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Deep Tensor CCA for Multi-view Learning
Hok Shing Wong, Li Wang, Raymond Chan and Tieyong Zeng

Abstract—We present Deep Tensor Canonical Correlation Analysis (DTCCA), a method to learn complex nonlinear transformations of
multiple views (more than two) of data such that the resulting representations are linearly correlated in high order. The high-order
correlation of given multiple views is modeled by covariance tensor, which is different from most CCA formulations relying solely on the
pairwise correlations. Parameters of transformations of each view are jointly learned by maximizing the high-order canonical
correlation. To solve the resulting problem, we reformulate it as the best sum of rank-1 approximation, which can be efficiently solved
by existing tensor decomposition method. DTCCA is a nonlinear extension of tensor CCA (TCCA) via deep networks. Comparing with
kernel TCCA, DTCCA not only can deal with arbitrary dimensions of the input data, but also does not need to maintain the training data
for computing representations of any given data point. Hence, DTCCA as a unified model can efficiently overcome the scalable issue of
TCCA for either high-dimensional multi-view data or a large amount of views, and it also naturally extends TCCA for learning nonlinear
representation. Extensive experiments on four multi-view data sets demonstrate the effectiveness of the proposed method.

Index Terms—Multi-view learning, canonical correlation analysis, tensor decomposition, deep networks
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1 INTRODUCTION

MULTI-VIEW learning [1], [2] has been receiving in-
creased attention in many scientific domains since

data sets are usually sampled from diverse variables of
each object. Due to their heterogeneous properties, these
variables can be naturally partitioned into groups. Each
group of variables is referred to as a view. Such data sets
with multiple views collectively are referred to as multi-
view data sets, such as text content of each web page and
the anchor text of other web pages linking to this page in
web page classification [3] and various descriptors used to
extract features of each image for image classification [4].

Subspace-based multi-view learning as one of the
most representative categories in the multi-view learn-
ing paradigm has been extensively studied for high-
dimensional multi-view data sets [2]. It aims to obtain a
latent subspace shared by multiple views based on the
assumption that each view of the data is generated from the
unknown distribution conditioned on the same latent sub-
space [5]. The “curse of dimensionality” can be effectively
alleviated by learning a latent subspace with the dimension-
ality less than any of the input views. Canonical correlation
analysis (CCA), originally designed for measuring the lin-
ear correlation between two sets of variables [6], was for-
mally introduced as a multi-view dimensionality reduction
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method in [7] for its ability of reducing the labeled instance
complexity under certain weak assumptions. Another ap-
pealing property of CCA is that the learned subspace will
not contain the noise in the uncorrelated dimensions if there
is noise in either view that is uncorrelated to the other view
[8]. A reformulation of CCA [9] was proposed to facilitate
the learning of sparse projection matrices, but the results are
not straightforwardly generalized to more than two views.
In the last decade, CCA has received a renewed interest
in the machine learning community [8], [10], [11], and in
many scientific fields its usefulness and those of its variants
have already been well demonstrated [12]. Moreover, its
capability could also be extended to domain adaption [13]
and heterogeneous cloud computing [14], [15].

We in this paper are particularly interested in the multi-
view data sets with more than two views and the inherent
nonlinear property between the latent subspace and the
input views. Two representative nonlinear representation
techniques have been applied to CCA for two views: kernel
trick [10] and deep learning [8]. Kernel CCA (KCCA) [10]
extends CCA for finding maximally correlated nonlinear
projections in reproducing kernel Hilbert space (RKHS)
[16]. The nonlinearity of KCCA is represented by kernel
function, so this representation is limited by the fixed kernel.
Moreover, the kernel trick increases the time complexity for
learning the projections and computing the representation
of new data points since it scales poorly with the size of the
training data. To overcome the above drawbacks, deep CCA
(DCCA) [8] was proposed by simultaneously learning two
deep nonlinear mappings of two views that are maximally
correlated. Since the deep networks are parametric and not
limited to RKHS, it does not face the above drawbacks of
kernel trick, and they have showed the empirical success
on various tasks [17]. Some variants of DCCA have been
studied including deep canonically correlated autoencoders
[18] by simultaneously maximizing canonical correlation
and minimizing the reconstruction errors of the autoen-
coders, deep variational CCA [19] extended from variational
autoencoders [20] based on the probabilistic CCA model [5],
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and deep discriminative CCA [21] by considering one la-
beled data as one view in the setting of supervised learning.

The aforementioned CCA variants are mainly designed
for data sets of two views. Various learning criteria have
been proposed to extend CCA for more than two views. In
work [11], [22], five multiset correlation formulations and
four sets of constraints are discussed for multiset CCAs.
Among them, CCA with the sum of pairwise correlations
(SUMCOR) criterion enjoys a nice analytic solution by gen-
eralized eigen-decomposition, which was reformulated as
the least square problem in order to develop an adaptive
learning algorithm [23]. Generalized CCA (GCCA) [24]
takes a different perspective by learning a common rep-
resentation and imposing orthogonality on the common
representation. We will build the connection between GCCA
and CCA with SUMCOR and show in Section 2 that GCCA
does not really maximize the canonical correlation so it does
not reduce to CCA for two views. For more than two views,
multiset CCA and GCCA can only capture the pairwise
correlations. To generalize CCA for handling more than two
views, tensor CCA (TCCA) [25] was proposed by maximiz-
ing the high-order correlation represented by the covariance
tensor [26] over the data sets from all views, so it is a natural
way to extend CCA for arbitrary number of views. We also
note that tensor technique has been used for multi-view
representation learning [27], [28], but affinity matrix based
tensor is very different from the one used in TCCA, and
they are often specifically designed for clustering problem.
Nonlinear extensions of these multi-view CCAs have also
been explored. Kernel TCCA [25] extends CCA based on
kernel trick, so it encounters the same drawbacks as KCCA.
Deep multiset CCA [29] extends multiset CCA via deep
networks, but it only can deal with very special case of
multi-view data sets where views have to be sampled from
the same input space. Deep GCCA (DGCCA) [30] extends
GCCA via deep networks, but it does not reduce to DCCA
for two views.

In this paper, we propose deep TCCA (DTCCA) by
extending TCCA for learning nonlinear projections via deep
networks. DTCCA not only inherits the high-order canon-
ical correlation of multiple views but also overcomes the
drawbacks brought by kernel TCCA. The main contribu-
tions of this paper are summarized as follows:

• We build the connections among three representative
categories of existing CCAs for more than two views
and their nonlinear generalizations. Based on the
connections, the pros and cons of these methods are
discussed in detail.

• We further propose DTCCA model which can simul-
taneously learn the nonlinear projections and TCCA
via deep networks. Comparing to kernel TCCA,
DTCCA can effectively overcome the drawbacks
caused by kernel function and make TCCA practical
for large-scale and high-dimensional multi-view data
sets. To the best of our knowledge, there is no prior
work on the nonlinear generalization of TCCA via
deep networks.

• Extensive experiments are performed on four multi-
view data sets by comparing with various represen-
tative baselines in terms of various settings including

TABLE 1
Notation and Definitions

Notation Definition
n the number of samples
k the number of views
m the dimension of the common latent space
xi
r ∈ Rdr the ith data of the rth view in dr-dimensional space

Xr ∈ Rdr×n the matrix representation of the rth view
Pr ∈ Rdr×m the projection matrix of view r, and the l th column

is pl
i ∈ Rdr .

zlr ∈ Rn the canonical variable of the rth view projected
onto base pl

i
Cr,s the intra-view covariance of view r and view s
fr the transformation function of the rth view
C the k-order tensor of size d1 × . . .× dk

varied views, the dimensions of latent subspace, and
the ratios of training data. Moreover, the impact
on the number of layers of networks are also in-
vestigated. Experimental results show that DTCCA
significantly outperform TCCA and other methods
especially on small amount of training data, and it
shows consistent better results over data sets with
more than two views and varied latent dimensions.

In the following of this paper, we first review CCA and
their multi-view extensions including nonlinear generaliza-
tion. In Section 3, the proposed model is presented, and the
optimization problem is reformulated as tensor decompo-
sition. Extensive experiments are conducted in Section 4.
Finally, we draw our conclusions in Section 5.

2 CCA AND ITS MULTI-VIEW EXTENSIONS

CCA was originally proposed to find a pair of bases for
two set of variables so that their corresponding projected
variables onto these bases are maximally correlated [6]. Its
generalization to multiple data sets (more than two views)
has been widely studied due to the emerging of multi-
view data sets in various real world applications. In this
section, we will review three representative multi-view CCA
methods and their nonlinear extensions according to their
inherent criteria.

