
Reconstruction of the high resolution phase in a closed
loop adaptive optics system

Abbreviated: Reconstructing closed loop high resolution phases

Rihuan Ke∗, Roland Wagner†, Ronny Ramlau‡, Raymond Chan§

Abstract

Adaptive optics (AO) is a commonly used technique to correct the phase dis-
tortions caused by the Earth’s atmosphere to improve the image quality of the
ground-based imaging systems. However, the observed images still suffer from the
blur caused by the adaptive optics residual wavefront. In this paper, we propose a
model for reconstructing the residual phase in high resolution from a sequence of
deformable mirror data. Our model is based on the turbulence statistics and the
Taylor frozen flow hypothesis with knowledge of the wind velocities in atmospheric
turbulence layers. A tomography problem for the phase distortions from different
altitudes is solved in order to get a high quality phase reconstruction. We also
consider inexact tomography operators resulting from the uncertainty in the wind
velocities. The wind velocities are estimated from the deformable mirror data and,
additionally by including them as unknowns in the objective function. We provide
a theoretical analysis on the existence of a minimizer of the objective function. To
solve the associated joint optimization problem, we use an alternating minimization
method which results in a high resolution reconstruction algorithm with adaptive
wind velocities. Numerical simulations are carried out to show the effectiveness of
our approach.

1 Introduction

The modern telescopes allow the acquisition of high resolution images of astronomical
objects seen on the night sky. To increase the resolution, ground-based extremely large
telescopes (ELTs) with a primary mirror bigger than 30 m in diameter are currently
under construction. However, the image quality is still degraded due to the turbulent
atmosphere above these telescopes. As a remedy for this degradation, Adaptive Optics
(AO) systems were introduced, see, e.g., [14, 11].
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An astronomical AO system is a hardware-based device that uses deformable mirrors
(DM) to compensate for distortions of the incoming phase due to atmospheric turbulence
and therefore making the observed images sharper. The DMs are adjusted according
to the data from wavefront sensors (WFS) which measure the incoming wavefront from
so-called guide stars, which is the phase measured in a specific wavelength. However,
due to several physical limitations, the distortions by atmospheric turbulence can never
be compensated completely. First, the WFS have a rather coarse resolution as enough
light of the guide star has to reach each pixel of the WFS to acquire accurate data. As
a consequence, the higher spatial frequencies of the wavefront are not sensed and thus
cannot be corrected by the deformable mirror. Second, the correction of the wavefront is
also limited by the DM, the shape of which is controlled by a finite number of actuators.
Finally, a time gap exists between the acquisition of wavefront data and the update of
the DM shape. The atmospheric turbulence is changing rapidly and the increment of the
distorted wavefront within the time gap is not taken into account. The uncorrected part
of the wavefront, called the residual wavefront, results in a residual blur of the observed
image.

Further improvement on the quality of the observed image can be made by image
post-processing with data from the AO systems. According to the Fourier optics model
(see, e.g., [19, 22]), in an incoherent imaging system, the blurred image is formed by the
convolution of the point spread function (PSF) and the true image. The PSF can be
determined by the residual wavefront, or the residual phase. Several techniques known
as deconvolution methods (see, e.g., [23, 8, 9, 12]) have been developed. Such methods
rely on accurate PSF knowledge in order to remove the blur from the observed image.
An estimate of the PSF can be computed from the WFS data (see, e.g., [37]) or the
reconstructed residual wavefronts [39, 38], which always requires the use of a simulation
step for the spatial frequencies of the residual wavefront that are not sensed by the WFS.

The problem of reconstructing a high resolution phase from low resolution data has
been investigated by several authors in the literature. In particular, Chu et al. [9]
consider an open loop system and high resolution gradients of the phase are computed
from WFS data at multiple time steps by doing a least square data fitting with Tikhonov
regularization. The high resolution phases are then reconstructed using the computed
gradients. Chan et al [8] suggest that the phase gradients are not smooth and propose a l1
regularization term for recovering the high resolution gradients. The method developed in
[], in contrast, reconstruct the high resolution phase directly from low resolution gradients.
All these works consider the reconstruction problems in an open loop setting, and they
require precisely known tomography operators.

The core issue of this paper is to find a high resolution residual phase in a closed
loop AO system which can then be used to obtain a high quality PSF estimate in order
to further mitigate the blur of the images. The high resolution residual phase has the
capacity of capturing the higher spatial frequencies needed for a more accurate PSF.
We make use of the commonly adopted Taylor frozen flow (TFF) assumption [35] to
relate a sequence of low resolution AO data to the high resolution phase with the wind
velocities. A variational regularization method based on the turbulence statistics and
the TFF assumption is developed. The wind velocities, which define the tomography
operator, are not available in high accuracy in reality. This introduces a perturbation of
the tomography operator. As consistency between the TFF and the data helps to recover
the operator, we take the wind velocities as variables of the objective function instead
of fixed values. The minimization of the objective function produces estimations of the
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high resolution phase and the wind velocities simultaneously. To our knowledge, only
an instantaneous low resolution reconstruction of the wavefront on the same grid as the
WFS is performed in projects for AO assisted telescopes. This is also due to the fact
that usually the AO data are not saved and thus only one set of data is available at every
time. However, for upcoming telescopes such as ESO’s ELT this will change and a least
parts of the data will be available for reconstructing the PSF in a post-processing step.
In our approach we solve a joint model, estimating high resolution wavefronts as well as
wind velocities of atmospheric layers.

To the best of our knowledge, this is the first time that a high resolution wavefront
reconstruction for AO systems, based on a tomographic approach and measurements
from a shifted atmosphere, is considered. In particular, we propose to jointly reconstruct
the wavefront and the imprecisely known wind velocities from noisy measurement using a
unified variational approach. This also helps to refine the inaccurate tomography operator
that we start with. We prove that there exists a minimizer of the objective function of
the joint model. We also present an algorithm for solving the underlying non-convex
optimization problem. Note that our approach differs from [28, 8], where observations
without AO systems were considered with the goal to recover an instantaneous PSF.

In image processing, the high resolution problem which aims for restoring a high
resolution image from a sequence of the low resolution ones has been attracting much
interest (see, e.g., [7, 15]). It has been used in a variety of practical applications such as
video enhancement, facial image analysis or medical image processing [29].

The remainder of this paper is organized as follows: In Section 2, we describe the
problem setting and clarify the notation. In Section 3, a model is proposed based on
the turbulence statistics and the Taylor frozen flow hypothesis, by assuming the wind
velocities are known in advance. In order to handle the underlying tomography problem
with inexact tomography operators due to the uncertainty in the wind velocities, we also
consider adjusting the wind velocities from the DM data using our model. In Section 4,
the minimization problem induced by our model is considered. We implement an alter-
nating direction algorithm for computing estimations of the residual phase and the wind
velocities. Finally, Section 5 displays the simulated AO system and the numerical results.

2 Problem modeling

Throughout this paper, we focus on so-called Single-Conjugate Adaptive Optics (SCAO)
systems. An SCAO system consists of one WFS, one DM and a control unit, which in
particular computes the DM shape from data obtained by the WFS. We assume that the
SCAO system under consideration is run in closed loop, meaning that WFS is located in
the optical path after the DM and thus measures only a residual of the incoming phase
after correction through the DM, where the incoming phase is the phase arriving at the
telescope after being distorted by the atmospheric turbulence. These components and
their interaction are illustrated in Figure 1. We use a time discrete setting, i.e., t always
indicates the t-th time step and is therefore used as subscript. Each time step takes only
few milliseconds of real time in our application. Let us denote the incoming phase at t as
φt(x), where x ∈ Ω ⊂ R2 in the pupil plane and Ω is the telescope aperture. Let φDM

t (x)
be the DM shape. Then the (unknown) residual phase φres

t (x) can be written as

φres
t (x) = φt(x)− φDM

t (x), (1)
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Figure 1: Illustration of a closed loop AO system from [10]. Adaptive Mirror is equivalent
to DM, Distorted Wavefront is the incoming wavefront, the Control System computes the
reconstruction of φres, coarse

t from WFS data and uses it to adjust the DM. The Corrected
Wavefront, which is called the residual wavefront throughout the paper, efers to the
residual errors after the AO correction and it is the main quantity of interest.

for x ∈ Ω inside the telescope pupil. Recall that in a closed loop system the WFS
measures the residual phase, i.e., φres

t (x). In contrast, in open loop the full incoming
wavefront, i.e., φt(x), is measured as the light beam is split before being reflected on
the DM. In current AO systems, closed loop is the preferred setting, also as this induces
measurements closer to zero where the behavior of the sensor is much better understood.
The goal of every AO system is to perfectly match the DM to the incoming phase,
i.e., φres

t (x) = 0, but due to a system inherent time delay stemming from measuring,
calculating and adjusting the DM and the coarse resolution of both WFS and DM, this
is not possible in reality. Further errors are introduced as φres

t (x) can only be measured
indirectly by a WFS and thus needs to be reconstructed from this data.

