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Abstract2

The UNet architecture has transformed image segmentation. UNet’s versatility and ac-3

curacy have driven its widespread adoption, significantly advancing fields reliant on machine4

learning problems with images. In this work, we give a clear and concise mathematical ex-5

planation of UNet. We explain what is the meaning and function of each of the components6

of UNet. We will show that UNet is solving a control problem. We decompose the control7

variables using multigrid methods. Then, operator-splitting techniques is used to solve the8

problem, whose architecture exactly recovers the UNet architecture. Connections between the9

proposed algorithm and general networks are also discussed. Our result shows that UNet is a10

one-step operator-splitting algorithm for the control problem.11
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1 Introduction13

Deep neural networks have made remarkable successes in many tasks, including image segmen-14

tation [31–33, 48], image denoising [1, 40, 46], image classification, natural language processing15

[21], etc. Among these works, UNet [33] stands out as a renowned network and inspired a lot16

of following works [2, 8, 42, 48].17

UNet was originally proposed for medical image segmentation. It consists of four compo-18

nents: encoder, decoder, bottleneck an skip-connections. Given an input image, the encoder19

part conducts dimension reduction and convert the image to a low-dimensional tensor. The20

bottleneck performs some operations on the tensor, after which the tensor is converted to the21

segmented image by the decoder. Skip-connections are used to directly pass information from22

encoder to decoder. UNet does a great job in medical image segmentation, and has garnered23

significant attention. Its encoder-decoder architecture inspired a lot of subsequent works, in-24

cluding DeepLab [8], SegNet [2], UNet++ [48] for image segmentation, SUNet [15], RDUNet25

[22] for image denoising.26

A series of works have been aimed at elucidating the empirical successes of deep neural27

networks [4, 9, 43, 47] and establishing connections between deep learning and mathematical28

models [13, 31, 34, 39]. The current work is inspired by a series of earlier researches. In [13, 14],29

the authors initiated the idea to treat networks as discretized representations of continuous30
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dynamical systems. The authors of [5] studied the connections between networks and control31

problems. PDE and ODE-motivated stable network architectures are proposed in [23, 34].32

Inspired by the weak formulation of PDEs, [44] proposed weak adversarial networks for solving33

PDEs. This idea was further applied in [3] to solve constrained optimization problems. Many34

networks are designed with an encoder-decoder architecture, in which the encoder and decoder35

are expected to extract and reconstruct features of data, respectively. Analogies between this36

architecture and multiscale methods are pointed out in [23, 24]. In [25], the authors proposed to37

use operators with multigrid methods to extract and reconstruct features. In [26], the authors38

used networks based on the operator-splitting method to solve PDEs. For image processing,39

the regularizers of prior information are incorporated with networks to design new networks.40

Networks with volume-preserving properties and star-shape priors are proposed in [31] for image41

segmentation. Compactness priors are used in [45]. In [39], a multi-task deep variational model42

is proposed which variational models are incorporated into the loss functions. Based on the43

Chan-Vese model [7] and fields of experts regularizer, a novel deep neural network is proposed44

in [10] for image segmentation.45

Based on the Potts model and operator-splitting methods, networks with mathematical ex-46

planations are proposed in [27, 28, 36]. In [36], the authors proposed PottsMGNet by integrat-47

ing the Potts model, operator-splitting method, control problem, and multigrid method, which48

provides a mathematical explanation of the encoder-decoder-based networks. PottsMGNet49

demonstrated great performances in segmenting images with various noise levels using a single50

network. It was shown in [36] that most of the encoder-decoder-based neural networks are51

essentially operator-splitting algorithms solving certain control problems. The double-well net52

proposed in [27] utilizes the Potts model, operator-splitting methods, the double-well potential,53

and network representation theories. In double-well nets, a network is used to represent the54

region force term in the Potts model, providing a data-driven way to learn the region force term.55