Denote by {(xi
1, . . . ,x

i
k)}ni=1 the data sets of k views

with n data points, where the ith data of the rth view is
xi
r ∈ Rdr and dr is the dimension of the rth view. Let
Xr = [x1

r, . . . ,x
n
r ] ∈ Rdr×n be the matrix representation

of the rth view data set and Pr = [p1
r, . . . ,p

m
r ] ∈ Rdr×m be

the projection matrix for the rth view consisting of m bases
in dr-dimensional space. Denote P = [P1; . . . ;Pk] ∈ Rd×m

with d =
∑k

r=1 dr . Without loss of the generality, we assume
that data of each view is centered, that is, Xr1n = 0dr

,∀r =
1, . . . , k, where 1n is an n-dimensional column vector of all
1s and 0dr

is a dr-dimensional column vector of all 0s. The
cross-view covariance between view r and view s is defined
as Cr,s = XrX

T
s ∈ Rdr×ds and the intra-view covariance

of view r is defined as Cr,r = XrX
T
r ∈ Rdr×dr . ‖A‖F is

the Frobenius norm of matrix A. For the ease of reference,
we summarize some important notation and definitions in
Table 1, which will be used throughout the whole paper.

2.1 Multiset CCA
Multiset CCA (MCCA) [11], [22] has been studied for ana-
lyzing linear relations between more than two views, and
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various formulations have been explored. The straightfor-
ward extension of CCA to multiset CCA is to maximize the
sum of the pairwise correlations (CCA-SUMCOR):

max
{Pr}kr=1

k∑
r=1

k∑
s=1

tr(PT
r Cr,sPs) s.t.

k∑
r=1

PT
r Cr,rPr = Im, (1)

where the orthogonal constraint over the projected data is
added to prevent trivial solution. For k = 2, problem (1) is
reduced to the conventional CCA problem. The Langrange
multiplier technique can be used to solve the above con-
strained maximization problem. With the multiplier diag-
onal matrix Λ, we can formulate the Lagrangian function
L({Pr},Λ) as

k∑
r=1

k∑
s=1

tr(PT
r Cr,sPs)− tr

(
Λ(

k∑
r=1

PT
r Cr,rPr − Im)

)
. (2)

The optimality condition is
k∑

s=1

Cr,sPs = Cr,rPrΛ,∀r = 1, . . . , s, (3)

which is equivalent to the following matrix representation
C1,1 C1,2 . . . C1,k

C2,1 C2,2 . . . C2,k

...
...

. . . . . .
Ck,1 Ck,2 . . . Ck,k

P=


C1,1 0 . . . 0

0 C2,2 . . . 0
...

...
. . . . . .

0 0 . . . Ck,k

PΛ.

(4)

It is well-known that the optimal projections {Pr}kr=1 can be
obtained by solving the generalized eigenvalue decomposi-
tion problem (4). Moreover, problem (1) can be equivalently
rewritten as

min
{Pr}

k∑
r=1

k∑
s=1

‖PT
r Xr − PT

s Xs‖2F s.t.
k∑

r=1

PT
r Cr,rPr = Im, (5)

since
∑k

r=1

∑k
s=1 ‖PT

r Xr‖2F = ktr(
∑k

r=1 P
T
r Cr,rPr) = km

is a constant. The pairwise least square formulation (5)
(LSCCA) was proposed to develop an adaptive learning
algorithm based on the recursive least squares [23]. Another
reformulation can be achieved by introducing the average
representation of the k views denoted by

M =
1

k

k∑
r=1

PT
r Xr, (6)

and we have the following equalities:
k∑

r=1

k∑
s=1

‖PT
r Xr − PT

s Xs‖2F

=
k∑

r=1

k∑
s=1

‖(PT
r Xr −M)− (PT

s Xs −M)‖2F

=2k
k∑

r=1

‖PT
r Xr −M‖2F . (7)

Accordingly, the reformulated problem of (1) based on (6)
and (7) is written as

min
{Pr}kr=1,M

k∑
r=1

‖PT
r Xr −M‖2F s.t.

k∑
r=1

PT
r Cr,rPr = Im. (8)

The equivalence between LSCCA and CCA-MAXVAR [22]
has been proved in [23], so (8) is also equivalent to LSCCA
and CCA-MAXVAR. Problem (1) with alternating con-
straints PT

r Cr,rPr = Im,∀r was also explored in [11], but
it loses the nice analytic solution (4) that (1) has. Moreover,
the supervised extension of MCCA has also been explored
by incorporating label data via linear discriminant analysis
[31], [32].

Deep CCA (DCCA) [8] is proposed to learn two nonlin-
ear transformations f1 and f2 by simultaneously maximiz-
ing the correlation between two views:

max
f1,f2,P1,P2

tr(PT
1 Ĉ1,2P2)√

tr(PT
1 Ĉ1,1P1)tr(PT

2 Ĉ2,2P2)
, (9)

where f1 and f2 can be multiple stacked layers of nonlin-
ear transformations with output dimension as m, Ĉ1,2 =
f̂1(X1)f̂2(X2)T , Ĉr,r = f̂r(Xr)f̂r(Xr)T ,∀r = 1, 2, and
f̂r(Xr) = fr(Xr)H is a centered transformed matrix with
centering matrix H = In − 1

n1n1
T
n ∈ Rn×n. Let P̂1 =

Ĉ
1/2
1,1 P1 and P̂2 = Ĉ

1/2
2,2 P2. Problem (9) is equivalent to the

following maximization problem

max
f1,f2,P̂1,P̂2

tr(P̂T
1 T P̂2) s.t. P̂T

1 P̂1 = P̂T
2 P̂2 = Im, (10)

where T = Ĉ
−1/2
1,1 Ĉ1,2Ĉ

−1/2
2,2 . For fixed f1 and f2, problem

(10) can be solved optimally by singular value decomposi-
tion (SVD). Let Um and Vm be the matrices of the top m
left- and right-singular vectors of T . We have the optimal
solution P1 = Ĉ

−1/2
1,1 Um and P2 = Ĉ

−1/2
2,2 Vm. And the

optimal objective becomes tr(TTT )1/2, which is a function
of f1 and f2. The work [18] further explored the autoencoder
to regulate DCCA. Unfortunately, the special reformulation
(10) for CCA is not applicable for MCCA since n2 pairs of
projections are coupled. dMCCA [29] extends MCCA for
nonlinear transformation via deep networks, but it only
can deal with very special case that all view data sets are
sampled from the same input space, that is dr = ds,∀s 6= r,
and Pr = Ps,∀r 6= s. These strong assumptions prevent
dMCCA from being used for general multi-view data sets.

2.2 Generalized CCA
Generalized CCA (GCCA) [24] finds {Pr}kr=1 by construct-
ing a common representation G ∈ Rm×n so that the sum of
the squared losses between each view and G is minimized.
GCCA is formulated as the optimization problem

min
G,{Pr}kr=1

k∑
r=1

‖G− PT
r Xr‖2F s.t. GGT = Im, (11)

where the orthogonal constraint over G is added so as to
prevent the trivial solution. It is worth noting that (11)
resembles (8) in terms of the objective function, but the con-
straints are very different. Problem (11) can be transformed
to an eigenvalue decomposition problem. First, given a
matrix G, problem (11) with respect to Pr can be solved
independently, and it is a convex quadratic programming
so it can be solved globally by the first order optimality
condition, that is

−2Xr(G− PT
r Xr)T = 0⇒ Pr = (XrX

T
r )−1XrG

T . (12)
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By substituting (12) back to (11), we then reformulate (11) as

max
G

tr(GQGT ) s.t. GGT = Im, (13)

where Q =
∑k

r=1X
T
r (XrX

T
r )−1Xr . Hence, the optimal

solution G consists of the eigenvectors corresponding to
the top m eigenvalues of Q. Once G is obtained, {Pr}kr=1

can be recovered by (12). Some other extensions of GCCA
have also been explored, such as the `2,1-norm regularized
GCCA model is proposed to facilitate the interpretability of
the learning representation [33].

Deep GCCA (DGCCA) [30] extends (11) for nonlinear
multi-view learning, where the input data of each view
is replaced by the transformed data via some nonlinear
function {fr}kr=1, e.g., the multi-layer perception network.
This can effectively resolve the drawback of GCCA for
only learning linear projections. The optimization problem
is formulated as

min
G,{Pr}kr=1,{fr}kr=1

k∑
r=1

‖G− PT
r fr(Xr)‖2F (14)

s.t. GGT = Im.

The same reformulated problem as GCCA is obtained

max
G,{fr}kr=1

tr(GQfG
T ) s.t. GGT = Im, (15)

where Qf =
∑k

r=1 fr(Xr)T (fr(Xr)fr(Xr)T )−1fr(Xr). The
gradient with respect to fr can be calculated as ∂fr =
2PrG− 2PrP

T
r fr(Xr).

2.3 Tensor CCA
Tensor CCA (TCCA) [25] is proposed for multi-view learn-
ing by exploiting high-order tensor correlation among mul-
tiple views. Let zlr = [zlr(1), . . . , zlr(n)]T = XT

r p
l
r ∈ Rn be

the canonical variable of the rth view projected onto the lth
base. The high-order canonical correlation over k views is
defined as

ρ =
m∑
l=1

ρl (16)

ρl =
n∑

i=1

k∏
r=1

zlr(i),∀l = 1, . . . ,m, (17)

with the constraints used in [22]

PT
r Cr,rPr = Im,∀r = 1, . . . ,m. (18)

In the case of k = 2, the high-order correlation is reduced
to the canonical correlation, which can be verified by the
following derivations:

tr(PT
1 X1X

T
2 P2) =

m∑
l=1

(zl1)T zl2

=
m∑
l=1

n∑
i=1

zl1(i)zl2(i) = ρ.