Fortunately, φDM
t (x) is updated over time and the information of φres

t (x) is encoded
in the updates. A coarse resolution version φDM

t of φDM
t (x) is stored and can be used

to recover φres
t (x) in postprocessing. The main problem in this paper is to reconstruct

φres
t (x) in high resolution from a sequence of φDM

t at different time steps.
In the remaining part of this scation, we will introduce a mathematical model to

link φres
t (x) to the updates of DM shapes φDM

t , and then solve an inverse problem for
a high resolution φres

t (x). The main structural idea is as follows. First, we formulate
the relationship between φDM

t and φres, coarse
t which essentially means a coarse resolution

approximation of φres
t (x). Second, from φres, coarse

t we derive pseudo measurements s̃t,
which are then used as input to our algorithm for finding φres

t (x) from a refined WFS
model. Additionally, we assume to have a constant wind velocity v given in unit [m/(time
step)] which describes the motion of φt(x). All these quantities are summarized in
Table 1.
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Table 1: Data for high resolution reconstruction

Data Description

φDM
t the coarse grid DM shape at time step t.

φres, coarse
t

the computed phase residual on coarse grid at time
step t, an estimate for φres

t (x), obtained as solution
to (2).This quantity is not saved by the AO system,
but it can be exactly recover from φDM

t .

s̃t

the pseudo WFS measurement given by (5). It is
used in our refined WFS model (4) for finding the
high resolution residual phase.

v
the wind velocity, which is constant over the aperture
and time.

2.1 WFS model and low resolution DM data

Let us start with the forward model connecting the WFS measurements and the residual
of the incoming wavefront. We assume a closed loop AO system using a Shack-Hartmann
WFS (SH-WFS). In such an AO system, the WFS is located behind the DM (as Figure 1
shows). The WFS is modeled as operator Γ : H11/6(Ω)→ Rn2×2 (cf., e.g., [21]) mapping
a phase φres

t (x) onto measurements st obtained on n× n subapertures, i.e.,

st = Γφres
t (x),

with Γ := (Γx,Γy)
T , defined via its action on subapertures Ωi,j, i, j = 1, . . . , n giving as

measurements the discrete averaged gradients st,x and st,y, given as

(Γzφ
res
t )i,j =

1

|Ωi,j|

∫
Ωi,j

∂

∂z
φres(x) dx, z ∈ {x, y}, x = (x, y).

Clearly, Γ is bounded in H1(Ω). Note that the use of the space H11/6(Ω) for the defini-
tion of the operator Γ stems from the fact that the atmospheric turbulence, and thus the
wavefronts, follows a von Karman power law, which basically states that the wavefronts
belong to H11/6 with high probability (cf., e.g., [24, 26], and Section 3.1.2). These SH-
WFS measurements st are gradients averaged over the subapertures Ωi,j, i, j = 1, . . . , n,
with ∪ni,j=1Ωi,j = Ω.

Generating the low resolution DM data
The AO system needs to reconstruct the residual phase in real-time in order to control
φDM
t (x) since the φt(x) in (1) changes quickly over the time steps t. This raises an inverse

problem in which the 2D function φres
t (x) has to be reconstructed for each time step t from

given measurements st. However, the DM has a finite number of actuators only and thus it
is sufficient to perform a discrete phase reconstruction instead of inverting the continuous
operator. We view Γ as a combination of a projector Pn : H11/6(Ω) → R(n+1)×(n+1) and
a discrete SH-WFS operator Γn : R(n+1)×(n+1) → Rn2×2, i.e., Γ = ΓnPn. Several ways to
choose the (n+ 1)× (n+ 1) grid exist.

The discrete representation of the residual phase can then be obtained as a solution
φres, coarse
t to the discrete inverse problem

st = Γnφ
res, coarse
t + ηt, (2)
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where φres, coarse
t := Pnφ

res
t (x) is in low resolution, and ηt models the noise. Figure 2a

illustrates the discretization for the SH-WFS case. During an AO run, the measurements
st are obtained and the residual phase φres, coarse

t needs to be reconstructed, i.e., (2) has to
be inverted. To solve this problem several direct methods were developed and studied in
simulation and on-sky [43, 33, 34, 30, 40, 3, 4]. These methods neglect the motion of the
atmosphere during the measurement and computation time due to the small shift. The
distance of the shift is determined by the wind velocity v ∈ R2. However, to reconstruct
a high resolution phase from multiple frames, the shift of the atmosphere has to be taken
into account. We delay the discussion on the shift to Section 3.

Once a solution to (2) is obtained, it is used to compute the new DM shape φDM
t+1,

minimizing the residual in (1), as

φDM
t+1 = φDM

t + α · φres, coarse
t , (3)

where α > 0 is the so-called loop gain and the initial DM shape is given as φDM
−1 = 0.

These data are generated by the AO system and stored for image postprocessing.

2.2 Refined WFS model

We want to reconstruct the unkown φres
t on a finer grid than the WFS or DM, mean-

ing the grid of φDM
t . Therefore, we need to introduce additional operators coarsening

functions on the respective grids. Let Qnk, for k ∈ N, be the projector from H11/6(Ω)
onto R(nk+1)×(nk+1) and Ck the coarsening operator mapping a fine resolution phase from
R(nk+1)×(nk+1) to R(n+1)×(n+1). From this we can model the measurements of a higher
resolution phase φres

t := Qnkφ
res
t (x) with Pn = CkQnk, so using (2) we have

st = ΓnCkφ
res
t + ηt, (4)

where ηt models the noise. Note that the coarsening operator is not uniquely defined.
An illustration of the grids of the SH-WFS measurement and the high resolution

residual phase is given in Figure 2b in which the SH-WFS measurement is considered to
be located at the center of the subaperture following the Fried geometry [16].

2.3 From low resolution DM data to high resolution phase

As AO systems are running at a frequency of up to 500 Hz, meaning 500 sets of WFS
measurements and DM shapes are measured and applied, respectively, each second, a
huge amount of data needs to be saved. If one wants to use this data in a post-processing
step, then it might be beneficial to reduce the amount of saved data as much as possible.
One option is to save the applied DM shapes only, which are represented by point values
of the corresponding function, instead of the WFS data, being averaged gradients, as this
already reduces the amount of data by a factor 2.

This means that φres, coarse
t , the solution to (2), computed in real time during the AO

run, is treated as the input to our problem instead of st. Therefore, we rewrite (3) for
recovering φres, coarse

t from the DM shapes as

φres, coarse
t =

1

α
(φDM

t+1 − φDM
t ).

Since φres, coarse
t represent low resolution copies of φres

t , one may want to compute
φres
t by upsampling them. However, φres, coarse

t is known only up to an additive constant,
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(a) (b)

Figure 2: (a) The SH-WFS measurement and the low resolution residual phase in a
subaperture. In this example, (x′i, y

′
j) are the grid points which satisfy x′i = x3i, y

′
j = y3j.

(b) The SH-WFS measurement and the high resolution residual phase in a subaperture
of the WFS. The subaperture is bounded by the outermost square whose side length is
3 times the grid spacing of φres, (xi, yj) are the grid points. The measurement sx(0, 0)
and sy(0, 0) is modeled as the average slope in the x direction and y direction in the
subaperture respectively.

given that the constant function is in the null space of Γn, due to the underlying physical
structure of the WFS. To manage the issue of unknown constant, we define a pseudo
WFS measurement that respects the low resolution WFS model (2) via

s̃t := Γnφ
res, coarse
t , (5)

and use it instead of φres, coarse
t in the high resolution reconstruction.

In summary, our approach is based on the refined observation model (4), using pseudo
WFS measurements created from the saved DM shapes via (5). Recall that both φDM

t

and φres, coarse
t are in low resolution, and the quantity of interest φres

t is in high resolution.
The grids for different quantities are compared in Figure 3a. So the problem is highly ill-
posed. The idea for dealing with the ill-posedness of this problem is to combine multiple
measurements from neighboring time steps, and to use prior knowledge of the phase.

3 Estimating the residual phase in high resolution

In order to estimate the residual phase in high resolution, we have to make assumptions
on the flow and statistics of the atmosphere. For this purpose, we present and adopt the
Taylor frozen flow hypothesis from [35] and the von Karman power spectral density from
[32] in the following sections. Furthermore, we first investigate the simplified problem of
estimating the residual phase in the presence of only one atmospheric layer and known
wind velocities. However, measurements of the wind velocities are not available all the
time, thus we will introduce a more evolved setting, allowing to adapt the wind velocities
by using the current WFS measurements. In a last step, we move to the realistic situation
of several atmospheric layers moving with different wind speeds and directions. Thus a
tomographic problem arises which needs to be solved.
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3.1 Assumptions on the atmosphere

To model the properties of the atmospheric turbulence, we make assumptions on the flow
within the atmospheric layers and on their statistics.