The works mentioned above make connections among mathematical models, algorithms, and56

deep neural networks. However, the resulting networks are more or less different from UNet57

and cannot be directly applied to provide an explanation of UNet. In this paper, we aim to58

provide a clear and concise mathematical explanation of UNet. Building on the key concepts59

from [36], we rigorously formulate the problem to show that the network derived from the60

splitting-multigrid algorithms for the control problem corresponds exactly to UNet when only a61

single iteration of the algorithm is applied. In fact, UNet emerges as a special case of the more62

general algorithm described in [36]. The central ideas for multigrid methods we use in this work63

for solving minimization problems come from [35, 37, 38, 41]. The general explanations and64

convergence proofs provided in these works for multigrid methods present the method in a more65

general form, encompassing linear elliptic solvers as special cases and suits our proposed con-66

trol problem well. Operator-splitting methods decompose complicated problems into multiple67

easy-to-solve sub-problems and are widely used in solving PDEs [17], inverse problems [16] and68

image processing [11, 12, 30]. We suggest readers to [18–20] for a comprehensive discussion on69

operator-splitting methods. Traditional splitting methods decompose the original problem into70

a small number of sub-problems. In the context of this work, the number of the decomposed71

sub-problems are rather large and thus need to introduce some hybrid splitting schemes as in72

Section 2.2 proposed in [36]73

In this work, starting from a control problem, we will first derive its equivalent problem by74

introducing an indicator function. We then use the multigrid idea to decompose the control75

variables into different scales and utilize the hybrid splitting strategy to propose an operator-76

splitting method for the new problem. The algorithm consists of several sub-steps, each of77

which contains an explicit linear convolution step and an implicit step, where the implicit step78

has a closed-form solution which turns out to be the ReLU function. We show that the resulting79

algorithm exactly recovers the UNet architecture. Our results show that UNet is a one-step80

operator-splitting algorithm solving a control problem.81
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This paper is organized as follows: In Section 2, we present the control problem, derive82

its equivalent form using an indicator function, and introduce basic ideas of hybrid operator-83

splitting methods and multigrid methods. We discuss in Section 3 the decomposition of control84

variables and present our proposed operator-splitting method to solve the control problem.85

Solutions to subproblems in the proposed algorithm are presented in Section 4. We discuss con-86

nections between the proposed algorithm and general networks and how the proposed algorithm87

recovers UNet in Section 5, and conclude this paper in Section 6.88

2 Proposed formulation89

In this section, we present our control problem and briefly introduce hybrid operator-splitting90

methods and multigrid methods.91

2.1 The control problem92

Given an input image f , we consider the following initial value problem93 {
∂u(x,t)

∂t = W (x, t) ∗ u(x, t) + d(t)− ln u(x,t)
1−u(x,t) , (x, t) ∈ Ω× (0, T ],

u(x, 0) = H(f), x ∈ Ω,
(1)

where W (x, t), d(t) are control variables that governs the dynamics of u, ∗ denotes convolution,94

H(f) is some operation to generate initial condition from f , Ω is the domain where the images is95

defined and T is some fixed time. Due to the appearance of the term ln u
1−u , the solution of the96

above equation is forced to be in (0, 1). For numerical consideration and to make the connection97

between operator-splitting methods and neural networks clearer, we introduce a constraint and98

consider the following constrained control problem99 
∂u
∂t = W (x, t) ∗ u(x, t) + d(t)− ln u(x,t)

1−u(x,t) , (x, t) ∈ Ω× (0, T ],

u(x, t) ≥ 0,

u(x, 0) = H(f), x ∈ Ω.

(2)

Due to the property of the term ln u
1−u , the introduced constraint does not change the solution.100

Next, we incorporate the constraint into the equation by introducing an indicator function.
This technique has been used in designing fast operator-splitting methods for image processing
[11, 12, 29, 30]. Define the set

Σ = {u : u(x, t) ≥ 0 for (x, t) ∈ Ω× (0, T ]}

and its indicator function

IΣ(u) =

{
0 if u ∈ Σ,

∞ otherwise.

Problem (2) is equivalent to the following unconstrained control problem101 {
∂u
∂t −W (x, t) ∗ u− d(t) + ln u

1−u + ∂IΣ(u) ∋ 0, (x, t) ∈ Ω× (0, T ],

u(x, 0) = H(f), x ∈ Ω,
(3)

where ∂IΣ denotes the subdifferential of IΣ.102

By solving (3) for any input image f , We expect that u(x, 0) will evolve to u(x, T ) which103

is close to a binary function. For a given dataset {fi, gi}Ii=1, we consider a control problem.104

