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Abstract. We focus on developing a novel scalable graph-based semi-
supervised learning (SSL) method for input data consisting of a small
amount of labeled data and a large amount of unlabeled data. Due to
the lack of labeled data and the availability of large-scale unlabeled data,
existing SSL methods usually either encounter suboptimal performance
because of an improper graph constructed from input data or are im-
practical due to the high-computational complexity of solving large-scale
optimization problems. In this paper, we propose to address both prob-
lems by constructing a novel graph of input data for graph-based SSL
methods. A density-based approach is proposed to learn a latent graph
from input data. Based on the latent graph, a novel graph construction
approach is proposed to construct the graph of input data by an efficient
formula. With this formula, two transductive graph-based SSL methods
are devised with the computational complexity linear in the number of
input data points. Extensive experiments on synthetic data and real
datasets demonstrate that the proposed methods not only are scalable
for large-scale data, but also achieve good classification performance,
especially for an extremely small number of labeled data.

Keywords: Graph structure learning - graph-based semi-supervised
learning - large-scale learning.

1 Introduction

Semi-supervised learning (SSL) is an important learning paradigm for the situa-
tions where a large amount of data are easily obtained, but only a few labeled
data points are available due to the laborious or expensive annotation process
[4]. A variety of SSL methods have been proposed over the past decades. Among
them, graph-based SSL methods attract wide attention due to their superior
performance including manifold regularization [1] and label propagation [34].
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However, these methods usually suffer from the high computational complexity
of computing the kernel matrix or graph Laplacian matrix and the optimization
problem with a large number of optimized variables. Moreover, the quality of the
input graph becomes critically important for graph-based SSL methods.

Many graph structure learning methods often provide a reliable similarity
matrix (or graph) to characterize the underlying structure of the input data,
but their performance can be significantly affected by graphs constructed from
the input data with varying density, such as LLE-type graphs [26, 18, 32,29] and
K-NN graphs. Moreover, they are not scalable for large-scale data by learning a
full similarity matrix. Graph neural networks are also exploited to infer graph
structures from input data [10, 17], but it is not easy to control the sparsity of
the graph weights. Some graph construction methods can recover a full graph
from a small set of variables such as anchor points of the bipartite graph in [18§].
However, these methods usually neglect the importance of the similarities among
the small set of variables, e.g., the similarities of anchor points are not explored.

In this paper, we aim to design a novel graph construction approach by taking
into account the latent sparse graph learning for high scalability of graph-based
SSL. The proposed graph construction approach learns the latent sparse graph
and the assignment probabilities to construct the graph of the input data in an
efficient form so that graph-based SSL methods can be scalable for large-scale
data without the need of explicitly computing the graph of the input data. The
main contributions of this paper are summarized as follows:

— A density-based model is proposed to simultaneously learn a sparse latent
graph and assignment probabilities from the input data. We further uncover
the connection of our density-based model to reversed graph embedding [19]
from the perspective of density estimation.

— A novel graph construction approach is proposed to take advantage of both
the latent graph and the assignment probabilities learned by the proposed
density-based model. We show the spectral properties of our constructed
graph via the convergence property of a matrix series. We prove that the
graph construction approach used in [18] is a special case of our approach.

— We demonstrate that the graph constructed by our approach can be efficiently
integrated into two variants of graph-based SSL methods. We show that both
methods have linear computation complexity in the number of data points.

— Extensive experiments on synthetic data and various real data sets are
conducted. Results show that our methods not only achieve competitive
performance to baselines but also are more efficient for large-scale data.

2 Related Work

Graph-based SSL often encounters two key issues: one is how a proper graph can
be constructed from the input data, the other is the scalability for large-scale
data. Below, existing methods related to solve two issues are briefly reviewed.
2.1 Graph Construction and Graph Learning

Graphs can be constructed via heuristic approach or learned from input data.
Manually crafted graphs are often used. Examples include: a dense matrix from
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a prefixed kernel function [34], a sparse matrix from a neighborhood graph
[1], a pre-constructed graph using labeled data and side information [33], or
a transformed graph from an initial one using graph filtering [17]. The dense
matrix is computationally impractical for large-scale data due to high storage
requirement, and the neighborhood graph is less robust for data with varying
density regions [8]. Graph structure learning has also shown great successes in
SSL. Learning sparse graphs from input data based on locally linear embedding
(LLE) [22] has been widely studied to improve graph-based SSL methods. Linear
neighborhood propagation [26] learns a sparse graph via LLE, which is then used
in label propagation for SSL. For large-scale data, an anchor graph is constructed
by local anchor embedding (LAE) [18]. The joint learning of an LLE-type graph
and SSL model has also been explored [32, 29]. The graphs obtained by the above
methods highly rely on LLE, so they may not work well in cases where the
LLE assumption fails [5]. In addition, various other strategies are also studied
including low-rank representation, metric learning, and graph neural networks.
The coefficients from the low-rank representation [35] or matrix completion based
on the nuclear norm [25] are used to construct a graph for SSL. Metric learning
is used to learn the weights of a graph with the fixed connectivities [27]. Graph
neural networks are also used to infer graph structures from input data such
as a discrete probabilistic distribution on edges of a graph [10] and normalized
filter with frequency response function [17]. These methods update weights of
graphs instead of learning a sparse representation, so it is not easy to control the
sparsity of the graph weights.

2.2 Scalability Consideration for Large-scale Data

Various methods have been proposed to solve the scalability issue by concentrating
on either learning an efficient representation of a graph or developing scalable
optimization methods. Graph construction approaches have been proposed to
reduce the computation cost of graph-based SSL. The Nystrom method is used
to approximate the graph adjacency matrix in [30], but the approximated graph
Laplacian matrix is not guaranteed to be positive semi-definite. Moreover, random
projections including Nystrom method and random features are incorporated into
the manifold regularization [23]. Numerical approximations to the eigenvectors of
the normalized graph Laplacian are used to easily propagate labels through huge
collections of images [9]. As pointed out by the authors of [9], the approximations
are accurate only when the solution of the label propagation algorithm [34] is a
linear combination of the single-coordinate eigenfunctions. This condition can be
strong in general. Anchor graph regularization (AGR) [18] constructs the graph
of the input data based on a small set of anchor points. Another approach is
to design fast optimization algorithms for solving graph-based SSL problems.
The primal problem of the Laplacian SVM was solved by the preconditioned
conjugate descent [20] for fast approximation solutions. Distributed approaches
have been explored by decomposing a large-scale problem into smaller ones [3].