3.1.1 Taylor frozen flow hypothesis

In this section, we introduce the Taylor frozen flow (TFF) hypothesis in order to be able
to connect subsequently measured information of the incoming phase. In particular, we
want to use this assumption to find a shift operator mapping the phase at time step t back
to its position at time step 0. This hypothesis was introduced in [35]: The atmospheric
turbulence is composed of a number of layers located at different altitudes above the
ground. Each of the layers does not change its shape on small time scales and moves
across the telescope aperture with a constant velocity due to wind. As shown in [2] and
the references therein, the TFF holds up to approx 100 ms, which corresponds to 50 time
frames in an AO system with loop frequency of 500 Hz (i.e., 2 ms per time frame). In
a first step, we assume a one-layer model. As a consequence of the TFF hypothesis, the
incoming phase reaching the telescope has a translational motion as

φt(x) = φ0(x− tv), (6)

where v ∈ R2 is the wind velocity and t denotes the t-th time step, with 0 < t < T , e.g.,
for a loop frequency of 500 Hz, we get t ≤ 50. Equation (6) together with (1) implies
that φ0(x) is measured repeatedly by the WFS, provided that the DM shapes φDM

t (x)
are known and T is not too big, i.e., |Tv| < D, where D is the telescope diameter. Based
on this fact a high resolution reconstruction of φ0(x) is possible.

Discrete motion operator
Let us now define the discrete motion operator Mv,t acting on φt associated to the
translation of the form f(x) → f(x + tv). If tv is not a multiple of the grid spacing,
we use bilinear interpolation, as shown in Figure 3b. Thus, we can approximate (6) in a
discrete sense as:

Mv,tφt ≈ φ0. (7)

3.1.2 Turbulence statistics

In order to use the properly weighted terms in our functional, we need to gather knowledge
on the turbulence statistics of the atmosphere. Fortunately, the statistical properties of
the atmospheric turbulence have been well studied. In Kolmogorov’s theory, atmospheric
turbulence is assumed to be a homogeneous and isotropic random process [25, 41]. The
turbulence statistics are usually described by its power spectral density (PSD) and there
are various versions of PSDs in the literature. In this paper, we assume the von Karman
PSD of the phase φ(x) (see, e.g., [32]) given by

Pφ (κ) =
0.023r

−5/3
0

(κ2
0 + |κ|2)

11/6
,

where r0 is the Fried parameter, κ0 = 1/L0 and L0 is the atmospheric turbulence outer-
scale. The covariance function of the phase is the inverse Fourier transform of the PSD,
i.e.,

Cφ = F−1 (Pφ) , (8)
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(a) (b)

Figure 3: (a) three different discretization grids. The purple dots, the blue square and
the black cross represent the points on the grids of φt, φ

res, coarse
t and φres

t , respectively.
In this example the grid of φres is 3 times finer than that of φres, coarse. The residual phase
φres
t and computed phase φres, coarse

t lie on the annular aperture only. (b) The grid of φres
t

shifted by −vt (i.e., the small red dots) does not fall on the grid of φres
0 . To define the

discrete motion operator, the shifted φres
t should be interpolated to the grid of φres

0 (i.e.,
the black dots).

where F denotes the Fourier transform.

Approximate covariance operator of the phase
In a discrete setting, the covariance matrix Cφ derived from (8) and its inverse are dense
and therefore not efficient in real computation especially for large scale problems. Many
approximations of the covariance matrix have been developed in the past decades in order
to achieve fast computations, see for instance [36, 42]. In particular, B. Ellerbroek showed
in [13] that the biharmonic operator ∆2 provides a good approximation to the inverse
covariance operator. The discrete biharmonic operator has sparsity which contributes to
efficient matrix-vector multiplications and shows great advantages when iterative solvers
are applied. Thus, we will use it in our method to approximate the covariance matrix.

3.2 Mathematical models for high resolution estimation

We establish a mathematical model for estimating a high resolution wavefront in the
following sections. In particular, we first assume known wind velocities, being the ideal
case in ground based astronomy. An additional enhancement of the model leads us to a
joint estimation of wavefront and wind velocities.

3.2.1 High resolution reconstruction with known wind velocities

In the following, we will set up a functional which is minimized to obtain a high reso-
lution reconstruction of the residual phase. We use the previously introduced operators
Ck, which relates the two different discretization grids in (4), and Mv,t, which accounts
for atmospheric motion due to wind in (7). As data, we use the set of pseudo WFS

9



measurements {s̃t} to replace the set of WFS data {st}. Therefore, the high resolution
reconstruction does not require any AO data other than the DM shapes. Due to the fact
that the number of high resolution pixels is bigger than the dimension of the measure-
ments, the high resolution reconstruction problem is ill-posed. As in practice s̃t always
contains noise from the sensor and the real time reconstruction algorithm,regularization
techniques are necessary to reach an accurate and stable reconstruction. Additionally,
we would like to use the statistics of the turbulence (cf., Section 3.1.2). To this end,
let H1 = H + εI, where H is the discrete Laplacian operator, ε > 0 and I the identity
matrix. The matrix εI is an analogy to κ0 in Pφ and avoids zero eigenvalues appearing
in H. Assuming the von Karman phase PSD, H2

1 approximates the inverse covariance
matrix of φt up to a scaling constant.

As the TFF hypothesis and von Karman PSD are valid for the incoming phase rather
than the residual phase we first reconstruct φt and then an estimate of φres

t using (1).
Recall that the DM shape φDM

t lies on a coarse grid. However, through the so-called
influence functions of the DM actuators, we are able to interpolate φDM

t to the same
resolution as φres

t . Denoting the high resolution DM shape as φ̃DM
t , we get a discrete

version of (1) as
φres
t = φt − φ̃DM

t .

This together with equation (4) gives a formulation of the observation model

s̃t = WΓnCk

(
φt − φ̃DM

t

)
+ ηt,

where the matrix W defines the pupil mask for non-rectangular telescope aperture (rep-
resented as a ring in Figure 3a).

In summary, we adopt the following model for the reconstruction of the high resolution
wavefront

min
Φ
J β

0 (Φ) :=
1

2

T∑
t=0

(∥∥∥WΓnCk

(
φt − φ̃DM

t

)
− s̃t

∥∥∥2

+ β ‖H1φt‖2

)
,

subject to φ0 = Mv,tφt, t = 0, . . . , T,

(9)

where Φ is the column stacking of the high resolution phases φ0, . . . , φT , β is the
regularization parameter that has to be chosen according to the noise level and the
strength of the atmospheric turbulence and H1, Γn, Ck, s̃t, φ̃

DM
t being the previously

defined weighting matrix, coarse SH-WFS operator, coarsening operator, derived pseudo
WFS measurements and DM shape interpolated to a fine grid, respectively. Note that
the motion operator Mv,t is known as we assume v is given, but in general v is not known
precisely.

To connect our method with Bayesian models, let us consider replacing H1 by the
square root of inverse covariance matrix C

−1/2
φ and impose the following conditions

• the noise η̃t := s̃t −WΓφres
t is white Gaussian,

• φt is a realization of Gaussian random variables with covariance matrix Cφ and
zero mean,
• the regularization parameter β is properly chosen,
• the wind velocity v satisfies that the components of tv are multiples of the grid

spacing,
then the solution to our model can be interpreted as the conditional mean (CM) or the
minimum mean squared error (MMSE) estimate under the Bayesian framework. The
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corresponding minimizer in this case is also known as the maximum a posteriori (MAP)
estimate.

3.2.2 Adaptive wind velocities

We now move on to the more realistic situation, where only an estimate of the wind
velocity is available, and we need to account for these imprecise measurements. Let us
denote the estimate of the wind velocity by v(0). We need to modify the model such
that it allows variation of this estimate. For imprecise information on wind speed and
direction, the associated motion operator, denoted by Mv(0),t, becomes imprecise. The
model in (9) relies on the assumption that

φ0 −Mv(0),tφt ≈ 0,

which does not hold when v(0) is not close enough to v and |t| � 1, due to the resulting
cumulative error in the motion operator Mv(0),t. In fact, Mv(0),t defines a displacement of

v(0) · t and the error in the displacement is (v − v(0)) · t. In this case, an approximation
based on the successive difference, relating φt+1 to its predecessor rather than to the first
instance φ0,

Mv(0),tφt −Mv(0),t+1φt+1 ≈ 0,

is more reliable. This helps to get a better estimate of v from inexact wind velocity data.
Furthermore, in order to preserve the consistency between the (pseudo) measurement

and the TFF hypothesis with given wind velocity which is not accurate enough, the
wind velocity is considered as a variable in the functional. Therefore, it can be adjusted
appropriately during the minimization process.

