1, 2), the sum of any row ofUα will not equal zero.

Therefore, two problems occur when the fractional-order derivative is used. One is
that the fractional-order derivative of constant images never equals zero. Another one
is that the fractional-order gradient operator based on the periodic boundary condi-
tion and Neumann boundary condition fails to be generated, since we have to compute
infinitelymanyωα

s and add them intoUα . To solve these two problems, we propose the
following truncation method to approximate the fractional-order derivative by using
K (2 � K � N for 1 < α < 2) pixels. We first define

⎧⎪⎪⎨
⎪⎪⎩

ω̃α
s = ωα

s , s = 0, 1, 2, · · · , K − 2,

ω̃α
K−1 =

∞∑
K−1

ωα
s ,

ω̃α
s = 0, s = K , K + 1, · · · .

(2.4)

If the Dirichlet boundary condition is considered,Uα,t is defined to be n × n Toeplitz
lower triangular matrix whose first column is (ω̃α

0 , ω̃α
1 , · · · , ω̃α

n−1)
�. The sum of the

entries in the K th row to nth row ofUα,t equals zero. If periodic or Neumann boundary
condition is considered, the sum of entries in all the rows of Uα,t equals zero. The
truncated fractional-order partial derivative operators are generated, respectively, by

∇α,t
x = In ⊗Uα,t , ∇α,t

y = Uα,t ⊗ In .
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After taking the modified truncation (2.4), hopefully, this kind of truncation can
improve the reconstruction results of fractional-order variationalmodels greatly,which
will be verified in Sect. 5. To learn more about the truncated fractional-order derivative
operator, we give the following two remarks.

Remarks

1. If K = 2 , then ω̃α
0 = 1, ω̃α

1 = −1, and ω̃α
k = 0, k = 2, 3, · · · . The truncated

fractional-order derivative is actually the first-order derivative nomatterwhat value
α equals.

2. If K = 3, then ω̃α
0 = 1, ω̃α

1 = −α, ω̃α
2 = α − 1, and ω̃α

k = 0, k = 3, 4, · · · . The
truncated fractional-order derivative operator [1,−α, α − 1] = [1,−2, 1] + (2 −
α)[0, 1,−1], which can be treated as a linear combination of the first-order and
second-order derivatives.

3 The Algorithms

In this section, we apply the ADMM-based method to solve the tFoTV model
(1.4). First, we introduce an auxiliary variable and transform (1.4) to be an equivalent
constrained problem

min
u,d

{
λ‖|d|‖1 + 1

2‖Au − f ‖22
}

s.t. d = ∇α,t u.
(3.1)

We define the following Lagrangian functional

L(u, d; p)=λ
(
‖|d|‖1+〈p, d−∇α,t u〉+ 1

2η
‖d − ∇α,t u‖22

)
+ 1

2
‖Au − f ‖22, (3.2)

where p is a Lagrangian multiplier and |d| =
√
d2x + d2y . According to our tests, it is

enough to take η = 1.
It is known that one of the saddle points of the augmented Lagrangian functional

corresponds to the minimizers of the constrained minimization problem (3.1) [27–29].
The following algorithm is usually used to find the saddle points of the augmented
Lagrangian functional (3.2), i.e., to solve the fractional-order minimization model
(1.4).
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Algorithm 1:

Step 1 Initialize p0 = 0;
Step 2 For k = 0, 1, 2, · · · :

(a) Compute (uk, dk) as an (approximate)minimizer of the augmentedLagrangian
functional with the Lagrange multiplier pk , i.e.,

(uk+1, dk+1) ≈ argmin
u,d

L(u, d, pk), (3.3)

where L(u, d, pk) is defined as in (3.2).
(b) Update pk+1 = pk + 1

η
(dk+1 − ∇α,t uk+1).

Since the variables in (3.3) are coupled together, it is very difficult to solve it exactly.
Therefore, the alternating minimization approach is applied to find its approximate
minimizers. In the following part, we separate problem (3.3) into two subproblems
and give details on how to find the approximate minimizers by using the alternative
minimization approach.

To find the approximate minimizer of (3.3), the following two subproblems will be
solved sequentially once in each iteration.