Specifically, denote θ1 = {W (x, t), d(t)} as the set of control variables, and N1 : f → u(x, T ) as105
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the mapping from f to the solution of (3) at time T : N1(f ; θ1) = u(x, T ). We optimize θ1 by106

solving107

min
θ1

I∑
i=1

L(N1(fi, θ1), gi), (4)

where L(·, ·) is the loss function measuring the differences between its arguments. Common loss108

functions include logistic loss and hinge loss.109

2.2 Hybrid splitting methods110

We will use the hybrid splitting method proposed in [36] to solve (3). Refer to [18–20] for111

some general introduction to traditional splitting methods. In this subsection, we give a brief112

introduction to the hybrid splitting method. Consider a general initial value problem113 
ut +

M∑
m=1

(
cm∑
k=1

cm−1∑
s=1

Am
k,s(x, t;u) +

cm∑
k=1

Sm
k (x, t;u) +

cm∑
k=1

fm
k (x, t)

)
= 0 on Ω× [0, T ],

u(x, 0) = u0(x),

(5)

where {cm}Mm=0 are some given positive integers with c0 = cM = 1, Am
k,s, S

m
k are operators,114

fm
k ’s are some given functions independent of u. The hybrid splitting method is a mixture of115

sequential splitting and parallel splitting. Briefly speaking, the hybrid splitting method arranges116

parallel splittings sequentially.117

The algorithm of hybrid splitting is summarized in Algorithm 1. In the algorithm, all118

operators are distributed into M sequential sub-steps, each of which is a parallel splitting with119

cm parallel pathways. The computation of each parallel pathway uses the cm−1 intermediate120

results from the previous sub-step. The structure of Algorithm 1 is illustrated in Figure 1.121

Algorithm 1: A hybrid splitting scheme

Data: The solution un at time step tn.
Result: The computed solution un+1 at time step tn+1.
Set d1 = 1, un1 = un.
for m = 1, ...,M do
for k = 1, ..., cM do

Compute u
n+m/M
k by solving

u
n+m/M
k − un+(m−1)/M

cm∆t
= −

cm−1∑
s=1

Am
k,s(t

n;un+(m−1)/M
s )

− Sm
k (tn+1;un+m/M )− fm

k (tn). (6)

end for
Compute un+m/M as

un+m/M =
1

cm

cm∑
k=1

u
n+m/M
k . (7)

end for

The above scheme splits the original problem into M sequential steps with m = 1, 2, · · · .M .122

Inside each sequential step, the problem is further split into cm parallel steps for each m. For123

each of these parallel subproblems, we treat the operator Sm
k using implicit approximation and124

the operators Am
k,s using explicit approximations. It is shown in [36] that when all operators in125

(5) are linear, Algorithm 1 converges with first-order accuracy:126
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Figure 1: An illustration of Algorithm 1.

Theorem 1 (Theorem D.1 in [36]). For a fixed T > 0 and a positive integer N , set ∆t = T/N .127

Let un+1 be the numerical solution by Algorithm 1. Assume Am
k,s’s and Sm

k ’s are Lipschitz with128

respect to t,x, and are linear symmetric positive definite operators with respect to u. Assume129

∆t is small enough (i.e., N is large enough). We have130

∥un+1 − u(tn+1)∥∞ = O(∆t) (8)

for any 0 ≤ n ≤ N .131

In applying this algorithm to our control problem, the Am
k,s operators are coming from the132

decomposed control variables which are the convolutional kernels over the different levels of the133

multigrids explained in the next sections.134

2.3 Multigrid discretizations135

To demonstrate our splitting strategy, we will use the multigrid idea to decompose the control136

variables into components with different scales. in this subsection, we present the multigrid137

method for a general function f , which we will refer to as an image to remain consistent with138

the terminology.139

Denote the original resolution (finest grid) of an image f by T with size m × n, and grid
step size h, with

m = 2s1 , n = 2s2

for some h > 0 and integers s1, s2 > 0. The image f is considered to have a constant value140

on each element (or called pixel) [α1h, (α1 + 1)h) × [α2h, (α2 + 1)h) for α1 = 0, ...,m − 1 and141

α2 = 0, ..., n− 1.142

Set T 1 = T . Given grid T j , for the next level coarse grid T j+1, we downsample the number143

of grid points along each dimension by half. Following this process, we can generate a sequence144

of grids {T j}Jj=1 with J denoting the coarsest level of grids and each T j has grid size mj × nj145

and grid step size hj with146

mj = 2s1−j+1, nj = 2s2−j+1, hj = 2j−1h.