In summary, we solve the joint minimization problem for both an estimated high
resolution phase and an estimated wind velocity

min
Φ,v
J β

1 (Φ,v) :=
1

2

T∑
t=0

(∥∥∥WΓnCk

(
φt − φ̃DM

t

)
− s̃t

∥∥∥2

+ β ‖H1φt‖2

)
,

subject to Mv,tφt = Mv,t+1φt+1, t = 0, . . . , T − 1.

(10)

3.2.3 Existence of a minimizer for adaptive wind velocities

The objective function J β
1 is strongly convex with respect to Φ. If v is fixed, then one

can easily conclude that it has a unique minimizer. However, the involvement of v makes
(10) a non-convex problem and the properties of minimizers less straightforward. For the
theoretical analysis of the minimizers, here we consider the optimization problem in a
continuous setting. Specifically, the problem (10) is re-formulated as

min
φ,v
J β

1 (φ,v) :=
1

2

T∑
t=0

(∥∥WΓ
(
φt(·)− φDM

t (·)
)
− s̃t

∥∥2
+ β ‖(∆ + εId)φt(·)‖2

L2(R2)

)
,

subject to φt(·+ vt) = φt+1(·+ v(t+ 1)), t = 0, . . . , T − 1,

(11)

in which ∆ is the Laplacian operator, Id denotes an identity operator, W restricts the
data to the telescope aperture, Γ is a bounded linear operator from H1(R2) to Rn2×2 and
φt(·) is the continuous version of φt. For a given time step t, φt(·) is a function mapping
from R2 to R.
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As described in Section 3.1.2, ∆ is an approximation to the (scaled) inverse covariance
operator of the phase. Correspondingly, we seek for the solution of (11) in the subspace
H2 of H11/6. In the subsequent discussion, we consider φt(·) to be in the Sobolev space
H2(R2), for t = 0, 1, . . . , T .

Theorem 1. Let β, ε > 0 and φDM
t (·) ∈ H1(R2). Assuming that the wind velocity is

bounded ‖v‖ ≤ m for some constant m, then the minimization problem in (11) has a

minimizer in (H2(R2))
T+1 ×Bm where Bm := {v ∈ R2 | ‖v‖ ≤ m} is a ball in R2.

Proof. Let us rewrite the constraint in (11) in an equivalent form as φt(· + vt) = φ0(·)
for t = 1, . . . , T . It is sufficient to prove that the objective function

Ĵ β
1 (φ0,v) :=

1

2

T∑
t=0

(∥∥WΓ
(
φ0(· − vt)− φDM

t (·)
)
− s̃t

∥∥2
+ β ‖(∆ + εId)φ0(· − vt)‖2

L2(R2)

)
(12)

has a minimizer in H2(R2) × Bm. Clearly Ĵ β
1 is lower bounded. Let

(
φ

(0)
0 ,v(0)

)
,(

φ
(1)
0 ,v(1)

)
, . . . be a minimizing sequence of Ĵ β

1 inH2(R2)×Bm. Then
{
Ĵ β

1

(
φ

(i)
0 ,v

(i)
)
| i = 0, 1, . . .

}
is bounded. As for any i we have

2

β
Ĵ β

1

(
φ

(i)
0 ,v

(i)
)
≥
(

(∆ + εId)φ
(i)
0 , (∆ + εId)φ

(i)
0

)
L2(R2)

=
(

∆φ
(i)
0 ,∆φ

(i)
0

)
L2(R2)

+ 2ε
(
∇φ(i)

0 ,∇φ
(i)
0

)
L2(R2)

+ ε2
(
φ

(i)
0 , φ

(i)
0

)
L2(R2)

,

(13)

the sequence
{
φ

(i)
0

}
is bounded in H1(R2). Furthermore, given that φ

(i)
0 ∈ H2(R2),∣∣∣φ(i)

0

∣∣∣2
H2(R2)

≤ ξ
(

∆φ
(i)
0 ,∆φ

(i)
0

)
L2(R2)

for some constant ξ. Therefore,
{
φ

(i)
0

}
is a bounded

sequence in H2(R2). This observation, together with
{
v(i)
}

being bounded in R2, implies

that there exists a sub-sequence
{(
φ

(ij)
0 ,v(ij)

)}
and

(
φ

(∗)
0 ,v(∗)

)
satisfying

φ
(ij)
0 ⇀ φ

(∗)
0 in H2

(
R2
)

(14)

and v(ij) → v(∗) ∈ Bm.
(I). As a consequence of (14),

lim
j→∞

(
∆φ

(ij)
0 ,∆φ

(ij)
0

)
L2(R2)

≥
(

∆φ
(∗)
0 ,∆φ

(∗)
0

)
L2(R2)

, lim
j→∞

(
∇φ(ij)

0 ,∇φ(ij)
0

)
L2(R2)

≥
(
∇φ(∗)

0 ,∇φ(∗)
0

)
L2(R2)

and also

lim
j→∞

(
φ

(ij)
0 , φ

(ij)
0

)
L2(R2)

≥
(
φ

(∗)
0 , φ

(∗)
0

)
L2(R2)

.

Then it holds that limj→∞

∥∥∥(∆ + εId)φ
(ij)
0

∥∥∥2

L2(R2)
≥
∥∥∥(∆ + εId)φ

(∗)
0

∥∥∥2

L2(R2)
according to the

equality in (13). Moreover, based on invariant property∥∥∥(∆ + εId)φ
(ij)
0

(
· − v(ij)t

)∥∥∥2

L2(R2)
=
∥∥∥(∆ + εId)φ

(ij)
0

∥∥∥2

L2(R2)
,

12



we get that for t = 0, 2, · · · , T ,

lim
j→∞

∥∥∥(∆ + εId)φ
(ij)
0

(
· − v(ij)t

)∥∥∥2

L2(R2)
≥
∥∥∥(∆ + εId)φ

(∗)
0

(
· − v(∗)t

)∥∥∥2

L2(R2)
. (15)

(II). To obtain a similar result to (15) for the data fidelity term, we need to prove that
for a fixed t,

φ
(ij)
0

(
· − v(ij)t

)
⇀ φ

(∗)
0

(
· − v(∗)t

)
in H1

(
R2
)
. (16)

We split the proof into a few steps.

(i). Recalling that φ
(ij)
0 ∈ H2(R2) ⊂ H1(R2), we have∥∥∥φ(ij)

0

(
· − v(ij)t

)
− φ(ij)

0

(
· − v(∗)t

)∥∥∥
L2(R2)

≤ t
∥∥v(∗) − v(ij)

∥∥ · ∣∣∣φ(ij)
0

(
· − v(∗)t

)∣∣∣
H1(R2)

(17)

(ii). For any g ∈ L2(R2), as φ
(ij)
0 are uniformly bounded in H1(R2), it follows

from (17) that
(
g, φ

(ij)
0

(
· − v(ij)t

)
− φ(ij)

0

(
· − v(∗)t

))
L2(R2)

→ 0 as j → ∞. The weak

convergence of φ
(ij)
0 in H1(R2) implies that

(
g, φ

(ij)
0

(
· − v(∗)t

)
− φ(∗)

0

(
· − v(∗)t

))
L2(R2)

=(
g
(
·+ v(∗)t

)
, φ

(ij)
0 − φ(∗)

0

)
L2(R2)

→ 0.

(iii). Following (ii), we have(
g, φ

(ij)
0

(
· − v(ij)t

)
− φ(∗)

0

(
· − v(∗)t

))
L2(R2)

=
(
g, φ

(ij)
0

(
· − v(ij)t

)
− φ(ij)

0

(
· − v(∗)t

))
L2(R2)

+
(
g, φ

(ij)
0

(
· − v(∗)t

)
− φ(∗)

0

(
· − v(∗)t

))
L2(R2)

→ 0

(18)

for any g ∈ L2(R2).
(iv). Finally, the same arguments in (i), (ii), and (iii) apply to all the first order

weak derivatives of φ
(ij)
0

(
· − v(ij)t

)
and φ

(∗)
0

(
· − v(∗)t

)
, as the weak derivatives are also in

H1(R2) and, thus clearly in L2(R2). This together with (18) gives the weak convergence
(16).