As a result, maximizing (16) is equivalent to CCA-MAXVAR
in the case of k = 2 and constraints (18). For k > 2, the
high-order correlation will be captured by (16). For multi-
view learning, this makes TCCA different from others based
on pairwise correlations. As a result, maximizing (16) is

transformed to the best sum of rank-1 approximation, e.g.,
the best rank-m CANDECOMP/PARAFAC decomposition
[34]. The well-known alternating least squares (ALS) algo-
rithm [35], [36] is used. The nonlinear extension of TCCA
via kernel trick is also explored in [25].

2.4 Discussions and Summary

We are now ready to compare the above three representa-
tive multi-view extensions of CCA from two perspectives:
learning criterion and the nonlinear extension.

As the learning criterion, their correlation definitions
are different. Both MCCA and TCCA generalize CCA since
they reduce to exact CCA for two views. However, GCCA
does not possess this property. By comparing (8) with (11),
it is easy to see that GCCA enforces orthogonality on the
common representations, while MCCA takes the mean of
all view representations (6) as the common representation.
This implies that GCCA is suitable for visualizing multi-
view data in the orthogonal coordinate space, while MCCA
is good to maximize the pairwise correlation of any two
views by assuming the common representation variable as
the mean of projected data of all views. In contrast, TCCA
is very different from MCCA for k > 2 and GCCA since
the high-order correlations among views can be captured by
TCCA, but MCCA can be only able to model the pairwise
correlation and GCCA only captures the linearly trans-
formed intra-view correlation according to (12) and (13).

Two techniques are popularly used for learning nonlin-
ear projections of multi-view data: kernel trick and deep
networks. Kernel CCA (KCCA) [10] models the nonlinear
transformation via kernel functions. Kernel TCCA extends
TCCA via kernel trick. However, kernel trick faces two
crucial issues: restricted representation power of a fixed
kernel function and the high-computational complexity for
large-scale data, even though kernel learning [37] and kernel
approximation [38] techniques have been studied. Fortu-
nately, DCCA [8] effectively alleviates the two issues for
nonlinear CCA by learning deep networks as the nonlinear
transformation functions. For multi-view CCAs, the non-
linear representation learning is still limited. For example,
dMCCA is only applicable for special data sets and DGCCA
does not align well with correlation maximization.

In summary, the extension of TCCA for learning nonlin-
ear projections using deep networks not only inherits the ad-
vantages of TCCA but also makes nonlinear representation
practical by deep networks. To the best of our knowledge,
there is no such a prior work. In this paper, we will propose
a novel deep version of TCCA to fill up this gap.

3 DEEP TENSOR CCA
In this paper, we propose Deep Tensor CCA (DTCCA),
which computes the representations of multiple views by
passing them through multi-layer perception (MLP) net-
works with layers of nonlinear transformations, and the
networks are tuned automatically by maximizing the high-
order canonical correlation (16). Fig. 1 illustrates the work-
flow of DTCCA with a data set consisting of three views.

Without loss of the generality, we assume that the ith
intermediate layer in the network for the rth view has cir
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(r)u2
(1)

Fig. 1. The workflow of the proposed DTCCA model by maximizing
three-order covariance defined by covariance tensor via independent
deep networks with illustrated example consisting of three views from
descriptors GIST, LBP and HOG.

units, and the output layer has m units. The output of
the first layer for the input data xr from the rth view
is h1r = σ(W 1

r xr + b1r) ∈ Rc1r , where W 1
r ∈ Rc1r×dr is

the weight matrix, b1r ∈ Rc1r is the vector of biases, and
σ : R → R is a nonlinear activation function. The output
h1r can then be used as the input to the next layer for
computing the output h2r = σ(W 2

r h
1
r + b2r) ∈ Rc2r , and

this is recursively constructed v times until the final output
fr(xr) = σ(W v

r h
v−1
r + bvr) ∈ Rm is reached. The same

construction process can be used for each of the k views. As
a result, we have a set of nonlinear functions {fr}kr=1 with
the number of intermediate layers v and their associated
parameters {W i

r , b
i
r},∀r = 1, . . . , k, i = 1, . . . , v. To simplify

the annotation, we assume fr implicitly associates to its
network parameters.

With the above defined nonlinear transformation
{fr}mr=1, DTCCA aims to maximize the high-order canonical
correlation by solving the following optimization problem

max
{fr}kr=1,{Pr}kr=1

m∑
l=1

n∑
i=1

k∏
r=1

zlr(i) (19)

s.t. zlr = f̂r(Xr)Tpl
r,∀r = 1, . . . , k, l = 1, . . . ,m,

PT
r f̂r(Xr)f̂r(Xr)TPr = Im,∀r = 1, . . . , k,

f̂r(Xr) = fr(Xr)H,∀r = 1, . . . , k,

where f̂r(Xr) ∈ Rm×n is the centered matrix of fr(Xr). In
order to jointly optimize the network and TCCA, we will
first transform (19) to the best rank-m tensor decomposition
problem. Define the covariance tensor of the network output
data {f̂r(Xr)}kr=1 as a k-order tensor of size d1 × . . .× dk

C =
n∑

i=1

f̂1(xi
1) ◦ f̂2(xi

2) ◦ . . . ◦ f̂k(xi
k) (20)

where ◦ is the outer product of vectors. Let U ∈ Rp×dr be a
matrix. The r-mode product of tensor C and U is defined as

a tensorA = C×rU of size d1× . . . dr−1×p×dr+1× . . .×dk
with element

A(i1, . . . ir−1, jr, ir, . . . , ik) =
dr∑

ir=1

C(i1, . . . , ik)U(jr, ir).

The high-order canonical correlation (17) can be rewritten as

n∑
i=1

k∏
r=1

zlr(i) = C ×1 (pl
1)T ×2 (pl

2)T . . .×k (pl
k)T. (21)

Similar to DCCA, the orthogonal constraints in (19) can be
rewritten as, ∀r = 1, . . . , k

(pl
r)TĈr,rp

l′

r =

{
1, l = l′

0, otherwise. (22)

where Ĉr,r = f̂r(Xr)f̂r(Xr)T ,∀r = 1, . . . , k. Let ul
r =

Ĉ
1/2
r,r pl

r and Ul = [u1
r, . . . ,u

m
r ] ∈ Rm×m. We can further

reformulate (19) as

max
{fr}kr=1,{Ur}kr=1

m∑
l=1

M×1 (ul
1)T ×2 (ul

2)T . . .×k (ul
k)T (23)

s.t.M = C ×1 C
−1/2
1,1 ×2 C

−1/2
2,2 . . .×k C

−1/2
k,k

(ul
r)Tul′

r =

{
1, l = l′

0, otherwise.

f̂r(Xr) = fr(Xr)H,∀r = 1, . . . , k.

Problem (23) consists of the best sum of rank-1 approx-
imation, e.g., the best rank-m CANDECOMP/PARAFAC
decomposition [34]. This is given by

M̂ =
m∑
l=1

λlu
l
1 ◦ ul

2 . . . ◦ ul
k. (24)

According to [39], the sum of rank-1 decomposition and
orthogonality constraints of high-order tensor cannot be
satisfied simultaneously. Although Ur is not enforced to be
orthogonal, (ul

r)Tul
r = 1 holds. Hence, we resort to solving

an approximation problem given by

min
{fr}kr=1,{Ur}kr=1

‖M− M̂‖2F (25)

s.t.M = C ×1 C
−1/2
1,1 ×2 C

−1/2
2,2 . . .×k C

−1/2
k,k

(ul
r)Tul

r = 1,∀r = 1, . . . , k, l = 1, . . . ,m,

f̂r(Xr) = fr(Xr)H,∀r = 1, . . . , k,

where ‖M‖F is the Frobenius norm of the tensorM. Given
an M, problem (25) with respect to {Ur}kr=1can be solved
by the ALS algorithm [35], [36]. The parameters of networks
are then updated by minimizing the square loss. It is worth
noting that for k = 2, TCCA is equivalent to CCA as shown
in Section 2.3, so DTCCA with k = 2 is reduced to DCCA.
Algorithm 1 for k = 2 provides an alternative approach for
solving DCCA since ALS algorithm obtains an approximate
solution, while DCCA takes singular value decomposition
during the network learning. However, DCCA approach
does not work for k > 2. We also notice that the recent SVD-
based algorithms [40], [41] on solving (25) by alternating two
factors simultaneously have better convergence than ALS
with one factor a time. ALS is more compatible with deep
neural networks than SVD-based algorithms for computing
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Algorithm 1 Deep tensor CCA (DTCCA)

1: Input: data sets of k views: {Xr ∈ Rdr×n}kr=1

2: Initialize the networks
3: for i = 1 to epoch do
4: compute {fr(Xr)}kr=1 and then {Cr,r}kr=1

5: construct tensorM
6: solve rank-m tensor decomposition using ALS
7: form M̂ based on the solutions {λl}ml=1 and {Ur}kr=1

8: compute gradients of loss ‖M−M̂‖2F with respect to
network weights {fr} by backpropagation

9: update {fr} by the gradient descend method
10: end for
11: Pr = C

−1/2
rr Ur,∀r = 1, . . . , k

12: Output: {fr}kr=1 and {Pr}kr=1.

gradients by backpropagation in the (stochastic) gradient
descent method. We empirically observed that ALS can
serve our needs for good performance.