3 Latent Sparse Graph Learning for SSL

We propose a new graph construction approach built on a density-based method
and latent graph learning to construct a reliable graph of input data for large-scale
graph-based SSL.
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3.1 High-density Points Learning

Given input data {x;}?_, with x; € R?, we seek a small number of latent points
that can best represent the high- densfny regions of the input data. Our goal here
is to formulate a novel objective function for learning these latent points and
their relationships with input data. The objective function will then be used in
subsection 3.2 to guide the learning of a latent graph over these latent points.
As the latent points characterize the high-density regions of the input data, we
name these latent points as the high-density points denoted as {cs}*_;.

To model the density of the input data, we employ kernel density estimation
(KDE) [6] on {cs}*_; to approximate the true distribution of data by assuming
that the observed data {x;}? ; is sampled from the true distribution. The basic
idea of KDE involves smoothing each point cs by a kernel function and summing
up all these functions together to obtain a final density estimation. A typical
choice of the kernel function is Gaussian, g(v) = (2m)~ %2 exp(—3v7Tv), where d
is the dimension of the input v. Applying KDE to estimate x; over high-density
points {cs}*_; leads to the following density function,

e tin) = B S exp(— g i — el ) 1)

s=1

where o is the bandwidth parameter of the Gaussian kernel function. To obtain the
optimal latent points {c,}*_,, we can do the maximum log-likelihood estimation
by solving the following maximization problem:

n k
1
{makX f(©O) 1=ZlOgZexp(—ﬁHXi—cst% (2)
Csrs=1 i=1 s=1
where terms independent of C' = [cy, ..., c;] € R¥* are ignored. Maximizing (2)

is equivalent to finding k peaks of the density function (1). Each peak governs
some local high-density region of the density function comparing with other peaks.
Let {c}}c_; be the optimal solution of problem (2) and denote C* = [cj, ..., c}].
The ﬁrst order optimality condition of problem (2) is

acs ZZ” x;—cs)=0=c; = ZE lex,,Vs—l...,k. 3)

=1

where the assignment probability of x; to high-dense point cj is
1 : 1
_ P TP - TP .
Zis _exp(720,2”x'4 Cs” )/SE:l exp( QO’QHXZ cs|| ),VZ,S. (4)

We notice that our high-density points learning approach has close relations
to probabilistic c-means (PCM) [15] and Gaussian mixture model (GMM) [2].
The key difference is that our unconstrained smooth objective function (2) can
facilitate the joint optimization with other objective functions such as latent
graph learning, which will be the main focus of the next subsection.
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Fig. 1: The construction process of graph similarity matrix W based on Z and G. A
larger graph by stacking the input points and the high-density points as vertexes is first
constructed, and then W is derived based on the random walk on the larger graph.

3.2 Joint Learning of High-density Points and Latent Graph

We formulate a joint optimization problem for simultaneously learning a latent
graph over high-density points and the probabilities of assigning each input data
point to these high-density points. The latent graph consists of the high-density
points as vertexes and the similarities among these high-density points as edge
weights. The latent graph learning aims to find optimal vertexes and edge weights.
We particularly concentrate on spanning trees since they are naturally con-
nected and sparse. Let 7 be the set of all spanning trees over {c;}¥_,, and define
by G € {0,1}¥** the adjacency matrix for edge weights, where ; ; = 1 means c;
and c; are connected, and G; ; = 0 otherwise. As each vertex has its associated
high-density point as the node feature vector, the dissimilarity of two vertexes
can be simply defined as the Euclidean distance between two high-density points.
Our goal is to find an adjacency matrix G with minimum total cost from
all feasible spanning trees. By combining the latent graph learning with the
high-density points learning, we propose a joint optimization problem as

k
)\1 2
85 1) = 5 23 Graler — el 5)
where )\ is a parameter to balance the two objectives.

Suppose G is given. To solve problem (5) with variable C, similar to problem
(2), we can obtain the first order optimality condition over C' as

ZZi,l(Xi7C1),...,Zzi7k(xifck) 7/\10L:O, (6)
i=1 =1

where L = diag(G1y) — G is the graph Laplacian matrix over G. Accordingly,
we have the closed-form solution

C = XZ(diag(Z2"1,) + ML) "". (7)

Given C, problem (5) with respect to G can be efficiently solved by Kruskal’s
algorithm [16]. Hence, problem (5) can be solved by the alternating optimization
method until convergence: (i) given C, G is obtained by Kruskal’s algorithm, and
(ii) given G, C is solved by updating rules (4) and (7).
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3.3 A Novel Graph Construction Approach

By solving (5) in Section 3.2, we can obtain C, Z and G. It is worth noting that
G characterizing the relationships among high-density points is unique comparing
with existing methods such as AGR. Below, we will show how G can be leveraged
to build a better graph of input data.

We propose to construct an n x n affinity matrix W by taking advantage of
both Z and G through the proposed process illustrated in Fig. 1. During the
graph construction process, we first build a larger graph matrix of (n+k) x (n+k)
with similarities formed by Z and G, and then derive the similarity graph matrix
of n x n based on random walks in order to satisfy certain criterion for SSL.
Motivated by the stationary Markov random walks, we propose to construct the
affinity matrix W € R™*™ by the following equation

W Ai| -1
4] = P = e, (8)
where o € (0,1), and
_ . Onxn Z - 0n><n Z
P = diag ([ T UG] 1n+k> { T WG} 9)

_ 07L><n diag(Zlk)le
= |diag(Z71, + nG1x) "' Z7 ndiag(Z71, + nG1y) "' G

— P11P12 — 0n><'n Z
Py Poo Py1 Paa|’

0,,%» is the n X n zero matrix, and A, As and A3 are sub-blocks in the partition.
Hence P11 = 0, and Pjo = Z since Z1; = 1,,. Here, 7 is a positive parameter
to balance the scale difference between Z and G, and Z is a positive matrix with
Z;s >0, Vi, s as defined in (4), and G is a 0-1 matrix. The matrix inverse in (9)
always exists. Later, we will show that P is a stochastic matrix and possesses
the stationary property.

