
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

A NEW INITIALIZATION METHOD BASED ON NORMED

STATISTICAL SPACES IN DEEP NETWORKS

Hongfei Yang

Department of Mathematics, Yeung Kin Man Academic Building

City University of Hong Kong
Tat Chee Avenue, Kowloon Tong, Hong Kong

Xiaofeng Ding

Department of Mathematics, School of Science, Shanghai University

Shanghai 200444, P. R. China

Raymond Chan

Department of Mathematics, Yeung Kin Man Academic Building

City University of Hong Kong
Tat Chee Avenue, Kowloon Tong, Hong Kong

Hui Hu

HISILICON Technologies Co., Ltd., Huawei Base, Bantian
Longgang District, Shenzhen 518129, P. R. China.

Yaxin Peng

Department of Mathematics, School of Science, Shanghai University

Shanghai 200444, P. R. China

Tieyong Zeng∗

Department of Mathematics, The Chinese University of Hong Kong

Shatin, Hong Kong

Abstract. Training deep neural networks can be difficult. For classical neu-

ral networks, the initialization method by Xavier and Yoshua which is later
generalized by He, Zhang, Ren and Sun can facilitate stable training. How-

ever, with the recent development of new layer types, we find that the above

mentioned initialization methods may fail to lead to successful training. Based
on these two methods, we will propose a new initialization by studying the pa-
rameter space of a network. Our principal is to put constrains on the growth

of parameters in different layers in a consistent way. In order to do so, we
introduce a norm to the parameter space and use this norm to measure the

growth of parameters. Our new method is suitable for a wide range of layer
types, especially for layers with parameter-sharing weight matrices.

2010 Mathematics Subject Classification. Primary: 68T01, 68T05; Secondary: 68Q32.
Key words and phrases. Neural networks, parameters sharing, parameters initialization, deep

learning, model training.
Raymond Chan’s research is supported by HKRGC Grants No. CUHK 14306316 and CUHK

14301718, CityU Grant 9380101, CRF Grant C1007-15G, AoE/M-05/12. Tieyong Zeng’s research

is supported by National Science Foundation of China No. 11671002, CUHK start-up and CUHK
DAG 4053342, RGC 14300219, and NSFC/RGC N CUHK 415/19.

∗Corresponding author: Tieyong Zeng (zeng@math.cuhk.edu.hk).

1

http://dx.doi.org/10.3934/xx.xx.xx.xx

2 H. YANG, X. DING, R. CHAN, H. HU, Y. PENG AND T. ZENG

1. Introduction. In recent years, deep learning methods have achieved remark-
able progresses in image processing tasks including image restoration [24], image
segmentation [14] and image super-resolution [4]. However, deep neural networks
can be very difficult to train. If learnable parameters are not properly initialized,
deep neural networks usually converge slowly and can get stuck to local minima
easily [5]. In [1] Bradley found that if initialized randomly, the variances of gradi-
ents become smaller when they are propagated in a deep network. In the seminal
work of Xavier and Yoshua [5], the authors proposed a novel initialization method
based on a statistical analysis of forward and backward propagations. The Xavier
initialization has the following advantages: (i) distributions of activations among
different layers are approximately the same; (ii) compared to an arbitrary initial-
ization, average ratio of the singular values of the Jacobian matrix associated with
back-propagated gradients is closer to 1; and (iii) variances of back-propagated gra-
dients are approximately the same across all layers. Later in [7] He, Zhang, Ren and
Sun extended the Xavier initialization to convolution layers and the ReLU activa-
tion function. The Xavier and the He initializations are now widely used in training
of deep neural networks and they are integrated in machine learning packages like
TensorFlow, Keras and PyTorch. There are other popular initialization methods,
see [13, 18, 21, 22].