(v). Since the linear operator WΓ is bounded and φDM
t (·) ∈ H1(R2), the weak con-

vergence in (16) admits that the sequence WΓ
(
φ

(ij)
0

(
· − v(ij)t

)
− φDM

t (·)
)

converges to

WΓ
(
φ

(∗)
0

(
· − v(i∗)t

)
− φDM

t (·)
)

, and hence

lim
j→∞

∥∥∥WΓ
(
φ

(ij)
0

(
· − v(ij)t

)
− φDM

t (·)
)
− s̃t

∥∥∥ =
∥∥∥WΓ

(
φ

(∗)
0

(
· − v(∗)t

)
− φDM

t (·)
)
− s̃t

∥∥∥
(III). Following (I) and (II), we have

(
φ

(∗)
0 ,v(∗)

)
∈ H2(R2)×Bm such that

Ĵ β
1 (φ

(∗)
0 ,v(∗)) ≤ Ĵ β

1 (φ
(ij)
0 ,v(ij))

for all j. So
(
φ

(∗)
0 ,v(∗)

)
is a minimizer of (12) which completes the proof.
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3.3 Atmospheric tomography with an inexact operator

Up to now we focused on the incoming phase φt(x) yielded by one single thin atmospheric
turbulence layer. In a more realistic situation, the distorted phase φt(x) is a result of the
3D atmospheric turbulence. It is commonly considered that the distortions only happen
at some discrete heights in the Earth’s atmosphere (see, e.g., [32]). In such a setting, the
incoming phase is a projection of the phase distortions at these layers, i.e.,

φt(x) =
L∑
l=1

φl,t(x), (19)

where φl,t(x) is the distortion of the phase corresponding to the lth layer and L is the
number of layers (see, e.g., [20]). However, we cannot simply use the existing methods as
they do not foresee using a time series of WFS data, but several WFS measurements at
the same time, and additionally, these methods give a coarse resolution of the wavefront
only. Therefore, we need to adapt the model to perform a time dynamic tomographic
reconstruction.

Assuming the distortions of the phases φl,t are independent of each other, for different
l, the TFF is valid for the translational motion on each layer, i.e.,

φl,t(x) = φl,0(x− tvl), (20)

in which vl ∈ R2 is the wind velocity of the lth layer. If v1, . . . ,vL are different, then φt(·)
does not preserve its form as t changes, i.e., (6) does not hold. Our idea to obtain a high
resolution incoming phase is first reconstructing φl,t(x) in high resolution with the TFF
hypothesis (20), and then doing projections to get φt(x) according to equation (19).
Note that this results in a tomography problem as in an AO system only information
about φt(x) is available. Figure 4a displays an example of the tomography problem in
a 3-layer setting. Unfortunately, with some uncertainty in the wind velocities, the exact
unknown-to-data operator is unavailable. Small perturbations on the operator due to the
errors in the wind velocities are illustrated in Figure 4b.

Let Φ be a concatenation of φ1,0, φ1,1, . . . , φL,T . As a direct extension of the previous
model, we consider the following optimization problem

min
Φ,v
J β

2 (Φ,v) :=
1

2

T∑
t=0

∥∥∥∥∥WΓnCk

(
L∑
l=1

φl,t − φ̃DM
t

)
− s̃t

∥∥∥∥∥
2

+ β

L∑
l=1

‖Hlφl,t‖2

 ,

subject to Mvl,tφl,t = Mvl,t+1φl,t+1, t = 0, . . . , T − 1, l = 1, 2, · · · , L,

(21)

where v is a column stacking of v1, . . . ,vL, Hl = 1
cl

(H + εI) and
∑L

l=1 c
2
l = 1, where

c2
l are the so-called c2

n-values of the atmospheric layers (see Section 5.1) . Once the

minimizer of (21), denoted by
(
{φ̂l,t}, v̂

)
, is obtained, the residual phase φres

t is estimated

as
∑L

l=1 φ̂l,t − φ̃DM
t according to equations (19) and (1).

4 Numerical Minimization

A numerical minimization procedure is needed to compute the estimate φres
t from (10)

or , respectively, (21). Let us consider the one-layer case (10) first. It is clear that the
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(a) (b)

Figure 4: (a) The tomography problem in a 3-layer case. The winds of the layers shift
the observed area of the distorted phase with the time, as illustrated by the bended paths
corresponding to t = 1 and t = 2. (b) The path is perturbed by the inexact wind velocity,
resulting in an inaccurate tomography operator.

optimization problem is not convex as the constraints are not convex functions in v.
To deal with such a problem, we implement an alternating direction method to find a
minimizer of the objective function with respect to Φ and v.

We define Mv and M̃v as the block matrices of the form

Mv =

Mv,0

. . .

Mv,T−1 0

 , M̃v =

0 Mv,1

. . .

Mv,T

 ,
and let Av = MT

v

(
M̃v −Mv

)
, where the superscript T denotes the transpose of a matrix.

Then the constraint in (10) can be equivalently written as AvΦ = 0. The corresponding
augmented Lagrangian functional is given by

L1(Φ,v,λ) = J β
1 (Φ,v) + λ∗AvΦ +

τ

2
‖AvΦ‖2 ,

in which τ ≥ 0 is the augmented Lagrangian parameter (see, e.g., [5]). Starting from
v = v(0), an alternating update on Φ, v and λ leads to estimates of the phase and wind
velocities. To be specific, the method requires solving the following two subproblems
alternatively

Φ(k+1) = arg min
Φ

(
J β

1 (Φ,v(k)) +
τ

2

∥∥∥∥Av(k)Φ +
λ(k)

τ

∥∥∥∥2
)
, (22)

v(k+1) = arg min
v

τ

2

∥∥∥∥AvΦ(k+1) +
λ(k)

τ

∥∥∥∥2

. (23)

with λ(k) being updated as

λ(k+1) = λ(k) + τAv(k+1)Φ(k+1). (24)
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The subproblem (22) is a least squares problem, the solution of which is obtained
by solving a linear system. The second subproblem (23) is more difficult as it is neither
linear nor convex. We will show that it is related to an image registration problem and
the optical flow algorithm proposed by Gilliam et al. [18, 17] can be adapted for finding
a good approximation to the solution.

4.1 All-pass filters for wind estimation

First, we consider the explicit objective function of subproblem (23), i.e.,∥∥∥∥AvΦ(k+1) +
λ(k)

τ

∥∥∥∥2

=
T−1∑
t=0

∥∥∥MT
v,tMv,t+1φ

(k+1)
t+1 −MT

v,tMv,tφ
(k+1)
t + λ

(k)
t /τ

∥∥∥2

.

To reduce the complexity of notations, let pv,t := MT
v,tMv,t+1φ

(k+1)
t+1 and qv,t := MT

v,tMv,tφ
(k+1)
t ,

and v := v(k) + u. In the frequency domain, for any displacement vector u = [u1, u2]T ,

p̂v(k)+u,t ≈ f̂u ◦ p̂v(k),t and q̂v(k)+u,t ≈ q̂v(k),t, (25)

where f̂u :=
[
ei(ω1u1+ω2u2)

]
ω

for ω = [ω1, ω2]T ∈ R2, p̂v,t is the Fourier transform of pv,t

and ◦ denotes the Hadamard product. It is clear that the filter f̂u is an all pass filter.
From Equation (25), the objective function∥∥∥∥Av(k)+uΦ(k+1) +

λ

τ

∥∥∥∥2

≈
T−1∑
t=0

∥∥∥f̂u ◦ p̂v(k),t − q̂v(k),t + λ̂
(k)
t /τ

∥∥∥2

=
T−1∑
t=0

∥∥∥f̂u/2 ◦ p̂v(k),t − f̂−u/2 ◦ (q̂v(k),t − λ̂(k)
t /τ

)∥∥∥2

.

(26)

The problem is converted into registering pv(k),t and qv(k),t−λ
(k)
t /τ for all t simultaneously.

The last equality of (26) expresses the shifting motion of u in a forward-backward form,
and later we will show that such an expression is crucial in constructing an all pass filter
like f̂u.

We use the idea of the LAP algorithm [17] which is based on an approximation of the
filter f in a space with basis {f (j)}. A typical choice of the filter basis is f (j) := [f (j)]x1,x2
where

f (0) = exp

(
−x

2
1 + x2

2

2ξ2

)
, f (1) = x1f

(0) and f (2) = x2 ◦ f (0).

Here ξ is a parameter that can be determined according to the size of displacement. A
larger basis is possible, but here we consider only the 3-dimensional case. The problem
of estimating fu in (26) is linearized into finding an optimal filter of the form f † =(∑2

j=0 a
†
jf

(j)
)

with a† = [a†1, a
†
2, a
†
3]T being a solution to

min
a∈R3,a1=1

T−1∑
t=0

∥∥∥∥∥
(

2∑
j=0

ajf
(j)

)
∗ pv(k),t −

(
2∑
j=0

ajf
(−j)

)
∗
(
qv(k),t − λ

(k)
t /τ

)∥∥∥∥∥
2

, (27)

in which ∗ denotes the convolution operation and f (−j) = [f (j)(−x1,−x2)]x1,x2 . The
minimization can be done by solving a small linear system in a. Note that up to a
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scaling constant f̂ † approximates f̂u/2, and f̂ (−†), defined as the Fourier transform of

f (−†) := [
∑
a†f (j)(−x1,−x2)]x1,x2 , approximates f̂−u/2. Therefore f̂u, as an all pass

filter, is approximated by[
2∑
j=0

a†j f̂
(j)(ω1, ω2)

/
2∑
j=0

a†j f̂
(j)(−ω1,−ω2)

]
ω

which is also an all pass filter.
Finally, the new wind velocity is v(k+1) := v(k) + u(k+1) and the update u(k+1) is

computed as

u
(k+1)
1 =

2
∑

x1,x2

∑2
j=0 x1a

†
jf

(j)(x1, x2)∑
x1,x2

∑2
j=0 a

†
jf

(j)(x1, x2)
and u

(k+1)
2 =

2
∑

x1,x2

∑2
j=0 x2a

†
jf

(j)(x1, x2)∑
x1,x2

∑2
j=0 a

†
jf

(j)(x1, x2)
.