Fig. 2 demonstrates three key differences of our graph construction approach
from LGC and AGR on the synthetic three-moon data as shown in Table 1: 1) the
graph matrix W over all input data is implicitly represented by both Z and G;
2) the high-density points characterize the high-density regions of the input data,
much better than the simple centroids obtained by the k-means method; 3) the
tree structure can effectively model the relationships among these high-density
points, while AGR does not have this property. Details of this experiment on
synthetic data can be found in subsection 4.4.

Below, we conduct the theoretical analysis to justify the proposed graph
construction approach. The proofs of propositions are given in the supplementary
material. For convenience of analysis, we denote

On n Z : i In 0
Q= { Z? nG} , E=diag(Z"1, +nG1x), I =diag(Qlntx)= {O E} - (10)

Then P = I'''Q and P1,,; = 1,4, satisfying the probability property over
each row. We denote M > 0 if all elements in matrix M are nonnegative.
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a) three-moon data (b) 10-NN graph (c) 10-NN affinity matrix (d) Z by our method

o]

(e) anchor points (f) G over high-density points (g) Z by AGR (LAE) (h) Z by AGR (Gauss)

—~

Fig. 2: The graph construction by three methods (LGC, AGR and our proposed method)
on three-moon data. (a) the three-moon data points in 2-D space using the first two
features. (b)-(c) the 10-NN graph and its affinity matrix used in LGC. (d) the Z matrix
obtained by our proposed method. (e) the anchor points obtained by the k-means
method with 100 centroids. (f) the optimized high-density points and the learned tree
structure. (g)-(h) the Z matrices obtained by LAE and the Nadaraya-Watson kernel
regression with Gaussian kernel function in AGR, respectively.

Firstly, we show in Proposition 1 that the matrix W is symmetric and
nonnegative. This result is important since W will be used as the weighted graph
in Section 3.4 to compute a graph Laplacian for graph-based SSL.

Proposition 1 For o € (0,1), W defined in (8) is symmetric and nonnegative.

Secondly, we would like to show that the anchor graph defined in AGR is a
special case of our proposed formulation (8).

Proposition 2 Suppose anchors in AGR are equal to Z defined in (4). If either
n=0o0rG=0, and a =0, then W defined in (8) is the same as anchor graph.

Thirdly, we demonstrate that the matrix W in (8) can be written in an explicit
formula as shown in Proposition 3.
Proposition 3 W in (8) has an explicit formula:
W=2ZI,—anE'G-a’E ' Z"2)'E'Z". (11)

Fourthly, let us consider the affinity W defined in (11). Since P = anE~'G +
a?E~1Z7 Z has spectrum in (—1, 1), we have

(In —anE~'G - o®E~'2T2)" =) P (12)
t=0

The series (12) motivate us to take the second-order approximation to the exact
W in (11) for cheaper computation. If we only keep the first two terms, i.e., ¢ =0
and t = 1, then we have an approximation of W in (11) as

W=2E"'Z"+anzE'GE' 2" + o*ZE' 2" 2zE 27 (13)

Obviously, matrix W is symmetric and nonnegative.
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Finally, we can verify that much less storage requirement is needed to represent
the full graph. Rather than storing the n x n graph matrices W and W, we only
need to store the n x k matrix Z, k x k diagonal matrix F and k x k matrix Z7 Z.
We can easily use Z, E, ZT Z to compute (11) and (13). Hence, our proposed
graph construction methods are very efficient for large n but small k.

3.4 Graph-based SSL

We apply W derived in Section 3.3 as the learned graph of input data to two
types of SSL methods: LGC-based approach and AGR-based approach. We will
show that both approaches can become much more computationally efficient by
using the proposed formulas (11) and (13) for large-scale data sets.

Let F' = [F}; Fy,] € R"*¢ be the label matrix of one hot representation ¥ =
[Y7; Y,] of class labels that maps n sample data points in X = [x1,...,x,] € R¥X"?
to ¢ labels, where Fj is the submatrix corresponding to the [ samples with known
labels and F,, corresponds to n — [ unlabeled samples. We would like to infer F,,
by label propagation. Specifically, denote by L the graph Laplacian operator of
W, ie., L(W) = diag(W1,) — W, where W is either (11) or (13).
LGC-based approach. By following the objective function of LGC [34], given
a graph matrix W, we obtain F,, by solving the following optimization problem:

min  trace(FTL(W)F) + %HFu — Yal[feos (14)

FyeR(n=0)xe
where Ay > 0 is a regularization parameter. The matrix Y, is initialized as 0.

Problem (14) is an unconstrained quadratic programming.
Let

LE(W) Ls(W) (15)

LOW) = {Ll(W) L2(W):| ’
where L1 (W) is I x I, Lo(W) is I x (n — 1), and Ls(W) is (n — 1) x (n — ). By
taking derivative over F,, and setting gradient over F, to be 0, we get

(2L3(W) + AoLp_1)Fu = XaYy — 2L3 (W) Fy. (16)
Let F, = [F},--- ,F¢], and \Y, — 2LT(W)F, = [b*,--- ,b°]. Equation (16) can
be decomposed into ¢ linear systems of equations that can be solved by the
conjugate gradient method [21] in parallel:

(2L3(W) 4+ Aol )F. =b', Yi=1,---,c (17)
For very large number of classes, our method is very efficient.

AGR-based approach. Given a graph matrix W, we also study the label
propagation model used in AGR [18] by learning a linear decision function,
denoted by F = ZA, where A € R**¢ represents the linear coefficients for c
classes. Let Z = [Z}; Z,]. We solve the following optimization problem

min trace(AT ZTL(W)ZA) + %\ZA — Y2, (18)

The optimal A* has a closed-form expression

A" = 2002Z"LWZ + 22" 2) (2" Y). (19)
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Note that the first term in (19) can be computed very efficiently: for W in (11),
we have

ZTL(W)Z = Z"diag(Z(I, — P) 'E~'Z"1,)Z2 - Z" Z(I, — P "'E"*Z"Z, (20)

which is a k x k matrix; for W in (13), we have

ZT"L(W)Z = Z"diag(Z(Ix + P)E~'2"1,)Z — Z" Z(Ix + PYE*Z" Z, (21)

which is a k X k matrix. As in (19), the inverse is on a k X k matrix, so we simply
calculate the matrix inversion since k is small.