Denote Ij = {α : α = (α1, α2), α1 = 0, ...,mj − 1, α2 = 0, ..., nj − 1}. For a given grid T j ,147

a set of piecewise-constant basis functions {ϕj
α}α∈Ij is defined as148

ϕj
α(x, y) =

{
1 if (x, y) ∈ [α1hj , (α1 + 1)hj)× [α2hj , (α2 + 1)hj),

0 otherwise.
(9)
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Figure 2: An illustration of a V-cycle of the multigrid method.

Let Vj = span({ϕj
α}α∈Ij ) be the linear space containing all the piecewise constant functions149

over grid T j , we have150

V1 ⊃ V2 ⊃ · · · ⊃ VJ . (10)

For each f ∈ Vj , it can be expressed as f(x, y) =
∑

α∈Ij f
j
αϕ

j
α(x, y) with f j

α = f(α1hj , α2hj).151

Next, we introduce the downsampling and upsampling operations that convert functions152

between different grids. Let T j and T j+1 be two grids. Consider f j+1 ∈ Vj+1. According to153

(10), there exists a function f j ∈ Vj satisfying f j = f j+1. Denote the upsampling operator154

U : Vj+1 → Vj for any j > 0 so that155

f j = U(f j+1). (11)

One can show that for α ∈ Ij , it holds156

(U(f j))α = f j+1
α′ with α′

1, α
′
2 satisfying 2α′

1 − 1 ≤ α1 ≤ 2α′
1, 2α′

2 − 1 ≤ α2 ≤ 2α′
2. (12)

The mapping discussed above is the simplest upsampling operator. One can also choose other157

upsampling operators that apply some operations while upsampling, such as interpolation or158

transpose convolution.159

For the downsampling operator Dj : Vj → Vj+1, there are many ways to define it. For160

example, given a function f j ∈ Vj , we can define Dj as an averaging downsampling operator:161

f j+1 = (U j(f j))α =
1

4

2α1∑
α′
1=2α1−1

2α2∑
α′
2=2α2−1

f j
α′
1,α

′
2
. (13)

Another choice is the max pooling operator which is widely used in deep learning:162

f j+1 = (Uk(f j))α = max
α′
1=2α1−1,2α1

α′
2=2α2−1,2α2

f j
α′
1,α

′
2
. (14)

3 The proposed algorithm163

We decompose the control variables in (3) using the multigrid idea and then propose an algo-164

rithm based on the hybrid operator-splitting method to solve it. After these, it will then be165

shown that UNet is exactly one-step of the operator-splitting algorithm for the control problem.166
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3.1 Decomposition of control variables θ1167

In traditional multigrid methods, a popular framework is the ”fine-grid → coarse grid → fine168

grid” strategy [6]. Such forms of V-cycle multigrid method can be interpreted as space decom-169

position and subspace correction [35, 37, 38, 41], see Figure 2 for an illustration. Traditional170

multigrid methods solve the decomposed subproblems by simple Gauss-Seidel or Jacobi itera-171

tions. In our approach shown here, we solve the subproblems by operating splitting sequentially172

or in parallel over the decomposed function subspaces.173

We will decompose θ1 into a sum of variables with different scales over the multigrids. Then,174

we use a hybrid splitting method to solve (3) so that all decomposed variables are distributed175

into several subproblems, which are solved sequentially or in parallel. Within one iteration of176

the splitting method, all decomposed variables are gone through. The general splitting idea177

is to split the operators based on a V-cycle according to the scale level. We assign several178

sub-steps to each scale level of each branch of the V-cycle. Each sub-step consists of several179

parallel splitting pathways.180

We decompose all terms in the right-hand side of (3) via the following six steps:181

(i) According to the idea of a V-cycle, we decompose W (x, t) and d(t) as182

W (x, t) = A(x, t) + Ã(x, t), d(t) = b(t) + b̃(t). (15)

These variables will be further decomposed next. Above, A, b are sums of control variables183

in the left branch of the V-cycle, and Ã, b̃ are sums of the control variables in the right184

branch. We also decompose the nonlinear operator as follows:185

− ln
u

1− u
− ∂I(u) = S(u) + S̃(u). (16)

Here S(u) contains nonlinear operations in the left branch and S̃(u) contains nonlinear186

operations in the right branch. In particular, we put − ln u
1−u in S̃(u) only, i.e., S(u)187

only contains operator ∂I(u). Later, we will show our operator splitting method recovers188