Once {Ur}kr=1 and {fr}kr=1 are obtained after training,
we can recover the canonical variables for any given test
data xr from the rth view by

zr = f̂r(xr)TC−1/2rr Ur,∀r = 1, . . . , k. (26)

The learning algorithm for DTCCA is presented in Al-
gorithm 1. During the training process, we take the full-
batch optimization approach, as suggested in [8] for training
DCCA. We implement Algorithm 1 in Pytorch [42] together
with package TensorLy [43] for tensor operation and decom-
position. The Adam optimizer is used with the learning rate
set to be 10−3, and others are set to be default values.

Remark: As to sparse CCA in [9], it is not easy to
impose sparsity on Ps in DTCCA since the solution of
ALS cannot guarantee the sparsity of C−1/2rr Ur according
to (26). Hence, our DTCCA generalizes CCA with nonlinear
projections, but the extension of DTCCA for sparse CCA is
not straightforward.

3.1 Complexity Analysis

The time and space complexities of our proposed DTCCA
model are composed by three important components.

The first component is the complexity of the k MLP
networks. The forward pass for computing fr(Xr) given
Xr,∀r = 1, . . . , k and the backward pass used to update
network weights via the gradient descent method have
complexities depending on the number of network layers,
v, and the number of neurons in each layers. At layer l
of view r, the network weights is of size clr × cl−1r where
clr is the output dimension and cl−1r is the input dimen-
sion. For n samples, the time complexity is O(nclrc

l−1
r ).

The total complexity of performing forward operation on
k MLP networks takes O(n

∑k
r=1

∑v
l=1 c

l
rc

l−1
r ) where c0r is

the input dimension dr of view r. The backward pass can
be performed efficiently by backpropagation.

The second component is the complexity of comput-
ing tensor M with size cv1 × cv2 . . . , c

v
k where cvr is the

output dimension of the last layer of the rth network.
According to (25), its complexity consists of two parts:
C
−1/2
r,r takes O((cvr)3), C takes O(n

∏n
r=1 c

v
r) time com-

plexity and O(
∏v

r=1 c
v
r) for space complexity, so M takes

O(
∑v

r=1(cvr)2 + n
∏v

r=1 c
v
r +

∑v
r=(cvr)3) in total.

The third component is the complexity of the ALS al-
gorithm for the rank-m decomposition. According to [36],
the time complexity of ALS is O(tm

∏v
r=1 c

v
r), where t is

the number of iterations in ALS and m is the reduced
dimension.

Without loss of generality, let cvr = m,∀r = 1, . . . , k.
ALS takes O(km3 + (n+ tm)mk), which is independent of
the input dimensions {dr}kr=1. Due to the dominate term
mk, DTCCA limits m for a large number of views. Fortu-
nately, m � mink

r=1 dr is generally assumed, especially for
high-dimensional data in multi-view subspace learning. In
Section 4, we will show that our DTCCA works well on 6
views with m ∈ [2, 10].

3.2 Comparisons to existing works
DTCCA is built on TCCA and deep neural networks, but
it actually shows many good properties comparing with
TCCA and other deep learning based CCAs.

Comparing to TCCA [25], DTCCA possesses the follow-
ing advantages:

1) DTCCA jointly maximizes the high-order correla-
tion and nonlinear transformations, but TCCA only
works on linear transformation.

2) DTCCA can directly take the raw input views as
the input since the internal representation learning
automatically transforms the low-level features to
a small number of high-level abstractions, which
can significantly reduce the computational and stor-
age costs, and also guarantee good performance.
However, TCCA has to rely on other dimension-
ality reduction method as the preprocessing step,
otherwise it is infeasible due to the high computa-
tional and storage costs on high-correlation tensor
constructed from input views, so that suboptimal
solutions can be expected. Hence, DTCCA makes
TCCA practical and better for real world data from
the perspectives of computation, storage and perfor-
mance.

3) DTCCA provides the framework for different input
data (e.g., 3-D image data and graph data), which is
not limited to vectorized inputs, while TCCA cannot
take other forms of data.

Comparing to other deep learning based CCAs [8], [19], [44],
DTCCA possesses the following advantages:

• DTCCA naturally generalized DCCA for more than
two views. DCCA is a special case of DTCCA when
the number of input views is 2. However, most of
deep learning based CCAs cannot be directly applied
for more than two views.

• DTCCA models the high-order correlations among
multiple views, but other CCAs can only capture
pairwise correlation. Hence, DTCCA can leverage
more information/relationships of multiple views.

4 EXPERIMENTS

We conduct experiments on four data sets to demonstrate
that DTCCA learns nonlinear transformations that not only
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TABLE 2
Accuracies of 7 compared methods on Caltech101 with 6 views for all

10 folds.

GCCA LSCCA TCCAp GCCAp LSCCAp DGCCA DTCCA
Fold 1 33.31 85.86 93.08 89.10 92.33 93.16 95.26
Fold 2 27.67 88.12 94.21 90.98 94.66 93.68 95.49
Fold 3 36.32 86.32 90.90 90.38 93.83 92.41 94.66
Fold 4 35.86 87.52 93.31 91.58 94.21 94.14 95.34
Fold 5 35.41 86.99 94.06 91.43 95.11 94.21 95.94
Fold 6 38.87 89.17 86.92 89.62 93.61 92.26 94.36
Fold 7 30.08 83.38 93.23 89.92 93.08 93.46 94.96
Fold 8 33.46 87.59 93.23 91.35 93.31 93.68 95.11
Fold 9 31.95 86.92 92.78 91.43 93.38 94.14 94.96
Fold 10 36.99 84.06 92.63 91.28 93.16 93.68 95.19
mean 33.99 86.59 92.44 90.71 93.67 93.48 95.13
std 3.40 1.78 2.14 0.89 0.82 0.69 0.44

outperforms TCCA but also shows competitive or better
results comparing with other representative models. Specif-
ically, we compare the following methods in our experi-
ments:

• TCCAp [25]. The k-order tensor can be high memory
intensive for k ≥ 3 and moderate-dimensional data
sets. To make it applicable for all data sets used in
the experiments, we first apply PCA on the input
data of each view and reduce their dimensions up to
20 to make sure TCCA is feasible (for the view with
features less than 20, the PCA step is not applied).
As noted in [25] that the kernel version of TCCA does
not work for moderate size of data sets with multiple
views due to the high memory requirement and
computational complexity, so we will not include it
in the experiments.

• LSCCA [23] and LSCCA+PCA (LSCCAp). As the
representative MCCA method, LSCCA is evaluated
on the original input data. In addition, we also
preprocess the input data using PCA by preserving
95% energy, which is analogous to the preprocess of
TCCA and representation learning of deep learning
methods. dMCCA [29] is not included due to its
incapability to the data sets used in the experiments.

• GCCA [24], GCCA+PCA (GCCAp), and DGCCA
[30]. Even though GCCA and its variants specifi-
cally model the common representation, the learning
performance is still evaluated based on the learned
projections. The preprocessing using PCA is also
applied to GCCA similar to LSCCAp. DGCCA is
implemented using the same multi-layer perceptron
networks as the one used in the proposed DTCCA
method for fair comparisons.

• DTCCA. The proposed method is implemented as
the nonlinear extension of TCCA using multi-layer
perceptron networks for each view as shown in Algo-
rithm 1. DTCCA can handle high-dimensional data
and large-scale data, so the preprocessing step using
PCA is not applied. We refer to a DTCCA model with
an output size of m and v layers (including output)
as DTCCA-m-v.
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Fig. 2. The accuracy of seven compared methods on Caltech101 over
three views by varying the dimension of the reduced space m ∈
{2, 3, . . . , 10}.

TABLE 3
The accuracy of 7 compared methods over Caltech101 data set by

varying the number of views.

3 views 4 views 5 views 6 views
GCCA 31.02 ± 1.48 30.54 ± 0.91 30.81 ± 0.67 31.09
LSCCA 83.97 ± 8.97 87.11 ± 3.62 86.92 ± 2.95 86.48
TCCAp 90.69 ± 1.65 90.99 ± 1.12 91.60 ± 0.36 91.56
GCCAp 85.65 ± 3.55 87.66 ± 3.23 89.43 ± 1.52 90.35
LSCCAp 90.76 ± 2.25 92.08 ± 1.20 92.93 ± 0.57 93.31
DGCCA 91.80 ± 1.07 92.70 ± 0.64 93.28 ± 0.27 93.26
DTCCA 93.14 ± 1.14 93.62 ± 0.78 94.23 ± 0.41 94.83

4.1 Experimental setting

Following the work [25], we first concatenate the projected
points of all views obtained by CCA variants in the common
space as the final representation for supervised classification
problems, and then evaluate the classification performance
in terms of accuracy based on linear support vector classifier
(SVC) [45]. We split the data into training and test sets.
Projections are learned by compared methods using the
training data, and the final accuracy is reported based on the
test data. To avoid the learning bias, we report the average
accuracy and standard deviations over ten randomly drawn
training/test splits and parameter C in SVC is tuned in the
range {0.1, 1, 10} by repeating experiments for 10 times.