3.5 Optimization Algorithm and Complexity Analysis

The proposed method is summarized in Algorithm 1 with two graph construction
approaches and two inference approaches for the unlabeled data. The complexity
of Algorithm 1 is determined by two individual subproblems. First, the complexity
of finding the high-density points and the tree structure has the complexities of
the following three components: 1) the complexity of Kruskal’s algorithm requires
O(k?d) for computing the fully connected graph and O(k?logk) for finding the
spanning tree G; 2) computing the soft-assignment matrix Z requires O(nkd); 3)
computing the inverse of a k by k matrix (5 + A\ L)~! requires O(k?) and doing
the matrix multiplication to get C takes O(nkd + dk?) flops. Therefore, the total
complexity of each iteration is O(k® + nkd + dk?). The second subproblem is the
inference of the unlabeled data. Although we explicitly obtain the constructed
graph in terms of (11) or (13) in step 7 of Algorithm 1, the implementations for
both forms do not compute W of size n x n directly. By using the CG method
for solving linear systems (16), the matrix-vector multiplications are the main
operations. The computation complexity of each CG iteration requires O(nk +k?)
for W constructed by (11) and O(nk + k? + k3) if graph W is constructed by (13).
There are ¢ independent linear systems in (17). The complexity of computing
(19) needs O(k® +nk(k + c)). Hence, the complexity of Algorithm 1 is linear with
n, no matter which inference method, either LGC-based or AGR-based, is used
to get the predicted labels.

4 Experiments

4.1 Data sets

The datasets used in the experiments are shown in Table 1. One simulated
three-moon data set is generated as follows: 500 points in two-dimensional space
are first randomly generated on a lower half circle centered at (1.5,0.4) with
radius 1.5; and then, another 500 points in two-dimensional space are randomly
generated on two upper half unit circles centered at (0,0) and (3,0), respectively;
finally, the 1500 points in total are expanded to have dimension 100 by filling up
the bottom 98 entries of each point with noise following normal distribution with
mean 0 and standard deviation 0.14 to each of the 100 dimensions. USPS-2 is
popularly used as benchmark for evaluating the performance of SSL methods.
COIL20 is used to show the performance of multi-class classification with a large
number of classes. To demonstrate the capability of HiDeGL for medium-size
data, we conduct experiments on Pendigits and MNIST. EMNIST-Digits [7] and
Extended MNIST [13] are used for large-scale evaluation.
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Algorithm 1: High-density graph learning (HiDeGL)
Input: X, F, =Y, k,0,\1, A2, € (0,1), n
Output: F, Z,C, G
Initialization: Y, = 0, k-means for C, Z by (4)
while not convergent do
Solve GG using the minimal spanning tree algorithm;
L = diag(G1;) — G, = = diag(Z71,,);

C+ XZ(E+ ML)
exp(—|lxi—cs? /o)
S exp(—lxi—cs12/0)

7 Construct the graph W using either (11) or (13)
8 Update F, by solving (16) using CG or (18) with A* in (19).
9 Yy = argjefrll%{( c}{(Fu)i,j},Vl‘ =0l+1,...,n

S N

(=]

Z@S <

NVi=1,..,n,s=1,...,k.

Table 1: Datasets used in the experiments. n is the number of data points, ¢ is the
number of classes, and d is the dimension of data points

Datasets | three-moon | USPS-2 | COIL20 | Pendigits | MNIST | EMNIST-Digits | Extended MNIST
n 1,500 1,500 1,440 10,992 70,000 280,000 630,000
c 3 2 20 10 10 10 10
d 100 24 1024 16 784 784 784

4.2 Compared methods

For ease of references, we name our four proposed methods including the LGC-
based approach with (11) and (13) as HiDeGL(L-accurate) and HiDeGL(L-
approx), respectively, and the AGR-based approach with (11) and (13) as
HiDeGL(A-accurate) and HiDeGL(A-approx), respectively. The comparing meth-
ods include LGC [34], AGR with Gaussian kernel regression (AGR-Gauss) and
AGR with LAE (AGR-LAE) [18], K-NN classifier (K-NN), spectral graph trans-
duction (SGT) [12], Laplacian regularized least squares (LapRLS) [1], Psg
solved using SQ-Loss-1 [24], measure propagation (MP) [24]. TVRF with one
edge (TVRF(1)) or two edges (TVRF(2)) [28], GCN [14], GLP and IGCN [17],
KernelLP [31] and SSLRR [35]. Some methods cannot work for medium-large-
size data sets such as KernelLP and SSLRR due to their high computational
complexity, so their results on data sets with n > 9000 will not be reported.

4.3 Experimental setting

Our experiments follow the work in [24]. For most graph-based SSL methods,
there are some hyperparameters to tune. As the labeled data is very limited in
our experimental setting, the commonly used cross-validation approach is not
applicable [4]. To alleviate the difficulty of tuning hyperparameters, we choose to
tune all hyperparameters in terms of the mean accuracies over the 10 random
experiments for fair comparisons. For graph-based SSL approaches, weighted
graphs are defined on the K-NN graphs and Gaussian kernel where the number
of neighborhood parameter K and the bandwidth parameter o are tuned in the
same parameter ranges in [24]. For the two benchmark datasets, we directly
take the results from [24] under the same setting of the number of labeled data
1 € {10,50,100,150}. In addition, LGC (1), AGR () and HiDeGL (A2) have the
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Table 2: Average accuracies with standard deviations of nine methods over 10 randomly
drawn labeled data with varied sizes on three-moon data. Best results are in bold.