UNet. The operation − ln u
1−u corresponds to the sigmoid layer at the end of UNet.189

(ii) We further decompose the operators into components at different scales as:190

A(x, t) =
J∑

j=1

Aj(x, t), b(t) =
J−1∑
j=1

bj(t), S(u) =
J∑

j=1

Sj(u), (17)

Ã(x, t) =
J−1∑
j=1

Ãj(x, t) +A∗(x, t), b̃(t) =
J−1∑
j=1

b̃j(t) + b∗(t), S̃(u) =
J−1∑
j=1

S̃j(u) + S∗(u),

(18)

where Aj , bj , Ãj , b̃j contain control variables at grid level j, A∗, b∗ are control variables191

that are applied to the output of the V-cycle at the finest mesh, i.e. Aj , Ãj ∈ Vj , A∗ ∈192

V1, bj , b̃j , b∗ ∈ R. Operators Sj , S̃j are applied to the intermediate solution on grid level193

j. Operator S∗ is applied to the output of the V-cycle at the finest mesh.194

(iii) At grid level j, let Lj be the number of sub-steps to be solved at grid level j in the left195

and right branches of the V-cycle. We decompose196

Aj(x, t) =

Lj∑
l=1

Aj,l(x, t), bj(t) =

Lj∑
l=1

bj,l(t), Sj(u) =

Lj∑
l=1

Sj,l(u), (19)

Ãj(x, t) =

Lj∑
l=1

Ãj,l(x, t), b̃j(t) =

Lj∑
l=1

b̃j,l(t), S̃j(u) =

Lj∑
l=1

S̃j,l(u). (20)
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In our splitting scheme, we will use a sequential splitting techniques for the operators197

given above both for the left and right branch, where Aj,l, bj,l, and Sj,l are the operators198

at the l-th sequential sub-step of the left branch, Ãj,l, b̃j,l and S̃j,l are the operators at the199

l-th sequential sub-step of the right branch.200

(iv) At grid level j, for each sequential sub-step l of each branch, we decompose201

Aj,l(x, t) =

cj∑
k=1

Aj,l
k (x, t), bj,l(t) =

cj∑
k=1

bj,lk (t), Sj,l(u) =

cj∑
k=1

Sj,l
k (u), (21)

Ãj,l(x, t) =

cj∑
k=1

Ãj,l
k (x, t), b̃j,l(t) =

cj∑
k=1

b̃j,lk (t), S̃j,l(u) =

cj∑
k=1

S̃j,l
k (u). (22)

At grid level j, we split these operators into cj parallel pathways, where Aj,l
k , bj,lk and Sj,l

k202

are used in the k-th parallel splitting pathway in the left branch, Ãj,l
k , b̃j,lk and S̃j,l

k are used203

in the k-th parallel splitting pathway in the right branch.204

(v) For the left branch, at grid level j, the l-th sequential step and the k-th parallel splitting205

pathway, we take all cj−1 outputs from the previous sequential step as inputs and use206

components from Aj,l
k to convolve with them. We decompose Aj,l

k into cj−1 kernels:207

Aj,l
k (x, t) =

cj−1∑
s=1

Aj,l
k,s(x, t) with cj,l =

{
cj−1 if l = 1,

cj if l > 1.
(23)

Similarly, for the right branch, the previous sub-step has cj+1 outputs. We decompose208

Ãj,l
k into cj+1 kernels:209

Ãj,l
k (x, t) =

c̃j∑
s=1

Ãj,l
k,s(x, t) with c̃j,l =

{
cj+1 if l = 1,

cj if l > 1.
(24)

(vi) Similar to Step (v), we take all c1 outputs from the V-cycle as inputs and use components210

from A∗ to convolve with them. We decompose A∗ as211

A∗(x, t) =

c1∑
s=1

A∗
s(x, t), (25)

where A∗
s is used to convolve with the s-th output from level 1 of the right branch of the212

V-cycle.213

After the decomposition, the control variables and operations are decomposed as:214

A(x, t) =
J∑

j=1

Lj∑
l=1

cj∑
k=1

cj,l∑
s=1

Aj,l
k,s(x, t), Ã(x, t) =

J∑
j=1

Lj∑
l=1

cj∑
k=1

c̃j,l∑
s=1

Ãj,l
k,s(x, t) +

c1∑
s=1

A∗
s(x, t), (26)

b(t) =

J∑
j=1

Lj∑
l=1

cj∑
k=1

bj,lk (t), b̃(t) =
J∑

j=1

Lj∑
l=1

cj∑
k=1

b̃j,lk (t) + b∗(t), (27)

S(u) =
J∑

j=1

Lj∑
l=1

cj∑
k=1

Sj
k(u), S̃(u) =

J−1∑
j=1

Lj∑
l=1

cj∑
k=1

S̃j
k(u) + S∗(u). (28)
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Figure 3: An illustration of Algorithm 2.