The hyper-parameters of compared methods are summa-
rized as follows. The reduced dimension m is one common
parameters of all compared methods. We vary m ∈ [2, 10]
and further show the sensitivity analysis in terms of clas-
sification accuracy. Moreover, regularization parameter for
all CCA methods is set to 10−4 in order to prevent the
singularity of covariance matrix of each view. For deep
learning methods such as DGCCA and DTCCA, the same
deep architecture is used for fair comparisons: the number
of output neurons is set to m, the default widths of the
hidden layers are set to 500 for varied number of layers,
and the Adam optimizer is used with the learning rate set
to be 10−3, and others are set to be default values in Pytorch.
Both Sigmoid and Tanh activation functions are evaluated.
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TABLE 4
The accuracy of seven compared methods on Caltech101 data by

varying the number of training data with 6 views.

10% 20% 30% 40% 50% 60% 70%
GCCA 31.09 24.45 28.62 26.26 26.31 33.18 40.92
LSCCA 86.48 79.43 76.17 77.34 79.05 78.04 79.93
TCCAp 91.56 93.71 95.78 96.41 97.51 97.58 97.06
GCCAp 90.35 93.33 94.50 95.40 95.91 96.10 96.14
LSCCAp 93.31 95.59 96.26 96.74 97.21 97.35 97.22
DGCCA 93.26 95.33 96.49 96.88 97.09 97.80 97.40
DTCCA 94.83 96.06 96.65 97.02 97.36 97.67 97.60

4.2 Image classification

Image data Caltech101 is used for this analysis [46], which
is publicly available1. Caltech101 consists of 8677 images
belonging to 101 categories. We apply 6 different descrip-
tors to extract features for each image, including: 254-d
CENTRIST (CENT) [47], 512-d GIST [48], 1180-d LBP [49],
1008-d histogram of oriented gradient (HOG), 64-d color
histogram (CH), and 1000-d SIFT [50]. For classification
evaluation, we choose 7 categories with 1474 images in total
by following [51]: Faces, Motorbikes, dollar bill, garfield,
snoopy, stop sign, windsor chair.

We first randomly selected 10% images from Caltech101
as the training set and the rest as the testing set by evaluat-
ing 7 compared methods over all 6 views. Regularization
parameter for all CCA methods is set to 10−4 in order
to prevent the singularity of covariance matrix of each
view. The selected widths of the hidden layers for the
DTCCA-m-3 and DGCCA-m-3 models are 500 and 500 with
m ∈ [2, 10]. The Sigmoid activation function is used, and the
dropout with ratio equal to 0.1 is placed in-between each
linear layer and its corresponding nonlinear layer except
the output layer. The best results of 7 methods for all 10
folders over different m ∈ [2, 10] are reported in Table 2. We
have the following observations: 1) GCCA shows the worst
results compared with others; 2) PCA as the preprocessing
is helpful to improve CCA classification; 3) nonlinear repre-
sentation learning using deep networks including DGCCA
and DTCCA can significantly improve their base methods
GCCA and TCCA, respectively; 4) the proposed DTCCA
demonstrates the best results among all compared methods
in terms of mean accuracy and the smallest standard devia-
tion, and shows significant better results than TCCAp. These
observations imply that the proposed nonlinear extension of
TCCA works reasonably well.

We further explore the sensitivity of DTCCA in terms
of different dimension of the common space, the number
of views, and various training ratios. Since TCCA can
naturally incorporate the high-order canonical correlation,
we expect that DTCCA or TCCA can perform consistently
well in regardless of the number of views. Following the
above setting, we varied the number of views from 3 to 6
with 10% training data. We first investigate the impact of
dimensions by varying m ∈ [2, 10]. The results are shown
in Fig. 2 for some combinations of views. All methods
except GCCA demonstrates better results whenm increases,
while DTCCA demonstrates consistently the best over all
these dimensions. We observed the same trends for other

1. http://www.vision.caltech.edu/Image Datasets/Caltech101/

combinations. Due to the space limitation, we will not report
the results for every combination. To investigate the impact
of the number of views, for the specific view, we report the
averaged accuracy over all combinations of views, where
the accuracy of each combination is again obtained based on
the 10 folders. Results are shown in Table 3 for the number
of views varying from 3 to 6. As the number of views
increases, all methods demonstrate improved accuracy, so
learning with multiple views becomes important. Also, our
proposed DTCCA not only significantly outperforms TCCA
and other linear models, but also better than DGCCA with
same deep network architecture. Moreover, we evaluate
all methods by varying the number of training data with
ratio from 10% to 70%. Results in Table 4 demonstrates
that DTCCA performs significantly better than others for
small amount of training data, and the accuracies obtained
by DGCCA, DGCCA, GCCAp and TCCAp converge to a
similar value when enough training data becomes available.
To show the performance of all combined views, the mean
and standard deviation of accuracies of compared methods
over 10 folders for each combination of views are shown in
Table 5.

To determine the impact of the number of layers in the
deep networks based models such as DGCCA and DTCCA,
we conduct an experiment in which we increase the number
of layers from two to seven. The width of each hidden
layer is set to be 500. 10% training data split is used for
this experiment with m = 10 for one of 10 folds. Table 6
gives the accuracy on the first fold by varying the number
of layers from 2 to 7 with nonlinear activation function
either Sigmoid or Tanh. We have the following observations:
1) Sigmoid function can obtain good results by using the
network of 4 layers, but it becomes worse when the number
of layers increases, which is because of the drawback of
Sigmoid with zero gradient for deep depth of network; 2)
the activation function Tanh does not have this issue so
the accuracy continues increasing until 7 layers and the
performance reaches saturation.

4.3 Handwritten numeral recognition

Multiple features (Mfeat) data set consists of features of
handwritten numerals (‘0’–‘9’) extracted from a collection
of Dutch utility maps2 [52]. 200 patterns per class (for a
total of 2,000 patterns) have been digitized in binary images.
These digits are represented in terms of the following six
feature sets: 216-d profile correlations (fac), 76-d Fourier
coefficients of the character shapes (fou), 64-d Karhunen-
Love coefficients (kar), 6-d morphological features (mor),
240-d pixel averages in 2 × 3 windows (pix), and 47-d
Zernike moments (zer). As a result, there are 6 views in
total.

The same experimental setting as in Section 4.2 is used
for Mfeat data. Results presented in Table 7 shows the
classification performance of 7 compared methods on all
combinations of views with 10% as training data and the
rest as testing data. The impacts of the compared methods
in terms of varied combinations of views, the reduced di-
mensions and the varied training ratio are shown in Table 8,

2. https://archive.ics.uci.edu/ml/data sets/Multiple+Features
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TABLE 5
Mean accuracy and standard deviation of 7 compared methods on 42 data sets generated from Caltech101 by choosing all combinations of more

than two views over 10 folders.