– u-subproblem: Given d,

min
u

{
λ
(
‖|d|‖1 + 〈pk, d − ∇α,t u〉 + 1

2η
‖d − ∇α,t u‖22

)
+ 1

2
‖Au − f ‖22

}
; (3.4)

– d-subproblem: Given u,

min
d

{
‖|d|‖1 + 〈pk, d − ∇α,t u〉 + 1

2η
‖d − ∇α,t u‖22

}
. (3.5)

Next, we will show that the above two subproblems either have explicit solutions or
can be solved by inexpensive numerical solvers.

3.1 Solving the u-Subproblem

Notice that u-subproblem is quadratic in u. To get the solution of (3.4), we only
need to take the derivative to the energy functional in u and then solve the following
linear system

(λ

η
(∇α,t )�∇α,t + A�A

)
u = A� f + λ

η
(∇α,t )�(d + ηpk). (3.6)

If periodic boundary condition is considered, (3.6) can be exactly solved directly
by the fast Fourier transform (FFT). If Neumann or Dirichlet homogeneous bound-
ary condition is considered, the FFT cannot be applied. Therefore, in these cases,
the preconditioned ADMM (PADMM) [30] can be applied to solve (3.1). It
means that we alternate to update us+1 by solving the followingminimization problem

123



Truncated Fractional-Order Total Variation Model for...

us+1 = argmin
u

{
L(u, d; pk) + 1

2
‖u − us‖2S

}
, (3.7)

where ‖u − us‖2S = 〈u − us, S(u − us)〉 and S = 1
δ
I − λ

η
(∇α,t )�∇α,t − A�A is

positive definite with suitable choice of δ. Actually, the PADMM is equivalent to a
linearized ADMM (LADMM). It is said that (3.7) is equivalent to update us+1 by
solving the following linearized minimization problem

min
u

{
λ〈pk,−∇α,t u〉 + λ

η
〈(∇α,t )�(∇α,t us − d), u − us〉 + 〈A�(Aus − f ), u − us〉

+ 1

2δ
‖u − us‖22

}
,

which is also quadratic in u and has solution

us+1 = us + δ
[λ

η
(∇α,t )�(d + ηpk − ∇α,t us) + A�( f − Aus)

]
. (3.8)

3.2 Solving the d-Subproblem

Similar to the isotropic total variation in [31], d = (dx , dy) in (3.5) has a closed-
form solution given by

(dx )i, j = max(vki, j − η, 0)
(∇α,t

x u−ηpkx )i, j
vki, j

,

(dy)i, j = max(vki, j − η, 0)
(∇α,t

y u−ηpky)i, j
vki, j

,
(3.9)

where pk = (pkx , p
k
y) and vki, j =

√
(∇α,t

x u − ηpkx )
2
i, j + (∇α,t

y u − ηpky)
2
i, j .

Combining the above results together, (3.3) is solved by the following alternating
minimization approaches under different kinds of boundary conditions.

Algorithm 1.1: Alternating minimization approach for solving (3.3) under periodic
boundary condition

Step 1 Initialize uk+1,0 = uk, dk+1,0 = dk ;
Step 2 For l = 0, 1, 2, · · · , L − 1:

(a) Update uk+1,l+1by solving (3.6), i.e., solving

(λ

η
(∇α,t )�∇α,t + A�A

)
u = A� f + λ

η
(∇α,t )�(dk+1,l + ηpk)

using FFT.
(b) Update dk+1,l+1 using (3.9) for u = uk+1,l+1 ;

Step 3 uk+1 = uk+1,L , dk+1 = dk+1,L .
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Algorithm 1.2: Alternating minimization approach for solving (3.3) under Dirichlet
homogeneous boundary condition or Neumann boundary condition

Step 1 Initialize uk+1,0 = uk, dk+1,0 = dk ;
Step 2 For l = 0, 1, 2, · · · , L − 1:

(a) Update uk+1,l+1by (3.8) from uk+1,l , i.e.,

uk+1,l+1=uk+1,l+δ
[λ

η
(∇α,t )�(dk+1,l+ηpk − ∇α,t uk+1,l)+A�( f −Auk+1,l)

]
;

(b) Update dk+1,l+1 using (3.9) for u = uk+1,l+1 ;

Step 3 uk+1 = uk+1,L , dk+1 = dk+1,L .

Algorithm1withAlgorithm1.1 is so-calledADMMfor solving (1.4) under periodic
boundary condition. Algorithm 1with Algorithm 1.2 is so-called LADMM for solving
(1.4) under Dirichlet homogeneous or Neumann boundary condition.