Because the Xavier and the He initializations differ by a constant, we regard them
as one method and call it the Xavier/He initialization. In their original papers, the
Xavier/He initialization is only deduced for standard fully connected and convolu-
tion layers. By standard we mean that each entry in the weight matrix of a fully
connected layer or in the kernel tensor of a convolution layer represents an individ-
ual learnable parameter. However, from experiments we find that the Xavier/He
initialization may fail to lead to stable training for networks with structured layers,
where weight sharing and sparsity cause uneven learning speed of parameters. This
observation motivates us to find a new initialization.

In this paper we will propose a new initialization based on the Xavier/He ini-
tialization. We will introduce a norm on parameter space, and use this norm to
give constrains on updates of parameters. We will give detailed calculations for
various layer types for our new initialization. We will also give comparisons to the
Xavier/He initialization. Our current work is a continuation of our work [3] on ini-
tialization. The significance of our new method will be explained in subsection 2.3,
after we introduce necessary notations and preliminaries.

This paper is organized as the following. In the next section, we briefly give
notations and preliminaries used in this paper, and we also introduce the Xavier/He
initialization and the CirCNN implementation. In the third section we propose
our new method and we give detailed calculations for some special cases. Then
we provide some numerical experiments to demonstrate the effectiveness of our
initialization.

2. Notations and preliminaries. In this section we give the notations and pre-
liminaries used in this paper.

2.1. Single layer structure. Mathematically, convolution and fully connected
layers can be written as

y = act(W ∗ x+ b), (1)

where x is the input vector, b is the bias vector, act is the activation function, and
y is the output vector. For a fully connected layer, W is a matrix and W ∗ x is

A NEW INIT. FOR DEEP NETWORKS 3

the matrix-vector multiplication, while for a convolution layer, W is a collection of
kernels and W ∗x is the convolution (or cross-correlation) operation (for details see
[6]). We note that for both cases, W ∗ x is a linear operation on x. Therefore, after
some reshaping, both layers can be rewritten as

y = act(Wx+ b), (2)

where now W is the matrix representation of the corresponding linear operator, and
Wx is the matrix vector multiplication. For a fully connected layer W is a dense
matrix whose entries are learnable parameters. On the other hand, for a convolution
layer W is usually a sparse matrix whose non-zero entries are built from the kernels,
and the learnable parameters are the elements in the kernels.

We note that the single layer structure in (2) can represent a wide range of layer
types used in deep neural networks. The difference in different layer types is how
one build the matrix W from learnable parameters. Therefore in this paper we stick
to (2) as the standard single layer structure, with additional information on how to
build W included when necessary.

In the training process, a network will go through iterations of forward and
backward propagations. Suppose the loss function is denoted by L. In a forward
propagation, one calculates y based on a given x. In the backward propagation, one
calculates ∂L/∂W , ∂L/∂x and ∂L/∂b based on a given ∂L/∂y. Suppose that v is
a learnable parameter for a layer of the form (2). After one backward propagation
with learning rate r, v will be updated by

v − r ∂L
∂v
7→ v,

where ∂L/∂v will be calculated by using ∂L/∂W , ∂L/∂x and ∂L/∂b.
For any variable z in a layer, we use z(0) to denote its value after initialization,

and we use z(1) to denote its value after the first forward and backward propagation.
We introduce a definition here.

Definition 2.1. Let z be a scalar variable in (2), then the increment of z, denoted
as ∆z, is defined to be

∆z = z(1) − z(0)

when we set the learning rate r = 1. If z is a matrix or a vector, ∆ operates on z
componentwisely.

For a learnable variable v we have ∆v = −∂L/∂v. For an intermediate variable
Wnm which equals the learnable variable v, if we assume that v only appears in W
in this layer, we have

∆Wnm = W (1)
nm −W (0)

nm = v(1) − v(0) = −∂L
∂v

= −
∑

(n′,m′)

∂L

∂Wn′m′
, (3)

where the last summation is over all W entries that share the same parameter v.
We use V to denote variance of random variables. For a layer of form (2), the

Xavier/He initialization conditions are specified by the followings.