method =3 =10 1=25 =50 =75 1=100 =150

LGC 94.19£6.69 | 98.96+£0.49 | 99.02+0.30 | 99.23+0.13 | 99.29+0.11 | 99.40+0.12 | 99.34£0.12
TVRF(1) 90.49+4.80 | 97.48+1.15 | 99.534+0.03 | 99.5240.05 | 99.52+0.04 | 99.56+0.06 | 99.504+0.06
TVRF(2) 99.52+0.07 | 99.47+£0.09 | 99.46+0.11 | 99.53+0.03 | 99.544+0.06 | 99.56+0.06 | 99.524+0.07
AGR(Gauss) 99.36+£0.32 | 99.46+£0.20 | 99.51+0.25 | 99.651+0.08 | 99.564+0.22 | 99.611+0.17 | 99.6440.12
AGR(LAE) 97.74+1.41 | 98.68+0.31 | 98.66+0.39 | 98.831+0.29 | 98.744+0.45 | 98.76+0.30 | 98.824+0.36
GCN 94.58+4.58 | 96.54+£3.10 | 98.60+0.15 | 98.67+0.22 | 98.76+0.26 | 98.74+0.19 | 98.804+0.15
IGCN(RNM) 98.28+0.32 | 98.99+0.09 | 99.13+0.07 | 99.154+0.08 | 99.214+0.10 | 99.194+0.13 | 99.164+0.10
IGCN(AR) 98.30£0.29 | 99.01+£0.09 | 99.17+0.08 | 99.174+0.10 | 99.244+0.12 | 99.224+0.13 | 99.174+0.12
GLP(RNM) 97.7440.84 | 98.1940.36 | 98.58+0.22 | 98.68+0.13 | 98.62+0.15 | 98.614+0.09 | 98.674+0.15
GLP(AR) 95.04+4.51 | 97.494+1.35 | 98.284+0.26 | 98.194+0.27 | 98.18+0.16 | 98.2240.20 | 98.214+0.24
KernelLP 89.63+£2.67 | 92.90+4.22 | 97.33+1.67 | 97.89+1.19 | 97.96+1.30 | 98.27+0.86 | 98.16+0.76
SSLRR 87.28+4.00 | 88.47+4.39 | 96.814+0.29 | 96.814+0.29 | 96.79+0.10 | 97.04+0.25 | 97.024+0.20
HiDeGL(L-approx) 99.85+0.06 |99.86+0.07|99.88+0.06 |99.88+0.06 | 99.88+0.05 |99.90+0.05|99.88+0.06
HiDeGL(L-accurate) | 99.854+0.05 | 99.854+0.06 |99.88+0.05|99.88+0.05|99.88+0.05|99.901+0.05| 99.87+0.06
HiDeGL(A-approx) 99.87+0.05|99.86+0.07 |99.881+0.05 | 99.88+0.06|99.881+0.05 | 99.89+0.06 | 99.87+0.06
HiDeGL(A-accurate) | 99.854+0.09 | 99.86+0.06 | 99.874+0.05 | 99.88+0.05|99.884+0.05|99.901+0.05| 99.87£0.06

similar regularization parameter. Both AGR and HiDeGL take different ways to
construct the affinity matrix for SSL. In AGR, K-NN graph is used, the affinity
matrix is either constructed from the Gaussian kernel or by solving LAE without
any parameter to tune, and the anchor points are obtained as the centroids by
the k-means method. Further, the number of closest anchors are tuned in [2, 10]
and v € [0.001, 1]. In the proposed HiDeGL, given the number of high-density
points k, the high-density points and the graph structure connecting these points
are learned simultaneously based on the parameters o, A;. In addition, the
parameters a and 7 are introduced in both (11) and (13) to achieve different
properties of the constructed graph. As shown in Proposition 2, the construction
of AGR is a special case of HiDeGL when either n =0 or G =0, and o« = 0. In
the experiments, we tune the parameters k € {200, 500, 750, 1500}, o € [0.01, 0.5],
A1 € {0.1,1,10,100}, Ay € {0.001,0.01,0.05}, n € {0.01,0.1,1} and « € [0.1,0.9].
All these parameters are tuned based on the mean accuracies over the 10 random
experiments. The mean accuracies and their standard deviations are reported.

4.4 Experiments on synthetic data

In Fig. 2, we demonstrate the neighborhood graph structure with neighbor
size equal to 10 and its affinity matrix used in LGC, anchors in AGR with
two approaches (Gauss and LAE) for obtaining Z, and our proposed graph
construction approach by optimizing high-density points and a tree structure. In
comparing Fig. 2(e) with Fig. 2(f), we highlight the key differences between anchor
points and high-density points: 1) anchor points are the centroids obtained by
the k-means method, while high-density points locate in the high-density regions,
so they are different from cluster centroids; 2) the additional tree structure shown
in Fig. 2(f) is the unique feature compared to the existing methods because it
characterizes the skeleton structure of data and properly represents the similarities
of high-density points via the learned tree structure, where two high-density
points are connected if they are similar. We notice that the matrices Z obtained
by AGR and HiDeGL are quite similar (see Fig. 2 (d), (g) and (h)). Hence, both
methods are able to capture the relations between input data and latent points
(anchor points in AGR and high-density points in HiDeGL).

Table 2 shows the average accuracies with standard deviations over 10 ran-
domly drawn labeled data obtained by the compared methods in terms of the
varying number of labeled data. From Table 2, we have the following observations:
1) our proposed HiDeGL outperforms other methods over all varying number of
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Table 3: Average accuracies with standard deviations of compared methods over 10
randomly drawn labeled data with varied sizes on two datasets. Best results are in bold.

Method 1 =10 1 =50 I =100 I =150
USPS-2

k-NN 80.0 90.7 93.6 94.9
SGT 86.2 94.0 96.0 97.0
LapRLS 83.9 93.7 95.4 95.9
SQ-Loss-1 81.4 93.6 95.2 95.2

MP 88.1 93.9 96.2 96.8
LGC 85.21 &+ 5.54 92,94 + 3.36  95.94 + 0.63  96.73 + 0.28
TVRF(1) 82.00 + 7.47  88.11 + 2.85 92.47 + 3.04  94.25 + 1.80
TVRF(2) 73.66 + 8.15 87.45 + 4.19 92.86 + 1.67  94.67 + 1.05
AGR(Gauss) 75.01 + 6.55 88.88 + 2.65 91.92 + 1.86  93.04 + 1.04
AGR(LAE) 74.02 + 8.60  88.01 *+ 2.15 91.44 + 1.39  92.33 + 1.01
GCN 69.52 £ 10.97 88.01 + 4.31 92.74 + 2.32  94.59 + 1.70
IGCN(RNM) 68.05 £+ 10.06 88.96 + 4.28 93.21 + 1.77  94.35 + 1.76
IGCN_AR 68.26 + 9.61 88.17 + 3.99 91.62 + 1.68  94.22 + 1.38
GLP(RNM) 71.78 £ 9.78  87.10 £ 5.98 91.36 &+ 3.09  93.61 + 2.67
GLP(AR) 69.65 £ 10.01 86.35 + 5.98 90.45 + 1.66  93.32 + 1.82
KernelLP 72.22 + 6.81 88.77 £ 2.50  92.66 = 1.49  93.97 + 1.09
SSLRR 64.36 + 4.49  67.78 + 2.25 68.59 + 3.82  68.77 + 3.58
HiDeGL(L-approx) 90.01 + 3.94 95.88 + 0.50 96.23 + 0.43 96.77 £+ 0.39
HiDeGL(L-accurate) 89.41 4+ 1.64 95.88 + 0.50 96.36 + 0.71 96.95 £ 0.25
HiDeGL(A-approx) 91.93 + 3.69  95.30 = 0.79 95.68 + 0.81 96.16 £ 0.53
HiDeGL(A-accurate) 91.94 + 3.68 95.30 £+ 0.79 95.68 + 0.81 96.16 £+ 0.53
Method 1 =40 1 =80 [ =100 [ =160