4 Brief Convergence Analysis

Since the convergence properties of the ADMM and LADMMhave been discussed
in amount of papers [28,30,32,33], in this section, we briefly interpret the convergence
of the proposed ADMM algorithm for solving the tFoTV model. The readers can
consult [30] for the convergence of the LADMM.

Wewould like to illustrate the convergence of the proposed Algorithm 1with Algo-
rithm 1.1 under periodic boundary condition. Our truncationmethodmakes the sum of
all rows ofUα,t equal to zero when the periodic boundary condition is considered, so
that the truncated fractional-order gradient operator has similar properties to the gra-
dient. For example, the null space of the truncated fractional-order gradient operator
is generated by all the constant images. In this paper, we only consider the case when
the blur operator A is given. Using the same notations to the paper [28], we define

– R by R(∇α,t u) = ‖|∇α,t u|‖;
– F by F(Au) = 1

2‖Au − f ‖22;
– E by E(u) = λ‖|∇α,t u|‖ + 1

2‖Au − f ‖22.
In addition, the blur is essentially averaging. The following four assumptions as in
[28] hold for R, F and the truncated fractional-order gradient operator ∇α,t .

– Assumption 1: null(∇α,t ) ∩ null(A) = {0};
– Assumption 2: dom(R ◦ ∇α,t ) ∩ dom(F ◦ A) �= ∅;
– Assumption 3: F(·) is convex, proper, and coercive;
– Assumption 4: F(·) is continuous over dom(F).

Therefore, Theorem 4.1 and Theorem 4.2 in [28] can be adapted to have the follow-
ing two convergence theorems for our proposed algorithm under periodic boundary
condition. And the proofs can be obtained immediately just by replacing the ∇ there
by ∇α,t here.
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Theorem 4.1 Assume that (u∗, d∗; p∗) is a saddle point of L(u, d; p). Suppose that
the minimization problem (3.3) is exactly solved in each iteration, i.e., L → ∞ in
Algorithm 1.1. Then, the sequence (uk, dk; pk) generated by Algorithm 1 satisfies

⎧⎨
⎩

lim
k→∞ R(pk) + F(Auk) = R(p∗) + F(Au∗) = E(u∗),
lim
k→∞ ‖pk − ∇α,t uk‖2 = 0.

(3.1)

Moreover, (3.1) indicates that uk is a minimizing sequence of E(·). If the minimizer
of E(·) is unique, then uk → u∗.

Theorem 4.2 Assume that (u∗, d∗; p∗) is a saddle point of L(u, d; p). Suppose that
the minimization problem (3.3) is roughly solved in each iteration, i.e., L = 1 in
Algorithm 1.1. Then, the sequence (uk, dk; pk) generated by Algorithm 1 satisfies

⎧⎨
⎩

lim
k→∞ R(pk) + F(Auk) = R(p∗) + F(Au∗) = E(u∗),
lim
k→∞ ‖pk − ∇α,t uk‖2 = 0.

(3.2)

Moreover, (3.2) indicates that uk is a minimizing sequence of E(·). If the minimizer
of E(·) is unique, then uk → u∗.

The readers can consult [28] for the proof of Theorem 4.1 and Theorem 4.2 there.

5 Numerical Results

In this section, we implement Algorithm 1 on denoising and deblurring, respec-
tively, to show the efficiency of the proposed tFoTV model. The peak signal-to-noise
ratio (PSNR) is used to measure the quality of the recovered images, which is defined
by

PSNR := 10 log10
2552

1
n2

‖û − u∗‖22
(dB),

where û and u∗ are the original and recovered images, respectively. All the numerical
experiments are performed by MATLAB R2014a (8.3.0.532) on MacPro of version
10.9.5 with 2.2 GHz Intel Core i7 and 16GB memory.

We first take the noise removal, for example, to show the following three issues.
First, when we generate the fractional-order derivative operator with modified trunca-
tion, the best choice for the number of pixels is K = 3 inmost cases. Second, the tFoTV
model usually produces the most accurate reconstructions in PSNR comparing with
the original FoTVmodel and TVmodel. Third, the tFoTVmodel for image restoration
can be implemented under any boundary conditions. Next, we apply the tFoTVmodel
to restore the image corrupted by blur and noise simultaneously and compare it with
the TV model and TGV model. In all the tables and figures shown in this section, we
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abbreviate the Neumann, periodic and Dirichlet homogeneous boundary conditions
by SB, PB and ZB, respectively.