View combinations GCCA LSCCA TCCAp GCCAp LSCCAp DGCCA DTCCA
CENT - GIST - LBP 32.68 ± 6.16 91.91 ± 1.01 92.55 ± 1.04 91.25 ± 1.20 93.14 ± 1.22 92.69 ± 0.78 93.89 ± 0.72
CENT - GIST - HOG 29.22 ± 6.39 92.45 ± 0.84 92.01 ± 1.81 90.89 ± 1.72 93.21 ± 1.04 92.83 ± 0.97 94.15 ± 0.76
CENT - GIST - CH 34.10 ± 4.34 83.64 ± 1.86 88.53 ± 2.54 90.00 ± 1.08 91.53 ± 1.00 91.73 ± 0.76 92.89 ± 1.01
CENT - GIST - SIFT 33.11 ± 3.87 92.56 ± 0.87 89.27 ± 1.32 88.38 ± 1.90 93.11 ± 0.99 92.69 ± 0.96 94.33 ± 0.89
CENT - LBP - HOG 33.26 ± 5.85 91.35 ± 1.10 92.90 ± 1.09 89.33 ± 1.29 92.40 ± 0.86 93.14 ± 0.62 94.29 ± 0.54
CENT - LBP - CH 31.80 ± 2.73 84.12 ± 1.47 88.75 ± 3.81 89.58 ± 1.07 91.26 ± 0.83 91.12 ± 0.65 91.76 ± 0.89
CENT - LBP - SIFT 30.35 ± 1.95 91.23 ± 1.44 90.95 ± 3.88 86.98 ± 1.00 91.62 ± 1.16 92.64 ± 1.12 94.12 ± 1.10
CENT - HOG - CH 32.02 ± 4.66 84.53 ± 1.32 90.12 ± 1.38 88.06 ± 1.57 90.94 ± 1.11 91.96 ± 0.93 92.98 ± 0.77
CENT - HOG - SIFT 29.44 ± 4.49 92.03 ± 1.19 91.22 ± 2.61 85.44 ± 1.50 92.04 ± 1.88 92.45 ± 1.04 94.38 ± 0.80
CENT - CH - SIFT 30.57 ± 4.22 84.64 ± 1.07 89.11 ± 3.31 83.83 ± 3.10 89.60 ± 0.95 91.14 ± 0.68 92.17 ± 0.94
GIST - LBP - HOG 31.53 ± 7.65 77.87 ± 3.48 94.11 ± 0.65 85.95 ± 3.23 91.95 ± 1.45 92.90 ± 1.35 94.37 ± 0.66
GIST - LBP - CH 30.57 ± 6.26 82.32 ± 2.74 89.03 ± 2.72 85.93 ± 2.59 90.56 ± 0.72 91.83 ± 0.87 92.40 ± 0.71
GIST - LBP - SIFT 30.65 ± 2.90 72.08 ± 8.97 91.92 ± 3.27 84.93 ± 1.81 92.74 ± 1.19 92.58 ± 0.76 93.98 ± 1.24
GIST - HOG - CH 29.24 ± 5.00 82.61 ± 2.70 88.79 ± 2.04 81.77 ± 2.28 87.60 ± 1.07 90.39 ± 1.27 92.17 ± 0.93
GIST - HOG - SIFT 29.38 ± 5.88 92.25 ± 0.92 92.20 ± 2.83 82.94 ± 1.74 92.19 ± 1.62 90.56 ± 1.64 93.85 ± 0.45
GIST - CH - SIFT 29.42 ± 3.09 83.41 ± 2.25 89.19 ± 2.75 81.73 ± 3.45 87.98 ± 1.53 90.32 ± 1.07 91.54 ± 1.16
LBP - HOG - CH 29.47 ± 2.93 81.76 ± 2.04 90.29 ± 1.61 81.73 ± 1.77 87.25 ± 2.26 91.57 ± 0.92 92.80 ± 0.54
LBP - HOG - SIFT 31.51 ± 2.70 54.26 ± 0.24 92.50 ± 2.97 83.56 ± 1.79 92.39 ± 1.14 92.63 ± 1.25 94.15 ± 0.92
LBP - CH - SIFT 31.56 ± 3.69 82.19 ± 1.98 89.89 ± 3.08 80.53 ± 2.63 87.52 ± 1.43 91.74 ± 1.02 91.75 ± 1.75
HOG - CH - SIFT 30.49 ± 5.21 82.29 ± 1.98 90.50 ± 2.68 80.15 ± 3.24 86.18 ± 2.14 89.18 ± 1.28 90.91 ± 0.86
CENT - GIST - LBP - HOG 30.02 ± 5.39 92.49 ± 0.99 92.72 ± 0.91 91.17 ± 0.98 93.41 ± 1.11 93.42 ± 0.60 94.55 ± 0.87
CENT - GIST - LBP - CH 30.20 ± 4.39 85.08 ± 1.88 90.29 ± 1.83 91.20 ± 1.04 92.65 ± 1.02 92.38 ± 0.89 93.09 ± 0.57
CENT - GIST - LBP - SIFT 30.98 ± 6.21 92.55 ± 1.41 90.15 ± 3.47 89.08 ± 2.37 93.45 ± 0.86 93.38 ± 0.77 94.35 ± 0.85
CENT - GIST - HOG - CH 30.79 ± 5.52 84.75 ± 1.73 90.02 ± 2.31 90.71 ± 1.07 92.50 ± 1.04 92.48 ± 0.80 93.46 ± 0.82
CENT - GIST - HOG - SIFT 29.26 ± 3.50 92.89 ± 1.01 88.91 ± 4.84 88.84 ± 1.95 93.33 ± 1.32 93.04 ± 1.23 94.95 ± 1.03
CENT - GIST - CH - SIFT 32.10 ± 3.86 85.14 ± 1.61 89.63 ± 2.86 89.07 ± 1.31 92.42 ± 0.97 92.48 ± 0.82 93.70 ± 0.56
CENT - LBP - HOG - CH 30.03 ± 3.06 85.19 ± 1.49 91.74 ± 1.37 89.69 ± 1.55 92.16 ± 1.19 92.71 ± 0.69 93.26 ± 0.68
CENT - LBP - HOG - SIFT 30.02 ± 6.87 92.09 ± 1.08 91.93 ± 2.37 88.12 ± 2.14 92.53 ± 1.46 93.37 ± 0.76 94.56 ± 0.36
CENT - LBP - CH - SIFT 32.02 ± 3.84 85.32 ± 1.66 90.48 ± 3.89 88.79 ± 0.89 91.85 ± 0.82 92.10 ± 0.81 92.95 ± 1.12
CENT - HOG - CH - SIFT 29.81 ± 2.39 85.51 ± 1.34 90.75 ± 2.61 88.71 ± 2.32 91.44 ± 1.13 92.64 ± 0.87 93.82 ± 1.17
GIST - LBP - HOG - CH 29.84 ± 2.69 83.74 ± 1.71 91.03 ± 1.76 85.61 ± 3.75 91.55 ± 0.95 92.65 ± 1.18 92.98 ± 0.95
GIST - LBP - HOG - SIFT 29.50 ± 4.26 89.46 ± 1.73 92.81 ± 2.39 86.31 ± 2.29 93.15 ± 0.82 93.38 ± 0.77 94.44 ± 0.94
GIST - LBP - CH - SIFT 31.14 ± 4.37 83.91 ± 2.30 91.32 ± 3.77 85.55 ± 3.09 91.48 ± 1.29 92.93 ± 0.57 92.91 ± 1.20
GIST - HOG - CH - SIFT 29.62 ± 2.85 84.38 ± 1.93 91.98 ± 2.04 81.80 ± 2.82 89.95 ± 1.28 90.94 ± 0.87 92.43 ± 1.43
LBP - HOG - CH - SIFT 31.93 ± 3.46 84.10 ± 2.20 91.09 ± 3.07 80.24 ± 6.90 89.35 ± 2.25 92.65 ± 0.99 92.84 ± 0.92
CENT - GIST - LBP - HOG - CH 30.19 ± 3.96 86.00 ± 1.91 91.35 ± 1.34 91.30 ± 1.27 93.22 ± 1.18 93.32 ± 1.18 93.95 ± 0.89
CENT - GIST - LBP - HOG - SIFT 30.71 ± 6.44 92.88 ± 1.21 91.59 ± 3.31 89.52 ± 1.74 93.59 ± 0.99 93.79 ± 0.84 95.03 ± 0.69
CENT - GIST - LBP - CH - SIFT 31.76 ± 4.24 86.06 ± 1.73 91.46 ± 2.21 90.26 ± 1.25 93.06 ± 1.01 93.01 ± 0.76 94.05 ± 1.11
CENT - GIST - HOG - CH - SIFT 31.53 ± 3.95 85.78 ± 1.64 91.34 ± 3.09 89.75 ± 1.21 93.17 ± 1.00 93.21 ± 0.79 94.32 ± 0.92
CENT - LBP - HOG - CH - SIFT 30.32 ± 3.53 85.89 ± 1.57 91.56 ± 1.96 89.00 ± 1.26 92.52 ± 1.20 93.14 ± 1.00 94.07 ± 0.99
GIST - LBP - HOG - CH - SIFT 30.38 ± 3.80 84.90 ± 2.00 92.30 ± 2.18 86.77 ± 2.81 92.01 ± 1.07 93.22 ± 0.78 94.00 ± 0.60
CENT - GIST - LBP - HOG - CH - SIFT 31.09 ± 5.04 86.48 ± 1.84 91.56 ± 2.53 90.35 ± 0.98 93.31 ± 1.04 93.26 ± 0.66 94.83 ± 0.28

TABLE 6
Accuracy of two methods with layers ranging from two to seven on
Caltech101 with 6 views. ‘-’ is for the failure of the training process.

Layers 2 3 4 5 6 7
DGCCA (sigmoid) 93.46 92.63 93.31 90.00 56.39 -
DTCCA (sigmoid) 95.64 95.04 95.41 92.11 81.58 -
DGCCA (tanh) 92.33 93.01 92.63 92.11 91.88 92.48
DTCCA (tanh) 94.29 94.44 94.51 94.74 95.11 95.11

Fig. 3, Table 9 respectively. These observations are consistent
with what we have observed for Caltech101.

4.4 Scene classification

The 15 class scene data set was gradually built. The initial
8 classes were collected by Oliva and Torralba [48], and
then 5 categories were added by Fei-Fei and Perona [53];
finally, 2 additional categories were introduced by Lazebnik
et al. [50]. The 15 scene categories are office, kitchen, living
room, bedroom, store, industrial, tall building, inside cite,
street, highway, coast, open country, mountain, forest, and
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Fig. 3. The accuracy of seven compared methods on Mfeat data by
varying the dimension of the reduced space m ∈ {2, 3, . . . , 10}.
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TABLE 7
Mean accuracy and standard deviation of 7 compared methods on 42 data sets generated from Mfeat data by choosing all combinations of more

than two views over 10 folders.