(28)
The method described here is a simplified version of the LAP algorithm, as the LAP
algorithm [17] was designed to estimate a motion field, i.e., u is a vector field rather
than a constant vector. To do this, the algorithm computes the velocity for each pixel
by restricting the problem in a small window centered at the pixel under the assumption
that the motion field within each window is nearly constant. However, this treatment
is unnecessary in our problem, since u is a constant velocity according to the TFF
assumption. Hence we solve (27) for a single motion vector over the entire domain.

4.2 The alternating direction method

In summary, the minimization process (23) results in a self-adaptive algorithm which
updates the inexact wind velocity with the information from the observed data based on
an implicit use of the TFF hypothesis. The algorithm is described in Algorithm I.

Algorithm I

Input: φDM
t for t = 0, . . . , T , v(0)

Output: Estimates of residual phases φ̂res
0 , . . . , φ̂res

T and the estimated wind velocity v̂.

Step 1. Initialization.
1. recover φres, coarse

t from the DM data φDM
t ,

2. compute the high resolution DM shape φ̃DM
t from φDM

t ,
3. compute the pseudo WFS measurement s̃t with φres, coarse

t by (5),
4. set λ(0) = 0.

Step 2. For k = 1, 2, · · · ,m, repeat:
1. Compute Φ(k) as minimizer of the Lagrangian functional

J β
1 (Φ,v(k−1)) +

(
λ(k−1)

)∗
Av(k−1)Φ +

τ

2
‖Av(k−1)Φ‖2 ,

over all Φ. Here Φ(k) is a column stacking of φ
(k)
0 , . . . ,φ

(k)
T .

2. Estimate the wind velocity v(k) = v(k−1) + u(k) where u(k) is given by (28).
3. λ(k) = λ(k−1) + τAv(k)Φ

(k).

Step 3. The output is given by φ̂res
0 = φ

(m)
0 − φ̃DM

0 , . . . , φ̂res
T = φ

(m)
T − φ̃DM

T , v̂ = v(m).
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Note that Algorithm I is not an exact alternating direction method of multipliers (see,
e.g., [5]) as the optimization problem has a nonlinear constraint and the subproblem in
v is linearized as in (27). We investigate the convergence of the method from initial
wind velocities with errors in Section 5.4. In real application, only values of φt on the
telescope aperture are useful. Although in our model φt can be defined on a domain
that is much bigger than the telescope aperture, it is not necessary to do so as the part
outside the telescope aperture does not contribute to the blur of the observed image. For
computational reasons, φt is defined on a grid in a small rectangular domain covering the
telescope aperture.

4.3 Solving the tomography problem

Let us now consider problem (21) which is also nonconvex. We introduce an algorithm
similar to Algorithm I for the minimization.

We define Av as a block diagonal matrix with diagonal blocks Av1 , Av2 , . . . , AvL . Then
the equality constraints in (21) have a compact form AvΦ = 0. The corresponding
augmented Lagrangian functional is given by

L2 (Φ,v,λ) = J β
2 (Φ,v) + λ∗AvΦ +

τ

2
‖AvΦ‖2 .

Again, the idea of updating Φ,v,λ alternatively can be applied, and the main issue
remains in the subproblem of minimizing L2 with respect to v. For fixed Φ(k+1) and λ(k),
the subproblem can be decomposed into

min
vl

τ

2

∥∥∥∥∥AvlΦ(k+1)
l +

λ
(k)
l

τ

∥∥∥∥∥
2

, l = 1, . . . , L, (29)

where Φ
(k+1)
l and λ

(k)
l are subvectors of Φ(k+1) and λ(k) corresponding to the lth layer,

l = 1, 2, . . . , L. The problem (29) has the same form as (23), which means that the
update of v can be performed in a layer-by-layer manner using the technique described
in Subsection 4.1. We use the update rule for λ from (24). The resulting method is
summarized in Algorithm II.
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Algorithm II

Input: φDM
t for t = 0, . . . , T , v(0)

Output: Estimates of residual phases φ̂res
0 , . . . , φ̂res

T and the estimated wind velocity v̂.

Step 1. Initialization.
1. recover φres, coarse

t from the DM data φDM
t ,

2. compute the high resolution DM shape φ̃DM
t from φDM

t ,
3. compute the pseudo WFS measurement s̃t of φres, coarse

t by (5),
4. set λ(0) = 0.

Step 2. For k = 1, 2, · · · ,m, repeat:
1. Compute φ

(k)
1,0, . . . ,φ

(k)
1,T , . . . ,φ

(k)
L,0, . . . ,φ

(k)
L,T as a minimizer of the Lagrangian func-

tional
J β

2 (Φ,v(k−1)) +
(
λ(k−1)

)∗
Av(k−1)Φ +

τ

2
‖Av(k−1)Φ‖2 ,

over all Φ. Concatenate the vectors φ
(k)
1,0, . . . ,φ

(k)
1,T , . . . ,φ

(k)
L,0, . . . ,φ

(k)
L,T as Φ(k).

2. For l = 1, 2, . . . , L, compute the new estimated the wind velocity at the lth layer as

v
(k)
l = v

(k−1)
l + u

(k)
l

where u
(k)
l is given by (28).

3. λ(k) = λ(k−1) + τAv(k)Φ
(k).

Step 3. The output is computed as φ̂res
0 =

∑L
l=1φ

(m)
l,0 −φ̃DM

0 , . . . , φ̂res
T =

∑L
l=1φ

(m)
l,T −φ̃DM

T ,

v̂ = v(m).

5 Simulation results

In order to validate our algorithm, we used a MATLAB-based AO simulation tool to obtain
the required data. As benefit in simulation, we can compare the phase recovered on a fine
grid to the true incoming phase. As no alternative algorithms to solve this problem exist
in the literature, we demonstrate the reconstruction quality by comparing the results to
the ground truth. Additionally, we compare our method in Section 5.4 to the use of
optical flow constraints.

5.1 Simulation setting

The simulated system is an SCAO system on an 8 m telescope, equipped with one 40×
40 Shack-Hartmann WFS, described in Table 2. We perform simulations for different
atmospheric settings to demonstrate the power of our method. As starting point, we
consider an atmosphere consisting just of one layer with a wind speed of 15 m/s in
direction 0◦. In the next steps, first we change the direction to 30◦ and second, we move
to a two layer profile, with relative strengths 0.65 and 0.35. The altitudes of the layers
are 0 and 5000 m, the wind speeds 15 m/s and the directions 0◦ and 90◦, respectively.

As a last step, we take an atmospheric profile with 9 layers, often referred to as ESO-
standard profile from [27]. This model is based on measurements at ESO’s site Paranal
in the Atacama desert with a Fried parameter r0 = 12.9 cm. In Table 3, the values for
the 9-layer medium seeing atmosphere are given.

The AO loop is controlled using the CuReD algorithm [33, 34] with optimized loop
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Telescope diameter 8 m
central obstruction 2.2 m
1 NGS Shack-Hartmann WFS 40× 40 subapertures
WFS wavelength λ 0.589 µm
WFS integration time 2 ms
1 DM at height 0 m closed loop
DM actuator spacing 0.2 m

Table 2: Description of the simulated SCAO system.

Layer 1 2 3 4 5 6 7 8 9

Height(m) 47 140 281 562 1125 2250 4500 9000 18000
c2
n-profile 0.522 0.026 0.044 0.116 0.098 0.029 0.059 0.043 0.06

wind speed 15 13 13 9 9 15 25 40 21
direction 0 π/2 π 3π/2 0 π/2 π 3π/2 0

Table 3: 9-layer median atmosphere.

gain. We take the first 20 frames of an AO simulation using these parameters to show
the performance of our algorithm.

Note that using more than 20 frames might improve the results further, however also
clearly increases the computational costs. The maximum number of frames that can be
used is related to the wind speed. If the atmospheric turbulence seen in the first frame
is blown over the whole telescope and no part of it can be seen anymore in the T -th
frame, it is reasonable to stop taking into account any frame after T steps. Note that
therefore it is required that the frozen flow hypothesis holds for at least T frames. For
the setting of Table 2 and a wind speed of 15 m/s, we have T = 267. However, one may
also think of reconstructing the atmosphere on an ever bigger domain, and thus take into
account more than T frames. In real observations this idea will most likely fail as the
TFF hypothesis will not hold for 267 frames being equivalent to more than 0.5 s of real
time. Therefore, we did not follow this idea further as it also increases the computational
costs.