The original control problem is transferred minimize the loss (4 for u being the solution of the215

following equation:216 {
∂u
∂t = A ∗ u+ Ã ∗ u+ b+ b̃+ S(u) + S̃(u), (x, t) ∈ Ω× [0, T ],

u(x, 0) = H(f), x ∈ Ω.
(29)

From (26)-(27), we see that the control variables θ1 = (W (x, t), b(t)) is decomposed into a large217

sum and the items in these sums are the new control variables. The number of the control218

variables are large, but each of them is very small in number of unknowns.219

To solve (29), we use the hybrid splitting method introduced in Section 2.2. Divide the time220

interval [0, T ] into N subintervals with time step ∆t = T/N . Denote the computed solution221

at time tn = n∆t by Un. The resulting algorithm that updates Un to Un+1 is summarized222

in Algorithm 2. For simplicity, variable dependencies on x are omitted. In Algorithm 2, we223

use uj,l, vj,l to denote intermediate variables in the left and right branches, respectively. The224

superscript j denotes the grid level at which the computation is conducted, and l denotes the225

index of the sequential sub-step at grid level j. The architecture of Algorithm 2 is illustrated226

in Figure 3. In Figure 3, a relaxation step is used for each grid level to pass information from227

the left branch to the right branch, as indicated by the green arrows. The explanations of all228

indices for operators and variables of the left branch are summarized in Table 1.229

Denote θ2 = {θn2 }Nn=1 with230

θn2 =
(
{Aj,l

k,s(x, t
n)}j,l,k,s, {Ãj,l

k,s(x, t
n)}j,l,k,s, {A∗

s(x, t
n)}s,

{bj,lk (tn)}j,l,k, {b̃j,lk (tn)}j,l,k, b̃∗(tn)
)
.

We also denote N2 as the mapping:

N2 : f → H(f) → U1 → · · · → UN ,

9



Algorithm 2: A hybrid splitting method to solve the control problem (29)

Data: The solution Un at time tn.
Result: The computed solution Un+1 at time step tn+1.
Set c0 = 1, L0 = 1, v1,0 = v1,01 = Un.
for j = 1, · · · , J do

If j > 1, set vj,0 = D(vj−1,Lj−1) and vj,0k = D(v
j−1,Lj−1

k ) for k = 1, ..., cj−1.
for l = 1, ..., Lj do

for k = 1, ..., cj do

Compute vj,lk on Vj by solving

vj,lk − vj,l−1

2j−1cj∆t
−

cj,l∑
s=1

Aj,l
k,s(t

n) ∗ vj,l−1
s − bj,lk (tn)− Sj,l

k (vj,lk ) ∋ 0, (30)

where cj,l is defined in (23).
end for
Compute vj+1,l as

vj,l =
1

cj

cj∑
k=1

vj,lk .

end for
end for
Set uJ,LJ = vJ,LJ and uJ,LJ

k = vJ,LJ

k for k = 1, 2, · · · cJ .
for j = J − 1, · · · , 1 do
Set uj,0 = U(uj+1,Lj+1) and for k = 1, ..., cj+1, compute

uj,0k =
1

2
u
j+1,Lj+1

k +
1

2
U(uj+1,Lj+1)

for l = 1, ..., Lj do
for k = 1, 2, · · · cj do

Compute uj,lk on Vj by solving

uj,lk − uj,l−1

2j−1c̃j∆t
−

c̃j,l∑
s=1

Ãj
k,s(t

n) ∗ uj,l−1
s − b̃jk(t

n)− S̃j
k(u

j
k) ∋ 0, (31)

where c̃j,l is defined in (24).
end for
Compute uj,l as

uj,l =
1

cj

cj∑
k=1

uj,lk .