View combinations GCCA LSCCA TCCAp GCCAp LSCCAp DGCCA DTCCA
fac - fou - kar 26.18 ± 4.01 62.80 ± 3.02 83.34 ± 2.83 79.60 ± 2.33 84.73 ± 2.14 85.82 ± 1.83 85.61 ± 1.10
fac - fou - mor 39.72 ± 3.63 62.05 ± 4.01 86.96 ± 2.81 83.23 ± 1.68 85.39 ± 1.43 92.51 ± 1.17 92.62 ± 0.99
fac - fou - pix 13.58 ± 1.63 69.15 ± 3.44 83.45 ± 1.58 81.84 ± 2.01 85.73 ± 1.98 86.75 ± 1.47 88.91 ± 1.08
fac - fou - zer 30.82 ± 5.15 64.69 ± 2.58 79.61 ± 3.21 78.92 ± 2.17 82.89 ± 1.66 86.59 ± 1.70 87.67 ± 0.94
fac - kar - mor 37.52 ± 6.46 69.84 ± 5.68 87.05 ± 1.48 84.90 ± 2.62 88.30 ± 2.62 91.39 ± 0.67 92.69 ± 1.02
fac - kar - pix 14.26 ± 1.09 80.84 ± 2.34 77.73 ± 1.86 79.18 ± 2.35 85.43 ± 1.34 82.08 ± 1.70 87.82 ± 1.70
fac - kar - zer 31.72 ± 2.74 65.68 ± 2.48 79.03 ± 2.57 73.70 ± 2.77 77.35 ± 3.03 83.12 ± 1.56 86.96 ± 0.79
fac - mor - pix 12.52 ± 2.05 55.00 ± 6.94 88.89 ± 2.11 83.78 ± 2.68 86.84 ± 2.64 92.08 ± 0.61 94.14 ± 0.53
fac - mor - zer 39.04 ± 2.79 67.52 ± 2.59 84.07 ± 2.25 80.61 ± 1.90 82.59 ± 1.93 91.32 ± 0.67 93.21 ± 0.89
fac - pix - zer 13.48 ± 1.82 61.83 ± 2.26 80.76 ± 3.92 71.18 ± 2.68 75.17 ± 2.37 85.64 ± 1.42 89.47 ± 1.05
fou - kar - mor 69.55 ± 2.25 73.95 ± 2.22 85.77 ± 1.34 80.02 ± 1.62 83.03 ± 1.70 87.61 ± 1.62 87.51 ± 1.24
fou - kar - pix 13.61 ± 1.77 60.19 ± 3.85 82.46 ± 2.85 73.81 ± 3.39 80.16 ± 3.11 83.52 ± 1.23 84.18 ± 1.63
fou - kar - zer 63.83 ± 1.70 74.33 ± 1.70 77.96 ± 3.50 75.72 ± 3.37 80.24 ± 2.90 81.23 ± 1.15 80.28 ± 1.83
fou - mor - pix 11.89 ± 1.52 62.20 ± 3.71 86.96 ± 2.36 80.19 ± 2.16 82.81 ± 1.56 90.98 ± 2.05 92.43 ± 0.72
fou - mor - zer 71.16 ± 3.02 74.58 ± 2.33 79.64 ± 1.25 78.03 ± 1.74 80.29 ± 1.33 81.18 ± 0.77 79.75 ± 0.70
fou - pix - zer 12.30 ± 1.53 61.30 ± 2.34 78.88 ± 2.56 76.77 ± 1.68 80.59 ± 1.60 85.26 ± 1.59 85.58 ± 0.98
kar - mor - pix 13.37 ± 1.43 69.11 ± 5.24 85.67 ± 2.16 79.41 ± 2.89 82.88 ± 2.79 89.68 ± 1.34 92.80 ± 0.72
kar - mor - zer 72.71 ± 2.77 76.68 ± 2.67 83.95 ± 2.12 79.94 ± 2.01 82.87 ± 1.83 86.91 ± 1.85 89.21 ± 1.10
kar - pix - zer 15.10 ± 2.29 65.11 ± 2.81 75.29 ± 2.12 65.22 ± 1.88 71.21 ± 2.60 83.15 ± 1.58 86.30 ± 1.76
mor - pix - zer 13.87 ± 2.51 63.39 ± 2.06 85.01 ± 1.47 79.08 ± 1.55 81.79 ± 1.75 89.73 ± 1.00 92.81 ± 0.65
fac - fou - kar - mor 41.02 ± 5.67 73.00 ± 1.91 86.87 ± 2.25 83.64 ± 2.44 88.29 ± 1.78 91.88 ± 0.64 92.53 ± 0.59
fac - fou - kar - pix 13.06 ± 1.69 64.89 ± 2.95 79.75 ± 2.39 77.73 ± 2.90 86.21 ± 2.07 84.59 ± 1.79 88.62 ± 0.77
fac - fou - kar - zer 32.44 ± 3.98 74.89 ± 1.14 77.94 ± 3.10 79.57 ± 1.88 85.60 ± 1.90 85.85 ± 1.13 87.11 ± 1.20
fac - fou - mor - pix 11.77 ± 2.02 60.92 ± 3.33 87.84 ± 2.87 83.77 ± 2.40 88.58 ± 1.64 92.41 ± 1.33 93.87 ± 0.44
fac - fou - mor - zer 39.43 ± 5.12 72.76 ± 0.91 83.62 ± 4.00 81.29 ± 1.46 85.07 ± 1.43 91.60 ± 0.99 93.28 ± 0.80
fac - fou - pix - zer 12.11 ± 1.53 64.72 ± 2.35 79.04 ± 3.27 79.40 ± 1.86 85.56 ± 1.66 86.59 ± 1.03 90.60 ± 1.00
fac - kar - mor - pix 14.02 ± 0.75 69.27 ± 5.43 86.46 ± 1.50 84.68 ± 2.95 90.72 ± 1.69 91.08 ± 1.15 94.50 ± 0.66
fac - kar - mor - zer 39.37 ± 3.92 74.68 ± 2.72 86.16 ± 2.33 81.16 ± 1.58 85.82 ± 1.91 90.22 ± 1.24 93.62 ± 0.86
fac - kar - pix - zer 15.45 ± 2.49 66.48 ± 2.36 78.28 ± 2.46 71.48 ± 2.87 78.47 ± 2.91 83.07 ± 1.80 89.75 ± 0.53
fac - mor - pix - zer 12.87 ± 2.73 64.54 ± 2.20 85.23 ± 2.72 80.33 ± 1.84 84.61 ± 1.81 91.82 ± 1.20 94.59 ± 0.59
fou - kar - mor - pix 14.31 ± 0.73 71.92 ± 1.84 85.73 ± 1.84 79.48 ± 2.17 85.25 ± 1.64 90.31 ± 1.05 92.19 ± 1.05
fou - kar - mor - zer 71.01 ± 2.79 79.72 ± 1.60 84.27 ± 2.80 80.73 ± 2.43 85.03 ± 2.16 87.11 ± 1.54 88.62 ± 1.60
fou - kar - pix - zer 15.40 ± 2.21 74.01 ± 1.72 77.18 ± 3.40 76.07 ± 1.89 82.77 ± 1.91 84.28 ± 1.59 86.73 ± 1.72
fou - mor - pix - zer 13.12 ± 1.75 70.47 ± 2.37 85.17 ± 2.45 79.86 ± 1.81 84.96 ± 1.58 90.36 ± 1.68 92.48 ± 0.56
kar - mor - pix - zer 13.86 ± 2.49 73.28 ± 2.26 85.22 ± 2.40 77.94 ± 2.27 83.24 ± 1.58 89.97 ± 1.69 93.39 ± 0.86
fac - fou - kar - mor - pix 14.38 ± 1.34 72.72 ± 1.90 88.02 ± 2.76 81.93 ± 3.16 89.27 ± 1.99 91.76 ± 0.62 93.87 ± 0.63
fac - fou - kar - mor - zer 39.92 ± 5.13 79.48 ± 1.11 85.76 ± 1.85 81.93 ± 2.17 88.03 ± 1.87 91.72 ± 0.90 93.23 ± 0.68
fac - fou - kar - pix - zer 15.30 ± 2.36 75.42 ± 1.18 79.94 ± 2.41 78.84 ± 1.30 86.75 ± 1.82 86.34 ± 1.75 89.72 ± 1.19
fac - fou - mor - pix - zer 13.14 ± 2.35 71.19 ± 1.01 86.69 ± 3.08 81.73 ± 2.70 87.39 ± 1.81 91.99 ± 1.00 94.09 ± 0.98
fac - kar - mor - pix - zer 13.02 ± 1.98 73.73 ± 2.06 86.17 ± 1.89 79.34 ± 2.03 86.46 ± 1.60 90.73 ± 0.60 94.18 ± 0.76
fou - kar - mor - pix - zer 15.36 ± 2.22 78.29 ± 1.45 85.11 ± 2.67 80.42 ± 2.15 86.49 ± 2.07 90.14 ± 1.24 92.92 ± 0.88
fac - fou - kar - mor - pix - zer 14.94 ± 2.33 79.12 ± 1.39 87.56 ± 2.56 80.73 ± 2.59 89.03 ± 1.79 91.86 ± 1.03 94.21 ± 0.61

TABLE 8
The accuracy of 7 compared methods over Mfeat data set by varying

the number of views.