Xavier/He Initialization. Suppose the following two conditions hold:

• Entries in x are identically distributed with distribution X with mean 0;
• Entries in ∂L/∂y are identically distributed with distribution ∂L/∂Y with
mean 0.

4 H. YANG, X. DING, R. CHAN, H. HU, Y. PENG AND T. ZENG

The learnable parameters in W should be independent and identically distributed
with mean 0, and the variance should be determined by the following conditions:

1. entries in y should be identically distributed with distribution Y with mean 0;
2. entries in ∂L/∂x should be identically distributed with distribution ∂L/∂X

with mean 0;
3. V(Y) = V(X), and V(∂L/∂Y) = V(∂L/∂X).

If one uses ReLU as the activation function, for intermediate layers the mean of x
will be positive. This can be handled by considering symmetry in W and introduce
an extra scalar “gain” in the initialization as explained in [7].

2.2. CirCNN networks. CirCNN implementation of neural networks in intro-
duced in [2] is a promising approach to reduce number of parameters while pre-
serving networks’ topologies. This is done by replacing matrices and convolution
kernels in a neural network by block circulant matrices and block circulant convo-
lution kernels. We say a matrix is a circulant matrix if it has the form

a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2

...
...

...
...

...
a1 a2 · · · an−1 a0

 . (4)

Note that unlike an unstructured matrix, a circulant matrix is determined if one
knows the first row (or first column) of the matrix. For a fully connected layer of
form (2), we say W is a block-circulant matrix if W consists of block matrices, where
each block is a circulant matrix. For a convolution layer with kernel W = (Wijk`),
where the k and ` indices represent the input and output channels and the i and
j indices represent 2D kernels, we say W is block-circulant if for each fixed i, j the
resulting matrix (Wijk`)k` is block-circulant. As suggested in [2], for a single layer
the block size should be a constant, while one can choose different block sizes for
different layers.

Using CirCNN implementation can significantly reduce number of learnable pa-
rameters. If we use B as the block size, then for a fully connected layer or a
convolution layer we can reduce learnable parameters in W by B times. We shall
call B the compression ratio. However, from experiments we observe that when
using large compression ratio, the network tends to be difficult to train even if we
employ the Xavier/He initialization.

Assume that we have a fully connected layer y = act(Wx + b) with input and
output dimensions equal to n, where W is a circulant matrix of form (4). The
Xavier/He initialization leads to the following: entries in the first row of W , which
are the learnable parameters that build up W , should have mean 0 and variance
gain/n. Here gain is a scalar determined by activation function, e.g. gain =

√
2 for

ReLU activation and gain =
√

2/(1 + `2) for Leaky ReLU activation with negative
slope `. We have

∆W`i = ∆a[i−`] = −
n−1∑
j=0

∂L

∂Wj,[i−`+j]
, (5)

where [i] means i mod n. This shows that in general, on the scale level, ∆W`i does
not equal to ∂L/∂W`i. This is in contrast to a standard fully connected layer, where
∆W`i = −∂L/∂W`i. Therefore we intend to introduce a metric on the parameter

A NEW INIT. FOR DEEP NETWORKS 5

space, and to introduce a new initialization method, so that we can preserve the
desired relationship among the scales of ∆W and ∂L/∂W .

2.3. Comparison with our previous approach. In [3] we have proposed an
initialization which gives fast and stable training for networks with CirCNN imple-
mented fully connected layers. In this subsection we explain the significance of the
initialization in this paper compared to our previous approach.