5.2 Numerical considerations

The residual of the incoming phase φres
t (x) is computed by the simulation software on a

fine level with 400× 400 pixels across the telescope aperture, translating into 2 cm/pixel.
The Shack-Hartmann WFS has 40×40 subapertures and the DM 41×41 actuators, which
limits the resolution of the reconstructed incoming phase for usual AO control algorithm
to this level as the DM cannot use higher resolved incoming phases.

Our method is able to provide a high resolution reconstruction, however we cannot
choose it arbitrarily large as the resolution of the reconstruction should still be smaller
than the resolution of the simulated incoming phase, in order to avoid an inverse crime.
In the following simulations, the underlying grid for the high resolution reconstruction is
chosen to be four times finer than the grid of the DM actuators, resulting in a 161× 161
reconstruction.

To judge the quality of our fine resolution reconstruction, we compare it to the ground
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truth. As a quality criterion, we take the l2-norms of the reconstruction error, i.e.,

‖φ̂res
t − φres

t ‖2, (30)

where t indicates the time step and φ̂res
t is the result of our algorithm. Due to the different

resolutions, we have to interpolate the simulated φres
t to the same grid as φ̂res

t . For this
purpose, we use the MATLAB-function interp2. To make a comparison, we also interpolate
φres, coarse
t to the same grid as φ̂res

t and compute the corresponding l2-error. Since only
the part of the phase inside the telescope aperture contributes to the image quality, in
equation (30), φ̂res

t and φres
t are restricted to the telescope domain with the piston mode

(i.e., the additive constant complement) removed.

5.3 Numerical results

In this section we present the numerical results from several test runs. We always use the
first 20 frames for our algorithm to compute the high resolution residual phase. We will
demonstrate the performance of our algorithm by first assuming that exact wind velocities
are given and solving problem (9). After that, we consider the situation where the
exact values of wind velocities are unavailable which usually happens in real applications.
Algorithm I and II with adaptive wind velocities are employed to find the high resolution
reconstructions in this case.

5.3.1 Exact wind velocity case

To highlight the strength of our method, we start with the simplest possible case, i.e.,
simulation 1 (S1): all atmospheric turbulence is located in one layer close to the ground,
with known wind speed and direction, and a bright star can be used as a guide star.
In this case the used AO control algorithm provides a correction in K-band close to the
diffraction limit. Using our model (9), we can still reduce the l2-error between the true
residual phase φres

t and the reconstructed residual phase φres, coarse
t by 15 to 20%, see

Figure 5a. The l2-error of bilinear interpolation at the first time step is much bigger
than the others because the control loop of the system has to be closed and no other
information of the phase is available at this time within the AO control algorithm. Our
high resolution reconstruction still results in a small l2-error at the first time step since
we have used the data from the following time steps as well. The l2-error curve of our
reconstruction has significantly less oscillation over the time than the l2-error curve of
the bilinear interpolation, which is reasonable as our reconstructed phase does not rely
heavily on data of a specific time step and hence prevents enormous errors.

As a next step, in simulation 2 (S2), we change the guide star flux to simulate a faint
star. This leads to a decreased correction quality through the AO control algorithm but
leaves more room for improvement of the reconstructed residual phase. With low flux
the real time reconstruction for the adaptive system has correction errors that are bigger
than the reconstruction with high flux. So for the low flux case, the AO system is unable
to use the data efficiently enough, and we expect that a more significant improvement
can be made by our algorithm which takes full consideration of the relation of the data
from all time steps. Indeed, our method reduces the residual l2-error by 70 to 80%, as
shown in Figure 5b.

In the first two simulations the wind direction was parallel to an axis, which gives
more information for high resolution reconstruction in one direction than in the other.
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The best possible situation would be a wind direction of 45◦ to the axes, leading to
an equally spread gain of information in x- and y-direction. However, such a direction
might not occur in practice, thus we choose an angle of 30◦ with respect to the first
axis for simulation 3 (S3). Changing again to high flux, even in this case our algorithm
gives an improvement of 45% to 65%, shown in Figure 5c. Compared to the accuracy
improvement for S1 (which is around 20%), the improvement for this one is much more
significant. However, this is reasonable as the sampling points from different time steps
have less overlap. Recall that the angle between the wind velocity and the first axis is
30◦, which ensures that the trajectories of coarse grid points do not have overlap with
each other. In S1, in contrast, the coarse grid points always fall in n+ 1 lines parallel to
the first axis where n is the number of grid point on the second axis.
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(h) ground truth
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(j) HR reconstruction
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(k) HR reconstruction
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(l) HR reconstruction

Figure 5: First column: simulation 1, second column: simulation 2, third column: simu-
lation 3. The plots in the first row are l2-errors of the reconstruction, with x-axis being
the frame number. All the images from the second row to the last row are corresponding
to t = 16 (i.e., at the 16th time step) and show wavefronts in m.

In Figure 5d-5l, the images of the reconstruction by bilinear interpolation on the DM
data, the true phase in high resolution and the high resolution reconstruction by the
proposed method are given. As expected, the bilinear interpolations do not include the
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fine details of the residual phase well. Our approach is able to recover some missing high
frequency components in the data, therefore shows an improvement from the bilinear
interpolation.

However, the high resolution reconstruction is limited by several factors. First, the
time interval in which the TFF hypothesis holds is typically small. This limits the
number of low resolution data and therefore set an upper bound for the resolution of
the reconstruction. Second, the low resolution data is not acquired in a random manner.
Instead, the motion vector is constant and the coarse grid points propagate in a fixed
direction with a constant rate, which means that the 2D phase is not evenly sampled in
a short time.

To have a closer look, Figure 6 displays the images of reconstruction errors for sim-
ulation 1 and simulation 3. The error images of the high resolution reconstruction have
some special patterns. In Figure 6b, the pixels with bigger error are concentrated on
some lines parallel to the vertical line, while in Figure 6d the relatively big errors are
mainly distributed on the lines having an angle of 30 degrees with the vertical line. The
directions of the lines coincide with the directions of the winds in both cases, which indi-
cates that the phase at some grid points is not detected as well as other points over the
process.
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(a) bilinear interpolation for
simulation 1
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(b) our method for simula-
tion 1
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(c) bilinear interpolation for
simulation 3
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(d) our method for simula-
tion 3

Figure 6: Reconstruction error images at t = 16 of the bilinear interpolation and our
method.

We take two additional steps to get closer to a realistic on sky scenario. For a two
layer atmosphere and high photon flux, i.e., simulation 4 (S4), the performance of our
algorithm is a bit worse than in the one layer case, as now the problem becomes a
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tomography problem. As the wind directions for the two layers are different, recovering
the information on each layer is much more challenging. Still, the improvement by of our
algorithm ranges from 20% to 30%. The results for this case are plotted in Figure 7a.

The final step is to use the ESO-standard profile from Table 3 in simulation 5 (S5). In
this case, the AO control algorithm still performs on a high level. Applying our algorithm
leads to an improvement between 10% and 25%, showing that our model can cope with
the multi-layered nature of the atmosphere. The results are shown in Figure 7b.
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Figure 7: (a) and (b) are the l2-errors of two methods for simulation 4 and simulation 5,
respectively. The x-axis is the frame number.

5.3.2 Reconstructions with inexact wind velocities

We further study the performance of the proposed algorithms when the initial wind
velocities (IWV) are imprecise. The adaptive wind velocity (AWV) algorithm is used.
To make the results comparable to the previous reconstruction, we let the simulation
settings be the same as before except that the precise wind velocities (PWV) are replaced
by the imprecise ones. The proposed method is employed to on the five simulations and
the IWV are assumed to have 10% to 20% error for all simulated cases.

For the first three simulations, Algorithm I is used and one wind velocity is computed
for each simulation. The l2-errors of the high resolution reconstructions are shown in
Figures 8a - 8c. For comparison the previous test results on exact wind velocity cases are
also displayed. According to the figures, with IWV the minimizer of (9) is computed and
the corresponding l2-error is significantly bigger than the ones obtained with the exact
wind velocity at the first and last few frames, except for the low flux case (i.e., the second
simulation). An IWV does not play a key role in the reconstruction accuracy in the low
flux case where the observed data is very unreliable.
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Figure 8: (a)-(c): The l2-errors of the reconstructions for simulation 1 to 3 respectively.
In these plots the x-axis is the frame number and y-axis is the l2-error. The exact wind
speed means reconstruction with fixed PWV, while the wrong wind speed means using
IWV without adaption. (d)-(e): the adaptive wind velocity for simulation 1 to 3. The
unit of the x- and y-axis is pixels per time step, given as 25 m/s (i.e., the number of
high-resolution pixels (with length 0.05 m) per time step (being 1/500 s).