COIL20

LGC 87.39 £ 1.43  90.88 + 1.53 93.43 + 1.22  95.66 + 1.13
TVRF(1) 89.31 £ 2.13  92.65 + 0.92 94.24 + 1.47  95.20 + 1.06
TVRF(2) 87.19 £ 2.23  90.32 + 2.33 92.42 + 1.44  95.04 £ 0.74
AGR(Gauss) 84.16 + 3.55 93.81 +2.20 94.09 + 1.84  95.70 + 1.51
AGR(LAE) 89.55 + 3.22 97.19 + 1.67 96.91 + 1.73  98.24 + 0.78
GCN 72.42 £ 2.16  79.11 + 2.04  82.14 + 1.35 87.37 £+ 1.41
IGCN(RNM) 74.44 + 2.65 80.93 £ 1.97 83.12 £ 1.55  88.18 £ 0.79
IGCN(AR) 75.75 £ 1.73  81.14 £ 2.27  84.09 + 1.43  88.88 + 0.88
GLP(RNM) 73.81 +£2.19 80.26 & 1.94  82.77 + 1.56  87.68 + 1.23
GLP(AR) 76.18 = 1.80  80.96 + 1.89 83.24 + 1.18  88.06 *+ 1.14
KernelLP 71.76 £ 2.70  80.60 &+ 1.60  83.19 &+ 1.10  87.82 £ 1.47
SSLRR 62.96 + 1.61 64.78 + 2.25 65.66 &+ 2.54  68.21 + 2.90
HiDeGL(L-approx) 92.95 + 1.55 96.23 + 0.88 96.37 &+ 1.38  97.16 + 1.70
HiDeGL(L-accurate)  91.20 £+ 1.65 95.45 + 1.30  96.37 + 1.41 97.45 £ 0.77
HiDeGL(A-approx) 96.75 + 1.51 97.88 + 0.44 98.16 + 0.94 98.58 £+ 0.73
HiDeGL(A-accurate) 96.74 + 1.43  98.04 + 0.98 98.09 + 0.74 98.66 + 0.52

labels; 2) With small numbers of labels such as I € {3,10}, HiDeGL performs
significantly better than others; 3) the four variants of HiDeGL with two graph
construction approaches and two inference approaches for unlabeled data achieve
almost similar accuracies. These observations imply that our proposed methods
are effective for SSL, especially with very small amount of labeled data.

4.5 Experiments on real data of varied sizes

We evaluate four variants of our HiDeGL on varying sizes of datasets by com-
paring with baseline methods in terms of varying number of labeled data. The
classification accuracy is used as the evaluation criterion. We repeat the experi-
ments 10 times by randomly drawing the given number of labeled data points,
and report the average accuracies and their standard deviations.

The average accuracies and their standard deviations are shown in Table
3, Table 4, and Table 5, for varied data sizes. Over all sizes of tested datasets,
HiDeGL gives the best accuracy than other methods when the number of labeled
data points is small. On benchmark datasets, SGT is the best for [ = 150 on
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Table 4: Average accuracies with standard deviations of compared methods over 10
randomly drawn labeled data with varied sizes on two medium-size datasets. Best
results are in bold.

Method =10 1 =50 [ =100 [ =150
MNIST

LGC 66.66 + 5.52 83.76 + 2.33 87.84 + 1.11 89.41 £ 0.88
TVRF(1) 53.44 + 6.73  74.35 = 1.64 7850 + 1.70  81.27 + 1.38
TVRF(2) 61.73 + 6.12 78.05 + 2.58 84.70 + 1.20  86.19 + 0.95
AGR (Gauss) 51.97 + 4.15 76.05 + 4.37  79.26 + 0.68  80.32 + 1.41
AGR (LAE) 52.29 + 3.92 76.97 + 4.37  80.33 &£ 0.93  81.30 £+ 1.45
GCN 31.97 £ 6.63  57.59 + 3.44  64.97 + 2.21 69.09 £ 1.77
IGCN(RNM) 42.93 £ 5.53  64.67 £ 4.82 76.64 + 2.39  81.06 + 2.71
IGCN(AR) 42.26 £ 6.69  68.73 £ 2.81 79.66 = 1.35  83.60 = 1.90
GLP(RNM) 44.59 £ 4.49  69.30 £ 4.11 79.21 + 4.26  83.04 + 4.04
GLP(AR) 46.60 £ 5.14  70.79 £ 4.35 79.59 + 5.13  83.27 + 4.71

HiDeGL(L-approx) 83.38 + 4.37  88.23 £ 1.87 90.36 £ 1.33 91.51 + 0.78
HiDeGL(L-accurate) 83.38 4+ 4.37  88.23 £ 1.87 90.36 + 1.33 91.51 £+ 0.78
HiDeGL(A-approx) 83.59 + 4.19 88.22 £ 2.00 90.14 £ 1.15 91.28 + 0.84
HiDeGL(A-accurate) 83.59 + 4.19 90.73 + 1.46 90.14 + 1.15 91.28 + 0.84

Pendigits
LGC 80.97 + 7.41 93.21 £ 1.99 94.44 + 1.39  95.89 + 1.02
TVRF(1) 43.57 £ 4.20 59.52 £+ 2.11 66.23 + 2.57 74.69 + 1.76
TVRF(2) 52.50 + 4.05  83.39 + 2.86  89.54 + 2.80 92.99 £ 1.62
AGR(Gauss) 52.56 + 6.85 91.73 £ 1.95 95.01 &+ 1.03  96.43 + 0.85
AGR(LAE) 52.562 + 6.67 91.60 + 1.88  94.59 + 1.24  96.18 + 1.21
GCN 64.87 + 5.56  83.90 + 2.01 90.10 + 1.66  92.72 + 1.18
IGCN(RNM) 66.74 + 4.33  83.19 + 2.01 90.74 + 1.18  94.00 + 1.44
IGCN(AR) 71.90 &+ 5.83  85.48 + 2.41 91.41 £ 0.98 94.16 + 1.34
GLP(RNM) 67.73 £ 5.80 84.46 + 2.38  89.46 + 1.45 92.25 + 0.98
GLP(AR) 67.99 + 3.63 85.74 +2.22  89.58 + 1.70  92.33 + 1.14