end for
end for
Compute Un+1 by solving

Un+1 − u1,L1

∆t
−

c1∑
s=1

A∗
s(t

n) ∗ u1,L1
s − b∗(tn)− S∗(Un+1) ∋ 0. (32)

10



For Aj
k,s, b

j
k, S

j
k,

Aj,l
k,s, b

j,l
k , Sj,l

k

j l k s

Index meaning:
index of

grid levels
sequential
splittings

parallel
splittings

output from
the previous substep

For ujk, v
j
k,

uj,lk , vj,lk

j l k -

Index meaning:
index of

grid levels
sequential
splittings

parallel
splittings

-

Table 1: Explanation of indices for kernels and variables in the left branch of 2.

which maps f to UN by applying Algorithm 2 N times. Parameters in θ2 are learned by solving231

min
θ2

I∑
i=1

L(N2(fi, θ2), gi). (33)

In (33), θ2 is a space decomposition representation for a discretization of θ1. The operation232

procedure N2 is a numerical scheme solving (1). We can see that problem (33) is a discretization233

of the optimization problem (4) with some proper decomposition of the control variables.234

4 Algorithm details235

In Algorithm 2, one needs to solve (30), (31) and (32), which includes components of S, S̃.236

We discuss the choices of S, S̃ and present how to solve (30), (31) and (32) in the following237

subsections.238

4.1 On the choices of S, S̃239

According to (16), S + S̃ consists of two terms: (i) The first term is − ln u
1−u , which will be240

used in S∗. This term enforces u to be between 0 and 1 and provides the prediction results. (ii)241

The second term −∂IΣ(u) will be used at every sub-step except for S∗. We will show that this242

part corresponds to the ReLU activation function in a network. Specifically, we set243

Sj,l
k (u) = S̃j,l

k (u) = ∂IΣ(u), S∗(u) = − ln
u

1− u
. (34)

4.2 On the solution to (30), (31) and (32)244

Observe that (30) and (31) are in the form of245

u− u∗

γ∆t
−

c∑
s=1

Âs ∗ u∗s − b̂+ ∂IΣ(u) ∋ 0, (35)

where γ is some constant, c is some integer, u∗ = 1
c

∑c
s=1 u

∗
s for some functions u∗s’s, Âs’s are246

some convolution kernels, b̂ is some bias function. The solution to (35) can be computed using247

the following two-sub-step splitting method:248 {
ū = u∗ + γ∆t

(∑c
s=1 Âs ∗ u∗s + b̂

)
,

u−ū
γ∆t + ∂IΣ(u) ∋ 0.

(36)

In (36), there is no difficulty in solving for ū in the first sub-step as it is an explicit step.249

For u in the second sub-step, it is, in fact, a projection. Its closed-form solution is given as250

u = max{ū, 0} = ReLU(ū), (37)

11



where ReLU(u) = max{ū, 0} is the rectified linear unit.251

Problem (32) can be written as252

u− u∗

γ∆t
=

c∑
s=1

Âs ∗ u∗s + b̂− ln
u

1− u
. (38)

Following the steps for solving (30) and (31) above, we solve (38) as253 {
ū = u∗ + γ∆t

(∑c
s=1 Âs ∗ u∗s + b̂

)
,

u−ū
∆t = − ln u

1−u .
(39)

The first sub-step is an explicit step. We solve the second sub-step approximately by a fixed254

point iteration.255

Initialize p0 = ū. Given pk, we update pk+1 by solving256

pk − ū

∆t
= − ln

pk+1

1− pk+1
, (40)

for which we have the closed-form solution257

pk+1 = Sig

(
−pk − ū

∆t

)
, (41)

where Sig(x) = 1
1+e−x is the sigmoid function. By repeating (41) so that pk+1 converges to some258

function p∗, we set u = p∗. In particular, since p0 = ū, the updating formula (41) always gives259

p1 = 0.5. If we only consider a two-step fixed point iteration, we get260

u = Sig

(
−0.5− ū

∆t

)
= Sig

(
ū− 0.5

∆t

)
. (42)

4.3 Initial condition261

Problem (3) requires an initial condition. A simple choice is to set it as some convolution of f :262

u(x, 0) = H(f) = Sig

(
3∑

k=1

A0
k ∗ fk

)
(43)

for f = (f1, f2, f3). f1, f2, and f3 denote the RGB channels of an image respectively.263