Firstly, the initialization in [3] is only for fully connected layers, and for convo-
lution layers we have to rely on the Xavier/He initialization. This is because for
a convolution layer, the matrix W in (2) is a sparse matrix. The zero elements
in W are not learnable parameters and in [3] we do not know how to deal with
non-learnable entries. On the other hand, the initialization that will be introduced
in this paper can handle both fully connected and convolution layers. From experi-
ments we observe that for convolution layers, the Xavier/He initialization performs
well only for small kernels. Our new method in this paper performs well on both
small and large kernels. See Table 2 and Figure 1(b) for a numerical demonstration.
Secondly, the initialization condition (equation (8)) in [3] is based on an analysis for
individual entries in the weight matrix W . This makes it difficult to generalize the
initialization method in [3]. On the other hand, our analysis in this paper is based
on the whole matrix W , and we will introduce a norm to put constraints on true
increments of W based on partial derivatives of the loss with respect to W . This
not only gives more geometric flavour to our condition (equality in the length of
two vectorized matrices as in (20)), but it also gives a unified framework to deduce
initializations for various layer types.

3. A new initialization method. Let us assume that each layer in a neural
network can be written in the following form

w̄ = (c · T)v,

Wnm = w̄(nm),

y = act(Wx+ b),

(6)

where x ∈ RM , y ∈ RN , W ∈ RN×M and b ∈ RN . We vectorize W as a column
vector w̄ with the indexing correspondence (nm) = (n − 1)M + m. The vector
v ∈ RΛ contains learnable parameters. The matrix T ∈ RNM×Λ builds w̄ from v,
and c ∈ R is a positive scalar that we determine later. We stress that in (6) the
learnable parameters are contained in v and b, and in a backpropagation v and b will
be updated, but not W . As in previous analysis of initializations in [5, 7], we regard
elements in each terms in (6) as random variables. For Xavier/He initialization or
the methods in [13, 18, 22] we always have c = 1.

For initialization of layer (6), we need to determine the parameter c and a vari-
ance, such that entries in v are independent and identically distributed with mean
0 and the variance. In practice one can use Gaussian or uniform distribution. We
always use uniform distribution in our numerical demonstrations.

Let us use L to denote a loss function. Then our initialization method is defined
below.

Our Initialization. Suppose the following conditions hold:

• Entries in x are identically distributed with distribution X with mean 0;
• elements in each row or in each column of W are independent;

6 H. YANG, X. DING, R. CHAN, H. HU, Y. PENG AND T. ZENG

• and entries in ∂L/∂y are identically distributed with distribution ∂L/∂Y with
mean 0.

Entries in v are initialized as independent and identically distributed random vari-
ables with mean 0. The variance of v and the parameter c should be determined by
the following :

1. Entries in y are identically distributed with distribution Y with mean 0;
2. entries in ∂L/∂x are identically distributed with distribution ∂L/∂X with

mean 0;
3. V(Y) = V(X) and V(∂L/∂Y) = V(∂L/∂X);
4. and E(||∆w̄||22) = E(||∂L/∂w̄||22).

Note that conditions 1 to 3 are the adaptations of the Xavier/He initialization
conditions to the layer type (6), while the condition 4 is a probabilistic description
of a norm equality, which is explained at the end of this section. The assumption on
rows and columns of W is a mild assumption that is satisfied by many layers, like
fully connected layers, convolution layers, their CirCNN implementations, depthwise
convolutions [9], interleaved group convolutions [25] and dilated convolutions [23].
We note that like the Xavier/He initialization, when one uses the ReLU activation
function, entries in y are non-negative, and thus Y cannot have mean 0. We use
the same technique as in [7] to introduce a constant scaler “gain” to tackle this
difficulty.

In order to give detailed calculations of initializations, in the rest of this paper we
assume that the matrix T in (6) has the following conditions: entries in T are either
0 or 1; each row of T has at most one 1; and the numbers of 1’s in different columns
of T are all the same. We also assume that the vector v in (6) only contains learnable
parameters for this layer, which simplifies the calculations. We note that weight
sharing across layers can also be handled by our new initialization, see Example 4.2
in [3] for a demonstration for the fully connected case.