5.1 Numerical Results on Noise Removal

We do noise removal experiments under Neumann, periodic and Dirichlet homo-
geneous boundary conditions on all the examples in Fig. 1. We consider the white
Gaussian noise removal. The noise level is taken to be σ = 15, 20 and 25 for all the
images, respectively. Algorithm 1 is implemented under a list of λ, a list of K and
a list of αs in the tFoTV model (1.4). When K < n, the fractional-order derivative
operator is generated with modified truncation (2.4). K = n stands for the original
FoTV under the Dirichlet homogeneous boundary condition.

From Figs. 2 to 5, we plot the PSNR values versus αs for K = 3, 6, n under
the Dirichlet homogeneous boundary condition and for K = 3 under the periodic
and Neumann boundary conditions, respectively. From the PSNR curves for Dirichlet
homogeneous boundary condition, we see that the tFoTV with K = 3 produces the
most accurate reconstructions for all the images. ThePSNRcurve atα = 1 corresponds
to the result by the TV model. For more information, the PSNR values obtained by
TV, original FoTV and tFoTV models are listed in Table 1. The highest PSNR values
have been marked in bold there. From Figs. 2 to 5 and Table 1, we see that the tFoTV
always produces the best reconstructions compared to the TV model and original
FoTV model.

We focus on the PSNR curves for K = 3. Figures 2 to 5 tell us that for the cartoon
images we should fix α close to 1, where 1.2 is a good choice, as shown in Figs. 2(1)–
(5), 3(1)–(5), 4(1)–(5). If there are some textures in the images, but not so much, we
can roughly fix the fractional order around 1.5, as shown in Figs. 2(6)–(10), 3(6)–(10),
4(6)–(10). We find that α = 1.5 produces the highest PSNR values in most cases, and
the difference of the PSNR values for the cases of α = 1.4, α = 1.5 and α = 1.6 is
less than 0.1dB. For the images that have a lot textures, we should fix α close to 2. For
example, we can fix α = 1.8, as shown in Figs. 2(11), (12), 3(11), (12), 4(11), (12).
Yacht image can be divided into two parts, shown in Fig. 5. Yacht (part1) is a simple
cartoon image, and Yacht (part2) is a texture image. From Figs. 5(a1) to (a3) and 5(b1)

(1) Medical image (2) Peppers (3) Splash (4) Jetplane (5) Man (6) Baby

(7) Stone (8) Aerial (9) Yacht (10) Fruits (11) Barbara (12) Stoke

Fig. 1 All the tested images for noise removal
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1 1.5 2
35

35.1

35.2

35.3

35.4

35.5

35.6

35.7

35.8

35.9

α

P
S

N
R

(1) Medical image

zb(K=3)
zb(K=6)
zb(K=n)
pb(K=3)
sb(K=3)

1 1.5 2

31.6

31.8

32

32.2

32.4

32.6

α
P

S
N

R

(2) Peppers

zb(K=3)
zb(K=6)
zb(K=n)
pb(K=3)
sb(K=3)

1 1.5 2

33.4

33.6

33.8

34

34.2

34.4

34.6

34.8

35

α

P
S

N
R

(3) Splash

zb(K=3)
zb(K=6)
zb(K=n)
pb(K=3)
sb(K=3)

1 1.5 2
31.6

31.8

32

32.2

32.4

32.6

α

P
S

N
R

(4) Jetplane
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Fig. 2 The PSNR values versus α for all the test images with noise removal for noise level σ = 15. The
PSNR values at α = 1 correspond to the PSNR values of TV regularization model
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Fig. 3 The PSNR values versus α for all the test images with noise removal for noise level σ = 20. The
PSNR values at α = 1 correspond to the PSNR values of TV regularization model
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Fig. 4 The figure shows the PSNR values versus α for all the test images with noise removal for noise level
σ = 25. The PSNR values at α = 1 correspond to the PSNR values of TV regularization model
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Fig. 5 Yacht image is divided into two subimages: cartoon image Yacht (part1) and texture image Yacht
(part2). Subfigure (a1) to (a3) show the PSNR versus α in the noise removal experiments on Yacht (part1)
for different noise levels σ =15, 20, 25. Subfigure (b1) to (b3) show the PSNR versus α in the noise removal
experiments on Yacht (part1) for different noise levels σ =15, 20, 25

to (b3), we are secondly convinced that the fractional order α can be fixed close to 1
for the images having little texture and α can be fixed close to 2 for the images having
a lot texture.