3 views 4 views 5 views 6 views
GCCA 30.81 ± 22.04 23.95 ± 17.20 18.52 ± 10.53 14.94
LSCCA 67.01 ± 6.49 70.37 ± 5.10 75.14 ± 3.23 79.12
TCCAp 82.62 ± 3.80 83.25 ± 3.70 85.28 ± 2.80 87.56
GCCAp 78.26 ± 4.60 79.81 ± 3.28 80.70 ± 1.37 80.73
LSCCAp 82.01 ± 4.03 85.35 ± 2.78 87.40 ± 1.10 89.03
DGCCA 86.83 ± 3.73 88.74 ± 3.16 90.45 ± 2.13 91.86
DTCCA 88.50 ± 4.18 91.46 ± 2.68 93.00 ± 1.68 94.21

TABLE 9
The accuracy of seven compared methods on Mfeat data by varying

the number of training data with 6 views.

10% 20% 30% 40% 50% 60% 70%
GCCA 14.94 75.68 84.96 87.69 88.74 89.25 89.31
LSCCA 79.12 86.88 88.59 89.69 90.12 89.92 90.21
TCCAp 87.56 91.13 92.97 94.57 94.56 95.15 95.21
GCCAp 80.73 86.74 89.97 90.58 91.61 92.53 92.39
LSCCAp 89.03 90.00 91.46 91.70 92.01 92.58 92.79
DGCCA 91.86 94.09 95.69 96.47 96.89 97.23 97.72
DTCCA 94.21 95.69 96.54 96.78 97.14 97.56 97.59

suburb. Images in the data set are about 250×300 resolution,
with 210 to 410 images per class. This data set contains
a wide range of outdoor and indoor scene environments.
4310 images are used in this experiment. Five descriptors
are used to generate the features of views including 254-
d CENTRIST [47], 512-d GIST [48], 531-d LBP [49], 360-d
histogram of oriented gradient (HOG), and 1000-d SIFT [50].
The same experiments are also conducted for Scene15 data.
The classification accuracy in terms of the varied views, the
dimension of common space, and view combinations are
shown in Table 11, Fig. 4 and Table 10, respectively. The
similar observations as above two data sets can also be
obtained on this data.

4.5 Wikipedia classification
To further validate the effectiveness of the proposed meth-
ods on multi-modal data, we conduct the experiments on
data Wikipedia [54], which consists of 2866 image and text
pairs. Each featured article is categorized by Wikipedia into
one of 10 categories. The representation of text is derived
from a latent Dirichlet allocation (LDA) model, where each
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TABLE 10
Mean accuracy and standard deviation of 7 compared methods on 16 data sets generated from Scene15 data by choosing all combinations of

more than two views over 10 folders.

View combinations GCCA LSCCA TCCAp GCCAp LSCCAp DGCCA DTCCA
CENTRIST - GIST - LBP 8.03 ± 0.73 50.83 ± 1.86 60.13 ± 1.90 58.39 ± 1.86 62.34 ± 1.45 64.79 ± 0.95 64.49 ± 1.08
CENTRIST - GIST - HOG 8.81 ± 0.69 35.26 ± 1.92 56.76 ± 2.75 56.05 ± 1.43 59.18 ± 1.28 64.57 ± 1.94 64.11 ± 0.42
CENTRIST - GIST - SIFT 9.64 ± 0.58 50.48 ± 2.19 68.70 ± 1.87 56.34 ± 2.34 61.23 ± 1.96 69.64 ± 1.35 70.97 ± 1.46
CENTRIST - LBP - HOG 8.15 ± 0.64 42.62 ± 1.78 56.82 ± 1.42 54.06 ± 1.49 57.20 ± 1.43 61.35 ± 1.14 62.55 ± 1.37
CENTRIST - LBP - SIFT 8.46 ± 1.09 58.72 ± 2.08 64.87 ± 2.96 50.35 ± 1.93 56.50 ± 1.78 65.22 ± 1.46 69.87 ± 1.32
CENTRIST - HOG - SIFT 8.70 ± 0.87 43.50 ± 2.03 65.21 ± 2.79 51.32 ± 2.28 55.64 ± 1.58 66.66 ± 2.09 69.64 ± 1.56
GIST - LBP - HOG 8.31 ± 0.65 43.23 ± 1.22 54.60 ± 1.78 46.08 ± 1.54 48.76 ± 1.66 59.92 ± 0.74 59.58 ± 0.99
GIST - LBP - SIFT 8.72 ± 0.57 55.43 ± 1.64 67.37 ± 3.24 50.37 ± 1.83 55.56 ± 1.91 63.59 ± 2.14 66.45 ± 1.51
GIST - HOG - SIFT 9.79 ± 0.62 45.03 ± 1.07 64.87 ± 3.67 44.97 ± 2.19 49.21 ± 2.01 62.34 ± 1.10 65.19 ± 1.08
LBP - HOG - SIFT 8.28 ± 0.98 50.91 ± 0.83 64.25 ± 2.31 44.76 ± 1.21 49.58 ± 1.73 61.50 ± 1.56 65.18 ± 1.62
CENTRIST - GIST - LBP - HOG 8.56 ± 0.96 37.90 ± 1.71 55.45 ± 1.33 55.28 ± 1.90 61.37 ± 1.09 63.60 ± 1.53 62.92 ± 0.79
CENTRIST - GIST - LBP - SIFT 9.20 ± 0.70 53.61 ± 2.00 66.24 ± 2.32 54.25 ± 2.85 63.14 ± 2.01 65.76 ± 1.67 68.01 ± 1.98
CENTRIST - GIST - HOG - SIFT 9.30 ± 0.81 38.93 ± 2.75 64.08 ± 2.38 53.60 ± 2.13 60.38 ± 1.71 66.73 ± 1.45 66.96 ± 1.18
CENTRIST - LBP - HOG - SIFT 8.79 ± 0.99 46.26 ± 1.61 64.94 ± 1.92 50.33 ± 1.85 59.04 ± 1.57 63.46 ± 1.79 66.24 ± 1.85
GIST - LBP - HOG - SIFT 9.24 ± 0.76 46.91 ± 1.07 62.65 ± 2.57 45.24 ± 1.44 51.47 ± 1.23 62.88 ± 1.82 64.73 ± 1.49
CENTRIST - GIST - LBP - HOG - SIFT 9.44 ± 1.00 41.07 ± 2.08 64.45 ± 1.75 51.27 ± 1.72 62.72 ± 1.41 64.71 ± 1.08 67.33 ± 1.43
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Fig. 4. The accuracy of seven compared methods on Scene15 data by
varying the dimension of the reduced space m ∈ {2, 3, . . . , 10}.

TABLE 11
The accuracy of 7 compared methods over Scene15 data set by

varying the number of views.

3 views 4 views 5 views
GCCA 8.69 ± 0.60 9.02 ± 0.32 9.44
LSCCA 47.60 ± 6.95 44.72 ± 6.44 41.07
TCCAp 62.36 ± 4.91 62.67 ± 4.24 64.45
GCCAp 51.27 ± 4.92 51.74 ± 4.08 51.27
LSCCAp 55.52 ± 4.91 59.08 ± 4.51 62.72
DGCCA 63.96 ± 2.87 64.48 ± 1.66 64.71
DTCCA 65.80 ± 3.54 65.77 ± 1.99 67.33

document is represented by their topic assignment proba-
bilistic distribution with top 10 topics selected. The repre-
sentation of each image is constructed by four descriptors:
254-d CENTRIST, 512-d GIST, 1180-d LBP and 1000-d SIFT
as used for Caltech101 in Section 4.2.

By taking the similar experimental setting in 4.2, we
randomly selected 10% pairs of image and text as the
training set and the rest as the testing set. Two hidden layers
with 500 latent neurons are employed for both DGCCA and

DTCCA with dropout ratio 0.1. The reduced dimension m
is tuned in the range of [2, 10] as the maximum dimension
of text features is 10. Table 12 shows the best results of 7
methods for all 10 folders over different m ∈ [2, 10]. And
the sensitivity of DTCCA in terms of classification accuracy
by varying the number of views from 3 to 5 is shown in
Table 13. The similar observations as shown above can also
be obtained on multi-modal Wikipedia data.

5 CONCLUSION

We propose DTCCA for dealing with multi-view extensions
of TCCA by capturing the high-order statistics among all
feature views and simultaneously learning the nonlinear
transformations of each view in a unified model. Based on
the experiments on various multi-view data sets, we have
shown that DTCCA can obtain significant improvement
comparing with TCCA and better or competitive results
comparing with others with respect to the classification per-
formance on test data. In addition, DTCCA does not need to
apply preprocessing step to avoid the high computational
complexity of TCCA on the high-dimensional input data
in the case that the dimensionality of the latent subspace
is relatively small. We observed that DTCCA can achieve
consistently better results especially when the amount of
training data is small. As a result, the combination of non-
linear transformation and maximizing high-order canonical
correlations are important to improve the learning perfor-
mance of multi-view data sets.
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