We denote the number of non-zero entries in each column of T as K. We calculate
as follows. For each n,m we have

(
∆w̄(nm)

)2
=

(
c
∑
λ

T(nm),λ∆vλ

)2

(7)

= c2
∑
λ

T 2
(nm),λ (∆vλ)

2
+ c2

∑
λ1 6=λ2

T(nm),λ1
T(nm),λ2

∆vλ1
∆vλ2

= c2
∑
λ

T 2
(nm),λ (∆vλ)

2
,

where the last equality comes from the fact that in each row of T there is at most
one non-zero element. Therefore taking expectation on the squared 2-norm gives

E(||∆w̄||22) = E

c2 ∑
λ,n,m

T 2
(nm),λ (∆vλ)

2

 (8)

= c2
∑
λ,n,m

T 2
(nm),λE

(
(∆vλ)

2
)

= c2
∑
λ,n,m

T 2
(nm),λV(∆vλ).

A NEW INIT. FOR DEEP NETWORKS 7

We have

∆vλ = −∂L/∂vλ = −c
∑

∂L/∂w̄ij , (9)

where the last summation is over all entries in w̄ that correspond to vλ, and there
are K terms in the summation. Here we make an assumption that the random
variables {∂L/∂w̄ij}, where w̄ij corresponds to one learnable parameter vλ, are
uncorrelated and identically distributed with variance V(∂L/∂W). Then we have

V(∆vλ) = c2V(
∑

∂L/∂w̄ij) = c2K · V(∂L/∂W). (10)

Combining (8) and (10) we have

E(||∆w̄||22) = c4K|T |V(∂L/∂W), (11)

where |T | denotes the number of non-zero entries in T . On the other hand it is easy
to see that

E(||∂L/∂w̄||22) = NMV(∂L/∂W). (12)

By combining (11) and (12) we conclude that the scalar value c should be

c = 4
√
NM/(K|T |). (13)

After c is calculated, the variance V(v) is determined by the standard Xavier/He
initialization as described in [5, 7]. Let LN , LM denote the number of non-zero
entries in rows and columns of W respectively. Then we have

V(v) =
gain · 2

c2 · (LN + LM)
, (14)

where gain is a scalar determined by the activation function.
To sum it up, our new initialization method consists of 3 steps. The first step is

to write a layer in the form (6). The second step is to calculate c and V(v) by (13)
and (14). The last step is to initialize entries in v by independent and identically
distributed variables with mean 0 and variance V(v), and initialize the bias vector
b as the zero vector.

To illustrate our new initialization method, in the rest of this section we consider
two cases: CirCNN implementations of fully connected layers with block-size B,
and CirCNN implementations of 2-D convolution layers with block-size B. Note
that when B = 1, these two cases correspond to standard fully connected layers
and standard 2-D convolution layers.

For CirCNN implementations of fully connected layers with kernel size B, v
is a vector of size NM/B. Therefore K = B and |T | = NM , and so c =
4
√
NM/(K|T |) = 1/ 4

√
B. The matrix W is a dense matrix with LN = N and

LM = M , so

V(v) =
gain · 2

c2 · (LN + LM)
(15)

=
gain · 2

√
B

M +N
.

This gives the same initialization as in [3] for fully connected layers. For standard
fully connected layers (i.e. B = 1), our initialization gives same initialization with
the Xavier/He initialization.

For CirCNN 2-D convolution layers with block-size B, suppose the 2-D kernel
size is r (for a 3×3 kernel, r = 9). Suppose the input to this layer is a 3-D tensor of
size M ′×H×W , M ′ is the input channel number, and the output channel size is N ′.