5.2 Numerical Results on Deblurring

In this section, we discuss the performance of the tFoTV model on deblurring. We
compare the proposed tFoTVmodel with the TVmodel and the TGVmodel. The code
for the ADMM algorithm to solve the TGV model is adapted from that proposed in
[34]. The readers can consult [34] for more details. From the development process,
the tFoTV model has similarly simple complexity compared to the TV model, while
the TGV model is a little more complex. For both TV and tFoTV models, we need to
introduce onemultiplier, while we should introduce twomultipliers for TGVmodel. In
this paper, we focus on comparing the final results of the three models with sufficient
convergence but not the computational cost. For TVmodel and tFoTVmodel, we take
the tolerance to be ||uk −uk−1||2/||uk ||2 < 10−5 such that the PSNR of the iterators is
almost unchanged. For the TGV model, we fix the maximum of the iteration number
to be 500.

We do the numerical experiments on all the images shown in Figs. 1 and 5. Without
loss of generalities, all the numerical experiments are finished under the periodic
boundary condition. The point spread function generated by the MATLAB command
H = fspecial(’gaussian’, 5, 7) is used to produce the blurred images, and then, the
white Gaussian noise of level 10 is added. Following the discussion in Section 5.1,
we fix K = 3 in tFoTV model and take the fractional orders suggested in Table 1 for
the examples shown in Fig. 1. From Fig. 5, we can fix α = 1.2 for Yacht (part1) and
α = 1.8 for Yacht (part2).
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Table 1 The PSNRs of the reconstructed images by TV, the original FoTV model and the tFoTV model on
noise removal