HiDeGL(L-approx) 85.26 + 4.09 93.36 = 1.80  95.54 + 1.00 96.44 + 1.06
HiDeGL(L-accurate) 85.72 + 4.08 93.24 + 1.77 95.56 + 0.91 96.36 £+ 1.13
HiDeGL(A-approx) 85.37 + 4.61 93.67 £ 2.00 9544 + 1.72  96.13 £+ 0.86
HiDeGL(A-accurate) 85.37 £ 4.61 93.67 + 2.00 9544 + 1.74  96.14 + 0.87

USPS-2. For medium-size data, the similar results can be observed for a small
number of labeled data. With a large number of labeled data, HiDeGL also shows
better performance than others. For two large-scale data sets, EMNIST-Digits
and Extended MINIST, HiDeGL significantly outperforms AGR over all testing
cases. These observations imply that our constructed graphs are effective for SSL.

We further show in Table 5 the CPU time of HiDeGL compared with AGR
on EMNIST-Digits and Extended MINIST as the number of labeled data points
varies and k = 500. Since the k-means method is used for both AGR and HiDeGL,
we exclude the time for finding the anchor points or the initialization of Algorithm
1. Tt is clear that 1) AGR(Gauss) is the fastest method, while its performance in
accuracy is the worst; 2) AGR(LAE) is the slowest since solving LAE for each
point is time consuming; 3) HiDeGL with all four variants shows the similar
CPU time but 10 times faster than AGR(LAE), and also demonstrates the best
performance over all varying numbers of labeled data points.

The above observations show that 1) HiDeGL works well for a small number
of labels; 2) HiDeGL is scalable for large-scale data with a reasonable running
time and good performance. Hence, our proposed graph construction approaches
are effective and highly scalable for large-scale data.

4.6 Parameter sensitivity analysis
We conduct the parameter sensitivity analysis of HiDeGL(L-accurate) as an
illustration example in terms of different amount of labeled data. Due to multiple
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Table 5: Average accuracies with standard deviations and CPU time of compared
methods over 10 randomly drawn labeled data on EMNIST-digits and Extended MNIST
in terms of varying number of labeled data points. Best results are in bold.

Method I =10 I =50 ! =100 =150
Accuracy on EMNIST-digits (kK = 500)

AGR(Gauss) 77.34+4.92 86.46+1.44 88.89+1.17 90.07+0.79

AGR(LAE) 77.93+5.22  87.174+1.94 89.43+1.22 90.60+0.85

HiDeGL(L-approx) 79.55+6.38 89.34+1.34 91.46+0.90 91.85+0.92
HiDeGL(L-accurate) 79.63+6.40 89.36+1.36 91.46+0.90 91.85+0.92
HiDeGL(A-approx) 79.84+6.45 89.55+1.52 91.46+0.89 91.83+0.98
HiDeGL(A-accurate) 79.86+6.52 89.55+1.52 91.46+0.89 91.83+0.98
CPU Time on EMNIST-digits (in seconds)
AGR(Gauss) 6.59+0.71 6.45+0.28 6.55+0.42 6.56+£0.24
AGR(LAE) 8886+18.5 8634+14.1 8641+£7.9 8607+14.4
HiDeGL(L-approx) 414.6+ 2.5 414.44 3.9 410.5+ 2.7 415.1+ 3.2
HiDeGL(L-accurate) 635.5+ 14.8 647.7+11.5 629.7+ 3.0 648.7£6.9
HiDeGL(A-approx) 403.8+ 2.1  403.6+ 1.8 403.7+ 1.4 403.0£ 1.0
HiDeGL(A-accurate) 402.9+ 1.9 401.4+ 1.4 401.6+ 1.5 402.5+ 2.3

Accuracy on Extended MNIST (k = 500)
AGR (Gauss) 64.59+£7.36 76.79+1.26 79.88+0.80 82.11+£0.78
AGR (LAE) 66.27+7.27 78.72+1.44 80.97+0.75 83.13£0.65
HiDeGL (L-approx) 68.10£7.81 80.97+1.42 82.55+1.24 83.99+1.08
HiDeGL (L-accurate) 68.13£7.80 80.96+1.48 82.55+1.24 84.00£1.08
HiDeGL (A-approx) 68.14+8.33 79.40+1.45 81.41+£1.02 83.25+1.06
HiDeGL (A-accurate) 68.144+8.33 79.40+1.45 81.42+1.02 83.25+1.06
CPU time on Extended MNIST (in seconds)

AGR (Gauss) 13.81+1.50 13.94+£1.63 14.49+1.84 14.204+1.62
AGR (LAE) 12120+3281 1213443331 1224243307 12183+ 3413
HiDeGL (L-approx) 1074+11.6 10784+9.1 1086+9.3 1083£17.1
HiDeGL (L-accurate) 1123+4.7 1146+11.9 1169£7.4 1097+65.7
HiDeGL (A-approx) 1049+15.4 1050+ 10.8 1055+11.8 1059+ 7.5
HiDeGL (A-accurate) 1047+10.0 1055+ 6.1 1052+ 7.8 1053+ 8.3

Fig. 3: Parameter sensitivity analysis of HiDeGL(L-accurate) on USPS-2 by varying the
corresponding parameters \1, o, a,n respectively with k = 500 and A2 € {107%,1072}
in terms of the number of labeled data points [ € {10, 50,100, 150}.

hyperparameters, we perform the analysis for one parameter at a time by fixing
the others. Specifically, we report the best accuracy for the parameter over results
obtained by tuning the others. To balance the classification performance and
efficiency, we perform this analysis using & = 500.

Fig. 3 shows the accuracies of HiDeGL(L-accurate) by varying parameters
in the given ranges and the number of labeled data points. First, we notice
that our method is quite robust with respect to A\; and 7. Second, ¢ and « can
have large impact on the classification performance. It is clear to see that the
accuracy changes as o varies more smoothly with a peak in [0.05,0.1]. Since o
controls the movement of points to its high-density regions as shown in (4), the
graph constructed over these points turns out to be important for achieving good
classification accuracy. « is also important since it is used for label propagation
on a given graph by balancing the global and local consistency. Third, the
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classification accuracies improve as [ increases. However, the parameters are
robust to [ since the varying trends look quite similar.