8 H. YANG, X. DING, R. CHAN, H. HU, Y. PENG AND T. ZENG

Then v is a vector of size N ′M ′r/B. We have N = N ′HW , M = M ′HW , |T | =

N ′HWrM ′, K = HWB, LN = N ′r and LM = M ′r. Therefore c = 4
√

1/(rB), and

V(v) =
gain · 2

√
B√

r(M ′ +N ′)
. (16)

For standard 2-D convolution layers (i.e. B = 1), the Xavier/He initialization
gives c = 1 and

V(v) =
gain · 2

r(M ′ +N ′)
, (17)

which is different from our initialization.
The new condition 4 in our initialization is based on a normed statistical space

that we briefly describe here. Let SN denote the collection ofN -dimensional random
variables. For x, y ∈ SN , we say x ∼ y if there exits a constant vector γ such that
P (x − y = γ) = 1. Then ∼ defines an equivalent relationship, and for x ∈ SN we
denote its equivalent class by [x]. The collection of all equivalent classes is denoted
by HN . For any [x], [y] ∈ HN and α ∈ R, it can be shown that the two definitions
[x]+ [y] := [x+y] and α[x] := [αx] are well defined, and they turn HN into a vector
space. The crucial observation is that we can define an inner product on HN , which
is given by

〈[x], [y]〉 =

N∑
i=1

E ((xi − E(xi))(yi − E(yi))) . (18)

Note that when N = 1, the above inner product is just the covariance of the random
variables x and y. This construction turns our vector space HN into a normed space
(HN , ‖·‖), where the norm is defined by

‖[x]‖ =
√
〈[x], [x]〉. (19)

Therefore our new condition 4 in our initialization is the same as

‖∆w̄‖ = ‖∂L/∂w̄‖. (20)

This gives a new explanation of the condition 4: the true increment ∆w̄ has the
same length as the length of the partial derivative vector ∂L/∂w̄ under the norm
in (19). We note that the above is a standard construction, where one quotients an
inner product space by a closed subspace [15, 16].

3.1. Numerical experiments. Here we present experiments to demonstrate the
effectiveness of our method. For each comparison all hyper-parameters are set
to the same except learning rates. For the experiment with network structure in
Table 1, the learning rate for our initialization is set to

√
3 times the learning rate

for the Xavier/He initialization (note that for convolution layers, c = 4
√

9 =
√

3).
For other experiments, we will fix a learning rate and run training 5 times for each
initialization. The learning rates are tuned by a factor of 2 as the following: we select
the learning rate such that in all 5 runs the losses exhibit the fastest decreasing, with
no loss stalls or explodes. We always use SGD with no momentum as optimizers.
We will report the mean and standard deviation (std) of the five runs. For losses
in Figures 1(a)–(d) we first apply a 0.99 smoothing in TensorBoard, and we report
the mean and std of last value of the smoothed losses.

We test our initialization on various networks as summarized in Tables 1–4, with
the corresponding plots of losses in Figures 1(a)–(d). Here we use the MNIST data
set [12] for training. We note that for the simple network summarized in Table 1,

A NEW INIT. FOR DEEP NETWORKS 9

where the kernels of convolutions are all small and there is no CirCNN implemen-
tation, our initialization behaves almost identical to the Xavier/He initialization.
However, as illustrated by Figure 1(b), when the network has a convolution layer
with very large kernels, our initialization outperforms the Xavier/He initialization.
Plots in Figures 1(c) and (d) show the effectiveness of our initialization for CirCNN
implementations.

Layer Output channel Number of parameters
Conv2d+MaxPool 32 3× 3× 1× 32
Conv2d+MaxPool 64 3× 3× 32× 64

Fc 64 3136× 64
Fc 10 64× 10
Table 1. Network structure of Figure 1(a).

Layer Output channel Number of parameters
Conv2d+Maxpool 32 3× 3× 1× 32
Conv2d+Maxpool 64 3× 3× 32× 64
Reshape to 56× 56

Conv2d 1 55× 55× 1× 1
Fc 10 3136× 10

Table 2. Network structure of Figure 1(b). For the last convolu-
tion layer with kernel size 55× 55 we use periodic padding on the
input images to make sure the conditions on T in (6) are satisfied.