4.4 Discretization264

To discretize a continuous function u at grid level j, we compute the scaled inner product

ajα =
1

(2j−1h)2

∫
Ω
uϕj

αdxdy

for each basis function ϕj
α (defined in (9)) of the space Vj . Note that each ϕj

α is an indicator265

function of a (2j−1h× 2j−1h) patch indexed by α. The inner product ajα gives the pixel value266

of u at the α-th patch. We take the original image resolution as grid level 1 (the finest grid).267

Other grid levels and the basis functions can be defined according to the discussion in Section268

2.3.269

5 Algorithm 2 recovers UNet270

In this section, we show that by properly setting the number of grid levels J , parallel splittings271

cj ’s, and sequatial splittings Lj ’s, Algorithm 2 exactly recovers UNet.272
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5.1 Algorithm 2 building blocks recover UNet layers273

We first show that a building block of Algorithm 2 is equivalent to a layer of UNet. Each layer of274

UNet is a convolution layer activated by ReLU. Given outputs from the previous layer {v∗s}cs=1,275

a UNet layer outputs v by the following operations:276 {
v̄ =

∑c
s=1Ws ∗ v∗s + b,

v = ReLU(v̄),
(44)

where Ws’s are convolutional kernels and b is the bias. In Algorithm 2, the building block is277

(35) and (38), which is solved by (36) and (39). In fact, (44) (or problem (39)) and (36) have278

the same form.279

Specifically, in the first equation of (36), substitute the expression of u∗, and we have280

ū =
1

c

c∑
s=1

u∗s + γ∆t

(
c∑

s=1

Âs ∗ u∗s + b̂

)
=

c∑
s=1

(
1

c
1+ γ∆tÂs

)
∗ u∗s + γ∆t̂b, (45)

where 1 denotes the identity kernel satisfying 1 ∗ g = g for any function g. In (44), set281

Ws =
1

c
1+ γ∆tÂs, b = b̂. (46)

We have v̄ = ū, and v = u. Essentially, Algorithm 2 and UNet have the same building block.282

5.2 Algorithm 2 structure recovers UNet architecture283

UNet architecture consists of four components: encoder, decoder, bottleneck and skip-connections,284

each of which has a corresponding component in the structure of Algorithm 2:285

(i) Encoder: Encoder in UNet corresponds to the left branch of the V-cycle in Algorithm286

2. The number of data resolution levels corresponds to the number of grid levels J . At287

each data resolution, the number of layers and the width of each layer correspond to the288

number of sequential splittings Lj and parallel splittings cj at the corresponding grid level.289

(ii) Decoder: Decoder in UNet corresponds to the right branch of the V-cycle in Algorithm290

2. The number of data resolution levels corresponds to the number of grid levels J . At291

each data resolution, the number of layers and the width of each layer correspond to the292

number of sequential splittings Lj and parallel splittings cj at the corresponding grid level.293

(iii) Bottleneck: Bottleneck in UNet corresponds to the computations at the coarsest grid294

level (grid level J) in Algorithm 2. The number of layers and layer width in bottleneck295

correspond to the number of sequential splittings LJ and parallel splitting cJ at grid level296

J .297

(iv) Skip-layer connection: Skip-layer connections in UNet correspond to the relaxation298

steps in Algorithm 2.299

UNet has 5 data resolution levels. For each resolution level, there are two layers in the300

encoder, decoder and bottleneck. From the finest resolution to the coarsest resolution, the301

layers has width 64, 128, 256, 512, 1024. Thus, set J = 5, L1 = L2 = L3 = L4 = L5 =302

2, [c1, c2, c3, c4, c5] = [64, 128, 256, 512, 1024], downsampling operator D as the max-pooling303

operator, and upsampling operator U as the transpose convolution, Algorithm 2 exactly recovers304

UNet. As a consequence, one can explain UNet as a one-step operator-splitting algorithm solving305

a control problem (1).306
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6 Conclusion307

In this paper, we consider the control problem (1) and propose an operator-splitting method308

to solve it. The ingredients of our algorithm include the multigrid method and the hybrid309

operator splitting method. We show that the resulting algorithm has the same building block310

and architecture as UNet. Our result demonstrates that UNet is a one-step operator-splitting311

algorithm that solves some control problems; thus, it gives a mathematical explanation of the312

UNet architecture from an algorithmic perspective.313
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