5 Conclusion

We proposed a novel graph construction approach for graph-based SSL methods
by learning a set of high-density points, the assignment of each input data point
to these high-density points, and the relationships over these high-density points
as represented by a spanning tree. Our theoretical results showed various useful
properties about the constructed graphs, and that AGR is a special case of our
approach. Our experimental results showed that our methods not only achieved
competitive performance to baseline methods but also were more efficient for
large-scale data. More importantly, we found that our methods outperformed all
baseline methods on the datasets with extremely small amount of labeled data.
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A Proof of Proposition 1

Before we prove that the matrix W is symmetric, we need to show the following
results.

Proposition 1 Let P € ROTRIX(+8) - and suppose (14 — aP)~" exists. Then
P2(Iiy — aP) = (Ins — aP)"1P2.

Proof. Tt always holds that

P?(Inyx — aP) = (In4x — aP)P?> = P> — aP®. (S1)
Since (I, —aP)~! exists, we multiply (1,4 —aP)~! on both sides of equation
(S1) to get

(Inir —aP) ' P? = P*(In4r — aP) ™. (S2)

The proof is completed.
Lemma 1. Let P = I'"1Q be given by (26). The eigenvalues of P are real, and
lie in [—1,1].

Proof. By definition, we have P > 0 and P1l,4; = 1,4%. So, all elements in P
are between 0 and 1. The row sums of P is 1. The characteristic polynomial of P
is

det(Mpyr, — P) = det (F’% (ALM - F’%QF’%) F%) .
The eigenvalues of P are the same as the eigenvalues of matrix F*%Qf’%. Matrix
1 1
I'"2QI'~ = is symmetric, so its eigenvalues are real, i.e., the eigenvalues of P are
real. By the Gershgorin circle theorem [1], we conclude all the eigenvalues of P
lie in [—1,1].
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Now, we are ready to prove Proposition 1. Note Q@ = QT, P = I'"'Q, PT =
QI =rpPr—1 Since P?(I,,4r —aP)™ = (1,41 — aP)~1P? by Proposition 1,
we have

(P*(I —aP) )" = (Inyr — aP") 71 (PT)?
= (Inyk —al’PL 7' rpP?r—!
= (I(Tpsr —aP)r~) "' rP?r=!
=TI'(Insx —aP) 'PI!
=T'P*(Inyp —aP) "It

On the other hand, by (25) and (26), we get

_ w A" [WT AT
i -aryy =y 2 =N ] (53)
and
2 —1p—1 _ In 0 W Al In O
[PX(I - aP)"'T *[o E} [A2A3] {0 E*l}
[w A ET!
= [EA2 EAgE’l} ' (54)

Comparing these two matrices in (S3) and (S4), we have W = W71 ie., W is
symmetric.
Since the spectrum of P lies in [—1, 1], and o € (0, 1), we have (I, 1y —aP)™! =

o0
>~ (aP)!, i.e., the right side matrix series converges. Then
t=0

P(Iny —aP) ' = P* +aP®’ +o*P' + ... (S5)
Since P > 0, every term on the right hand side is nonnegative, and W > 0. The
proof is completed.

B Proof of Proposition 2

If either n = 0 or G = 0, we have

_ . OnX'rL Z -t 0n><n Z
P= dlag<_ z" kak] 1n+k) { Z" Ok

—di [ Zlk 1 - 0n><n Z

= diag _ZTln_ Z7 Orxk

Cdiae ([ 22 T [0nxn 2
- e 1271, 7T Opxk
_ In><n Onxk -Onxn Z
T 0k AT | Z7 Ok

T |\ATzT Orxkl|’
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and

P2: 0n><n Z 0n><'n Z
ATYZT Opxr| [AT1ZT Opxi

[2A7'ZT 0nxk
T Owxn AT'ZTZ)

where A = diag(Z71,,). Since a = 0 and by definition, we have
W=2A"127,

which is the same as W in AGR for a given Z.

C Proof of Proposition 3

Lemma 2. For a € (0,1), the eigenvalues of matriz
P=anE'G+o’E'Z"Z (S6)

are real and lie in (—1,1).

Proof. By the definition of £, G, Z, we have P > 0. The characteristic polynomial
of P is

det(AI — P)
= det (E’% ()Jk — B (anG + aQZTZ)E*%) E%) .

The cigenvalues of P are the same as the eigenvalues of E~2 (anG+a2ZT Z)E~=.
Since matrix E~2 (anG + o2ZT Z)E~% is symmetric, all its eigenvalues are real,
i.e. the matrix P has only real eigenvalues. Now let us prove the row sums of P

are bounded by 1.

Pl, = anE~'G1, + *E~' 2" 71,
=anE Gl +*E 1271,
<aE '(nG1y + Z"1,) (since a € (0,1))
= ol < 1.

By the Gershgorin circle theorem [1], we have the eigenvalues of P lie in (—1,1).
The proof is completed.

By the definition of matrix P and matrix inversion in a 2 x 2 block form, we
have the following equations:

I, —aZ -1
—aE ' ZT I, —anE~'G

[L“ L”] , (S7)

(In+r —aP)™

Loy Loo
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where

Li=I,+°Z(Iy —anE 'G - *E~ ' 2" 2) 'E~' 27,

Lis=aZ(Iy —anE'G - *E'Z"2)7 ",

Loy =a(ly —anE~'G - *E~ ' 2" 2) ' E7' 27,

Los = (I —amE~'G —o*E~ ' 27 2)7".
It is worth noting that (S7) holds in the condition that matrix I — anE~1G —
o?E~1ZT Z must be invertible. The inversion is guaranteed by Lemma 2.

According to Lemma 2, it is clear that I, — P has eigenvalues in (0,2), so
(S7) holds for all « € (0,1). Accordingly, the right hand side of (8) is:

2 -1 _ WAl
P (I’ﬂ+k - OCP) - |:142 A3:| )

where

W =ZE 'Z"Liy + nZE 'GLa, (89)
Ay =ZE ' ZT L1y + nZE ™' GLog,

Ay =nE'GE'Z Ly, + (E’lZTZ + nQ(E’lG)Q) Lo,

As =nE'GE™'Z L1y + (E’IZTZ + nQ(E’lG)2) Los.

Substituting L1; and Lo; into (S9), we achieve the goal.
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