Layer Out channel Number of parameters Compression ratio
Conv2d+Maxpool 32 3× 3× 1× 32 1
Conv2d+Maxpool 64 3× 3× 32× 64 1

Fc 1568 3136× 1568 1568
Fc 10 1568× 10 1

Table 3. Network structure of Figure 1(c). For a compression
ratio B > 1, we use circulant implementation with block size B.
The number of parameters for a CirCNN implementation should
be divided by B.

Lastly we test our initialization on a CirCNN implementation of the VGG16
network [19] with the Cifar10 data set [11]. For the second fully connected layer in
the network which has 4096 input and output channels, we use a circulant matrix
with block size 4096. The original VGG16 network (with no CirCNN) can achieve
92.24% top-1 accuracy. On 5 runs, the network with our initialization consistently
outperforms the network with the Xavier/He initialization on top-1 accuracy. The
average top-1 accuracy for our method is 91.38% with std 0.199, while the aver-
age top-1 accuracy for the Xavier/He initialization is 90.98% with std 0.188 (std
calculated on percentile scale).

10 H. YANG, X. DING, R. CHAN, H. HU, Y. PENG AND T. ZENG

Layer Out channel Number of parameters Compression ratio
Conv2d+Maxpool 32 3× 3× 1× 32 1
Conv2d+Maxpool 64 3× 3× 32× 64 1

Conv2d 256 3× 3× 64× 256 1
Conv2d 256 3× 3× 256× 256 256
Conv2d 256 3× 3× 256× 256 256

Fc 64 12544× 64 1
Fc 10 64× 10 1

Table 4. Network structure of Figure 1(d). For a compression
ratio B > 1, we use circulant implementation with block size B.
The number of parameters for a CirCNN implementation should
be divided by B.

0 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

0.5

1

1.5

2

2.5

Lo
ss

Our initialization
Xavier/He initialization

0 100 200 300 400 500 600 700 800 900 1000

Iteration number

0.05

0.35

0.65

0.95

1.25

1.55

1.85

2.15

Lo
ss

Our initialization
Xavier/He initialization

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

Lo
ss

Our initialization
Xavier/He initialization

0 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

Lo
ss

Our initialization
Xavier/He initialization

(c) (d)

Figure 1. (a) Plot of losses of network summarized in Table 1.
(b) Plot of losses of network summarized in Table 2. (c) Plot of
losses of network summarized in Table 3. (d) Plot of losses of
network summarized in Table 4. Mean and std for the last of the
smoothed loss values: Ours (a) 0.070±0.005, (b) 0.111±0.006, (c)
0.088± 0.003 , (d) 0.083± 0.004; Xavier/He (a) 0.069± 0.001, (b)
0.206± 0.012, (c) 0.221± 0.016, (d) 0.164± 0.012. We also tested
the evaluation accuracies on the test set with results: Ours versus
Xavier/He (a) 98.06%, 98.13%, (b) 95.66%, 93.94%, (c) 97.17%,
95.07%, (d) 98.01%, 96.22%.

A NEW INIT. FOR DEEP NETWORKS 11

4. Conclusion and future works. Based on the Xavier/He initialization, we pro-
pose a novel initialization. We introduce a norm on the parameter space, and we
use this norm in our initialization to constrain growth of parameters. We focus on
the true increment matrix ∆W and its relation with the partial derivatives ∂L/∂W
which are not studied in previous works. Our new initialization is suitable for fully
connected layers, convolution layers and many other layer types. Numerical exper-
iments show that our initialization can lead to stable and fast training, especially
for networks with heavy weight sharing.

Networks with shortcuts, like Resnets [8], Inception resnets [20], squeeze nets [10]
and Mobile Net V2 [17], does not satisfy the conditions in Xavier/He initialization
method. This is because when a network has shortcuts, some inputs x have non-
independent elements. Therefore our current approach cannot be applied to these
networks. We plan to extend our initialization to these networks by regularizing
the extra gradient flows in shortcuts. One possible approach is to introduce another
scaler c′, like the c in (6), to adjust flows in shortcuts.