Example Noisy TV FoTV(ZB) tFoTV BC

σ PSNR PSNR α
 PSNR α
 PSNR α PSNR

(1) Medical Im. 15 25.21 35.54 1.1 35.59 1.4 35.88 1.2 35.81 ZB

20 22.76 33.92 l.1 33.97 1.4 34.23 1.2 34.14 ZB

25 20.88 32.38 1.1 32.44 1.4 32.64 1.2 32.57 ZB

(2) Peppers 15 24.68 32.48 1.1 32.55 1.2 32.65 1.2 32.65 ZB

20 22.21 31.28 1.1 31.42 1.2 31.45 1.2 31.45 ZB

25 20.32 30.33 1.1 30.44 1.2 30.58 1.2 30.58 ZB

(3) Splash 15 24.68 34.89 1.0 34.89 1.2 35.03 1.2 35.03 ZB

20 22.27 33.64 1.1 33.68 1.2 33.80 1.2 33.80 ZB

25 20.37 32.65 1.1 32.65 1.2 32.87 1.2 32.87 ZB

(4) Jetplane 15 24.62 32.37 1.1 32.39 1.2 32.67 1.2 32.67 SB

20 22.17 30.91 1.1 30.94 1.3 31.25 1.2 31.22 SB

25 20.36 29.83 1.1 29.88 1.3 30.19 1.2 30.15 SB

(5) Man 15 24.97 30.08 2.0 30.27 1.4 30.40 1.2 30.33 SB

20 22.54 28.60 1.6 28.72 1.4 28.93 1.2 28.86 SB

25 20.65 27.41 2.0 27.48 1.4 27.73 1.2 27.66 SB

(6) Baby 15 24.63 34.52 2.0 34.61 1.5 35.17 1.5 35.17 SB

20 22.16 33.39 1.1 33.34 1.5 34.01 1.5 34.01 SB

25 20.27 32.45 1.1 32.40 1.5 33.07 1.5 33.07 SB

(7) Stone 15 25.97 29.97 2.0 30.44 1.6 30.46 1.5 30.45 ZB

20 23.50 28.12 2.1 28.60 1.6 28.61 1.5 28.60 ZB

25 21.59 26.70 2.0 27.12 1.5 27.16 1.5 27.16 ZB

(8) Aerial 15 24.65 29.19 2.0 29.35 1.4 29.53 1.5 29.50 SB

20 22.20 27.58 1.7 27.69 1.3 27.93 1.5 27.91 SB

25 20.34 26.46 1.7 26.55 1.4 26.82 1.5 26.79 SB

(9) Yacht 15 24.69 30.98 2.0 31.55 1.5 31.61 1.5 31.61 SB

20 22.22 29.45 2.0 29.88 1.5 30.03 1.5 30.03 SB

25 20.34 28.26 2.0 28.58 1.4 28.79 1.5 28.78 SB

(10) Fruits 15 24.77 32.66 2.0 33.10 1.5 33.33 1.5 33.33 SB

20 22.36 31.25 1.7 31.55 1.5 31.84 1.5 31.84 SB

25 20.47 30.20 1.4 30.36 1.5 30.68 1.5 30.68 SB

(11) Barbara 15 24.71 26.57 2.4 26.87 1.8 26.88 1.8 26.88 SB

20 22.26 24.71 2.3 24.90 1.8 24.95 1.8 24.95 SB

25 20.43 23.42 1.9 23.52 1.6 23.56 1.8 23.55 SB

123



R. H. Chan, H. Liang

Table 1 continued

Example Noisy TV FoTV(ZB) tFoTV BC

σ PSNR PSNR α
 PSNR α
 PSNR α PSNR

(12) Stoke 15 24.64 27.37 2.3 27.82 1.8 27.83 1.8 27.83 SB

20 22.15 25.76 2.2 26.19 1.6 26.23 1.8 26.22 SB

25 20.26 24.55 2.1 24.98 1.6 25.03 1.8 25.02 SB

The numbers in bold are the highest PSNR values. α
 is the optimal α with which the original FoTV
and tFoTV produce the highest PSNR values, respectively. The last column shows the boundary condition
under which the highest PSNR values are obtained when the TVmodel and tFoTVmodel are implemented.
BC, ZB, PB and SB are the abbreviations for boundary condition, Dirichlet homogeneous, periodic and
Neumann boundary conditions, respectively

The PSNR values of the recovered images by TV, TGV and tFoTV models are
listed in Table 2. The highest PSNR values are marked in red. From the results, we see
that the tFoTV model can produce more accurate reconstructions than the TV model
and compete the results by the TGV model.

Table 2 The PSNRs of the reconstructed images by TV, TGV model and the tFoTV models on moving
blur

Example Blurred&Noisy TV TGV tFoTV

PSNR PSNR PSNR α PSNR

(1) Medical Im. 27.88 35.43 35.59 1.2 35.61

(2) Peppers 25.21 29.58 29.94 1.2 29.75

(3) Splash 26.29 32.84 32.85 1.2 32.98

(4) Jetplane 24.46 28.28 28.43 1.2 28.43

(5) Man 23.84 27.05 27.14 1.2 27.20

Yacht (part1) 23.33 27.43 27.46 1.2 27.62

(6) Baby 27.16 33.54 33.98 1.5 33.92

(7) Stone 24.56 27.09 27.64 1.5 27.62

(8) Aerial 22.08 24.58 24.71 1.5 24.80

(9) Yacht 23.35 27.34 27.37 1.5 27.46

(10) Fruits 26.18 30.53 30.76 1.5 30.72

Yacht (part2) 23.82 26.50 27.12 1.8 26.85

(11) Barbara 19.91 21.04 21.22 1.8 21.14

(12) Stoke 23.01 24.71 25.12 1.8 25.02

The numbers in bold are the highest PSNR values. α in tFoTV model is suggested in Sect. 5.1

123



Truncated Fractional-Order Total Variation Model for...

6 Conclusion

In this paper, we propose a modified truncation to generate the fractional-order
gradient operator and apply the tFoTV model to image restoration. The alternating
directionalmethod is developed to solve the proposedmodel. After taking themodified
truncation, any boundary condition can be used in the numerical experiments and
the accuracy of the recovered images is improved. The brief convergence analysis
of the ADMM for the tFoTV model can also be developed. We apply the proposed
tFoTV model to noise removal and deblurring. The numerical results show that the
tFoTV model produces more accurate reconstructions in PSNR than TV model and
is comparable with the TGV model. As mentioned in the paper, in the tFoTV model,
the fractional order can be roughly fixed from the structure of the observed images,
and therefore, there is only one regularization parameter left to determine, while in
the TGV model, there are always two regularization parameters to be fixed in the
numerical experiments.
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