The estimated wind velocities at all iterations are plotted in Figure 8d-8f. The unit
of the x- and y-axis is relating the number of high-resolution pixels (with length 0.05 m)
to the length of a time step, being 1/500 s, thus giving 25 m/s. In the high flux cases,
Algorithm I starts with an initial wind velocity that has around 20% error, but finally
outputs improved ones with less than 1% error. This implies that the algorithm is capable
of extracting the wind velocity information from the AO data itself, and explains why it
is still able to have a comparable reconstruction accuracy to the one obtained with the
exact wind velocity, as shown Figure 8a and Figure 8c. In the low flux case, the error of
the estimated wind velocity is reduced from 13.4% to around 1.4% as shown in Figure
8e.

For simulation 1 and simulation 3, the error images of the reconstruction from the
last subsection, the reconstruction by the proposed algorithm and the reconstruction
with fixed IWV are given Figure 9. Significantly larger errors can be observed from the
algorithm without adaptive wind velocities while the proposed algorithm with adaptive
velocities results in errors that look similar to the reconstructions with PWV.
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Figure 9: Error images of different reconstructions at t = 16. (a)-(c): with exact wind
velocity, with adaptive wind velocity and without adaptive wind velocity for Simulation
1. (d)-(f): with exact wind velocity, adaptive wind velocity and without adaptive wind
velocity for Simulation 3.

For the two layer case, i.e., simulation 4, we used Algorithm II which solves for the
high resolution residual phase as well as the wind velocity for each of the two layers.
IWVs {v(0)

l }, having around 10% to 20% error, are given. A reconstruction from (9)

using the wrong wind velocities {v(0)
l } is also computed and a large error is observed at

the first and last few frames as shown in Figure 10a. The reconstruction at the middle
frames, however, has a close accuracy to reconstruction for the exact wind velocity case.
On the other hand, Algorithm II with only inexact wind velocities {v(0)

l } gives almost the
same accuracy as the solution of (9) with exact wind velocities. In Figure 10c, the wind
velocity estimates for each of the two layers are displayed. It suggests that our algorithm
can recover information of the wind velocities from the DM data itself using imprecise
initial wind velocities.

Finally, Algorithm II is used to estimate estimates of the nine wind velocities for
nine layers in the fifth simulation. Though in this case the l2-error of the minimizer of
(9) with the fixed IWV is still reasonably small compared to the minimizer with the
PWV, Algorithm II can still make an improvement with the implementation of AWV.
The resulting accuracy is shown in Figure 10b and the estimated wind velocities for
all layers are given in Figure 10d. The algorithm fails to distinguish the layers with
close wind velocities, such as the second layer and the sixth layer. The isolated wind
velocities, however, are captured well, such as that of the fourth layer and the eighth
layer. The reconstruction does not depend heavily on separating the wind velocities of
those layers with similar motions, as the reconstruction accuracy shown in Figure 10b is
still comparable to the one obtained with the PWV.
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Figure 10: The l2-errors and the estimated wind velocities for simulation 4 and 5.

5.4 Numerical convergence and comparison of our method

As discussed in Section 4.2, the constraints of our method are non convex. Therefore
no convergence to a global minimum is guaranteed for our method theoretically. We
demonstrate that our method converges numerically to the correct solution for different
levels of errors in the initial wind velocity and compare our method to the optical flow
constraints.

5.4.1 Different levels of error in the initial wind speed

In this subsection we test different initialization and different levels of noise in wind
velocities and investigate their impacts on the algorithm.

For each simulation, 8 different initializations with 66.7% error (i.e., the squares in
Figure 11(a)) are applied. The trajectories of the estimated wind velocity by the algo-
rithm are plotted in Figure 11(a). The iterations of the wind velocities converge to a
point close to the ground truth value (i.e., the circle in Figure 11(a)) consistently for all
the simulations.

We also compared the accuracy of wind estimation under different levels of errors in
IWV (66.7%, 40%, 24%, 14.4%, 8.6%, 5.2% and 0% respectively). The estimation errors
are plotted against the initialization errors in Figure 11(b) for the four simulations, re-
spectively. This clearly shows that the final errors in wind velocity are stable with respect
to the levels of initial errors.
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It is also interesting to note that the error of computed high resolution (HR) residual
phase by our (joint phase reconstruction and wind estimation) approach remains small
despite different levels of initial wind errors (ranging from 66.7 % to 0 %), i.e., the black
curve in Figure 11(c). The reconstruction using the fixed wind velocity algorithm (i.e.,
the blue curve in Figure 11(c)), in contrast, significantly degraded as the error in the
wind velocity increases.

5.4.2 Comparison with the optical flow constraints

We compare our model with the optical flow constraints (OFC) [6, 1], which is a well
known model for motion estimation in imaging problems. The OFC assumes that the
function values (e.g., image intensity) remain unchanged along the trajectory of a moving
point, and therefore satisfies

∂φ

∂t
+∇φ · v = 0,

for an image φ. This can be discretized as

φt+1 − φt +∇h
φt + φt+1

2
· v = 0 (31)

in our setting where the measurements are taken at a fixed time frequency. Here ∇h is
the discrete gradient operator.

We first evaluate the approximation error of OFC (31) and our constraint (9) on a
ground truth simulated phase. The residual of our constraint is much smaller than that
of OFC (see Figure 12). We denote our constraint (9) by successive difference (SD). The
comparison of these two approaches with different initial wind error levels (0%, 14.4%
and 66.7%) is given in Table 4. Our method achieves a better reconstruction error over
different simulations and initial wind velocities.

Error in initial wind velocity Constraint S1 S2 S3 S4

66.7%
OFC 6.27× 10−6 1.04× 10−5 2.94× 10−6 6.42× 10−6

SD 5.08 × 10−6 1.03 × 10−5 2.28 × 10−6 5.32 × 10−6

14.4%
OFC 6.34× 10−6 1.03× 10−5 2.94× 10−6 6.69× 10−6

SD 5.08 × 10−6 1.03 × 10−5 2.28 × 10−6 5.32 × 10−6

0%
OFC 6.37× 10−6 1.03× 10−5 2.94× 10−6 6.82× 10−6

SD 5.08 × 10−6 1.03 × 10−5 2.28 × 10−6 5.32 × 10−6

Table 4: l2 reconstruction error under constraint OFC and SD with different wind velocity
initializations

6 Conclusion

We investigated the problem of deriving a high resolution phase from coarse measurements
in a closed loop AO system, arising from the quest of using such a high resolution phase
in post-processing of the data. After describing the system setting, we developed an
approach for solving this problem with consideration on the model error due to imprecise

29



0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

-0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

-0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

-0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

(a). Trajectories of wind estimates starting from different IWV (squares)

0% 20% 40% 60% 80%

-4%

-2%

0%

2%

4%

0% 20% 40% 60% 80%

2%

4%

6%

8%

10%

0% 20% 40% 60% 80%

-4%

-2%

0%

2%

4%

0% 20% 40% 60% 80%

-4%

-2%

0%

2%

4%

(b). l2-errors of the estimated wind velocities plotted versus the l2-errors in the IWV
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(c). The l2-error of the HR reconstruction plotted versus the error in IWV

Figure 11: Reconstruction accuracy with different wind velocity initialization and dif-
ferent levels of IWV errors for Simulation 1 (1st column), Simulation 2 (2nd column),
Simulation 3 (3rd column) and Simulation 4 (4th column) respectively. The results for b
are averaged from 8 different initializations at each error level of IWV. The error bars in
(c) reflects the impacts of 8 initializations.
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Figure 12: The S3 open loop wavefront (left), residual of discrete OFC (middle) and ours
(right)

observations (i.e., wind velocity). Our approach is based on the Taylor Frozen Flow
hypothesis and uses subsequently applied DM shapes in a minimization procedure to
obtain a high resolution phase. For known wind velocities in the different atmospheric
layers the functional to be minimized describes a tomography problem and can be solved
with standard tools.

As the wind velocities might not be known in practice, we also investigated the case of
imprecisely known wind velocities. This results in an augmented Lagrangian functional,
which can be solved using an alternating direction method. Finally, we demonstrated the
power of our method in numerical experiments under different atmospheric conditions.
The l2-error is clearly reduced by our method compared to a simple bilinear interpola-
tion from a coarse to a fine grid in all cases. For the more realistic setting with nine
atmospheric layers and imprecise knowledge of the wind velocities, the adaptive method
outperforms the method using constantly wrong wind velocities and is close to exact
knowledge of the wind velocities.

In practice, this method might be useful on the one hand for temporal control, using
the calculated high resolution phase to predict the incoming phase (see [31] and the
references therein for details on temporal control), and on the other hand a highly resolved
phase could be useful for post processing, e.g., in PSF reconstruction methods as [39].
Bringing our method to this level requires investigating the behavior when scaled to
the size of upcoming 40 m class telescopes like ESO’s ELT. Furthermore, we will test our
algorithm in end-to-end simulation tools for such telescopes to demonstrate the feasibility
for the AO community in more detail.
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