REFERENCES

[1] D. M. Bradley, Learning in Modular Systems, PhD thesis, Carnegie Mellon University, 2010.
[2] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G. Yuan et al.,

Circnn: accelerating and compressing deep neural networks using block-circulant weight ma-

trices, in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture, ACM, 2017, 395–408.

[3] X. Ding, H. Yang, R. Chan, H. Hu, Y. Peng and T. Zeng, A new initialization method for

neural networks with weight sharing, Submitted for publication.
[4] C. Dong, C. C. Loy, K. He and X. Tang, Image super-resolution using deep convolutional

networks, IEEE transactions on pattern analysis and machine intelligence, 38 (2015), 295–

307.
[5] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural

networks, in Proceedings of the thirteenth international conference on artificial intelligence

and statistics, 2010, 249–256.
[6] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, http://www.

deeplearningbook.org.
[7] K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification, in The IEEE International Conference on Computer

Vision (ICCV), 2015.
[8] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[9] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and

H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications,

arXiv:1704.04861

[10] J. Hu, L. Shen and G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, 7132–7141.

[11] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, Technical
report, Citeseer, 2009.

[12] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE, 86 (1998), 2278–2324.
[13] D. Mishkin and J. Matas, All you need is a good init, in International Conference on Learning

Representations, 2016.

[14] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image
segmentation, in International conference on Medical image computing and computer-assisted

intervention, 2015, 234–241.

[15] W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York, 1987.
[16] W. Rudin, Functional analysis, 2nd edition, International Series in Pure and Applied Math-

ematics, McGraw-Hill, Inc., New York, 1991.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/pdf/1704.04861
http://www.ams.org/mathscinet-getitem?mr=MR0924157&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1157815&return=pdf

12 H. YANG, X. DING, R. CHAN, H. HU, Y. PENG AND T. ZENG

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, Mobilenetv2: Inverted
residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018, 4510–4520.

[18] A. Saxe, J. L. McClelland and S. Ganguli, Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks, arXiv:1312.6120

[19] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recog-
nition, arXiv:1409.1556

[20] C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, Inception-v4, inception-resnet and the

impact of residual connections on learning, in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[21] M. Taki, Deep residual networks and weight initialization, arXiv:1709.02956

[22] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz and J. Pennington, Dynamical isome-
try and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural

networks, in International Conference on Machine Learning, 2018, 5389–5398.

[23] F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions,
arXiv:1511.07122

[24] K. Zhang, W. Zuo, S. Gu and L. Zhang, Learning deep cnn denoiser prior for image restoration,

in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
3929–3938.

[25] T. Zhang, G.-J. Qi, B. Xiao and J. Wang, Interleaved group convolutions, in Proceedings of
the IEEE International Conference on Computer Vision, 2017, 4373–4382.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: honyang@cityu.edu.hk

E-mail address: dxfeng@shu.edu.cn

E-mail address: rchan.sci@cityu.edu.hk

E-mail address: huhui12@huawei.com

E-mail address: yaxin.peng@shu.edu.cn

E-mail address: zeng@math.cuhk.edu.hk

http://arxiv.org/pdf/1312.6120
http://arxiv.org/pdf/1409.1556
http://arxiv.org/pdf/1709.02956
http://arxiv.org/pdf/1511.07122
mailto:honyang@cityu.edu.hk
mailto:dxfeng@shu.edu.cn
mailto:rchan.sci@cityu.edu.hk
mailto:huhui12@huawei.com
mailto:yaxin.peng@shu.edu.cn
mailto:zeng@math.cuhk.edu.hk

	1. Introduction
	2. Notations and preliminaries
	2.1. Single layer structure
	2.2. CirCNN networks
	2.3. Comparison with our previous approach

	3. A new initialization method
	3.1. Numerical experiments

	4. Conclusion and future works
	REFERENCES

