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Probabilistic Semi-supervised Learning via Sparse
Graph Structure Learning

Li Wang, Raymond Chan, and Tieyong Zeng

Abstract—We present a probabilistic semi-supervised learning
(SSL) framework based on sparse graph structure learning.
Different from existing SSL. methods with either a predefined
weighted graph heuristically constructed from the input data or a
learned graph based on the locally linear embedding assumption,
the proposed SSL model is capable of learning a sparse weighted
graph from the unlabeled high-dimensional data and a small
amount of labeled data, as well as dealing with the noise of the
input data. Our representation of the weighted graph is indirectly
derived from a unified model of density estimation and pairwise
distance preservation in terms of various distance measurements,
where latent embeddings are assumed to be random variables
following an unknown density function to be learned and pairwise
distances are then calculated as the expectations over the density
for the model robustness to the data noise. Moreover, the labeled
data based on the same distance representations is leveraged
to guide the estimated density for better class separation and
sparse graph structure learning. A simple inference approach
for the embeddings of unlabeled data based on point estimation
and Kkernel representation is presented. Extensive experiments
on various data sets show the promising results in the setting
of SSL. compared with many existing methods, and significant
improvements on small amounts of labeled data.

Index Terms—Semi-supervised learning, latent variable model,
graph structure learning, kernel learning

I. INTRODUCTION

EMI-supervised learning (SSL) [1], [2] aims to improve

the learning problem in the case that small amounts of
labeled data and relatively large amounts of unlabeled data are
available. SSL has been widely used in many machine learning
applications when annotating training data is time-consuming,
costly and error-prone.

A plenty of SSL algorithms have been proposed in the liter-
ature. They are built on various assumptions of the given data,
including generative models [3], density-region approaches
[4], [5], graph-based methods [1], [6], [7], and embedding
learning [8], [9]. Among these, graph-based methods have
received much attention [1], [2]. The fundamental assumption
of the graph-based methods is that the data is embedded in a
low-dimensional manifold that may be reasonably expressed
by a graph, where each vertex is associated with an input data
point and the weight of each edge represents the similarity
between two vertices, so that nearby vertices are more likely
to have the same labels. Label propagation [6] and manifold
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regularization [10] are two popular graph-based SSL methods.
Besides, generative SSL models have the advantage to model
the posterior distribution of latent variables with priors [3].

In graph-based SSL methods, weighted graphs are often
constructed directly from the input data. The neighborhood
graphs are commonly used, e.g., the K -nearest neighbor (NN)
graph. A similarity matrix (often very sparse) is constructed
from the adjacency matrix of the given graph based on some
prefixed similarity functions such as binary variable 0 and 1
for disconnection and connection respectively, and the heat
kernel in terms of the Euclidean distances of two points and
the neighborhood connectivities [10]. Although these methods
have been successfully applied to many SSL problems, it
could be very sensitive due to the high dependence on the
ad hoc weighted graph, which becomes unreliable since the
curvature of manifold and the density of data points may be
varied in different regions of the manifold [11]. Moreover,
most distance-based manifold learning methods suffer from
the curse of dimensionality, i.e., there is little difference in the
distances of pairs of data points [12]. Furthermore, for data
with noise, a precomputed neighborhood graph to approximate
the manifold of data is not reliable any more. Hence, it is less
robust to directly construct a neighborhood graph in a high-
dimensional space.

Learning a graph from data recently becomes popular for
SSL. The graph is either pre-optimized [13], [14], [15], [16],
[17], [18] , or jointly optimized with SSL prediction models
[19], [20] based on criteria such as locally linear embedding
(LLE) [21]. However, it is well known that LLE has some
inherent drawbacks [22], so these SSL methods also inherits
these drawbacks. Moreover, structure learning methods [11],
[23], [24] have been proposed for unsupervised learning, but
they are seldom explored in SSL.

The information we can leverage to achieve a better SSL
model is not restricted to the data and its small amounts of
labels. Various label priors have been explored such as class
mass normalization and label bidding as a post-processing
step [6], and class balance constraint [7]. The discriminative
expectation constraints estimated with labeled data are also
studied in [3]. In the setting of unsupervised learning, dimen-
sionality reduction methods such as t-SNE [25] and maxi-
mum variance unfolding (MVU) [26] achieve great success
by assuming to preserve certain information, including the
clustering assignment in a low-dimensional space and pairwise
distances in the reproducing kernel Hilbert space (RKHS),
respectively, in order to better explore the characteristics of the
input data. These learning criteria are proved to be effective
for unsupervised learning, so it might also be useful for SSL.
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Moreover, these unsupervised learning methods provide the
capability of exploratory analysis via data visualization with
the natural interpretation. Hence, it is worth exploring these
criteria for traditional SSL, even though embeddings of the
input data have recently been explored in the paradigm of
deep learning [8], [9].

In this paper, we propose a novel probabilistic semi-
supervised learning framework by simultaneously taking the

following crucially important factors into SSL:
1) A sparse similarity matrix is learned from data;

2) Low-dimensional embeddings for data visualization are
optimized for learning problem;
3) Various priors of the data can be naturally incorporated.

Specifically, we propose to model the density distribution of
latent variables given the input data with small amounts of
labels. Various distance measurements can be employed to
characterize the relationships between any two data points
specifically for the target domain. The expectation distance
preservation criterion over the density leads to the robust
learning of a sparse similarity matrix for capturing the intrinsic
manifold structure of data. Priors related to the density are in-
corporated including data noise model based on the shrinkage
effect of pairwise distances, and the prior of low-dimensional
embeddings. Supervised labels guide the learning of density
distribution by constraining their embeddings to be close if
their data points are of the same classes, and otherwise to be
distant. The optimized low-dimensional embeddings are then
uncovered from the learned density for data visualization.

The main contributions of this paper are listed as follows:
e A novel probabilistic SSL framework is proposed by

learning a density function over low-dimensional latent
variables from the input data. This framework as a
Bayesian model is flexible to integrate various priors for
characterizing the data in the target domain and modeling
data noise.

o The distance preservation criterion and the class separa-
bility from a small amount of labeled data as the super-
vised information are integrated into the proposed SSL
framework. The resulting model shows that 1) a weighted
graph is obtained from the data with an optimized sparse
similarity matrix and the guidance of supervised infor-
mation; 2) low-dimensional embeddings are uncovered
from the weighted graph or a kernel matrix; and 3) the
embeddings are used to infer labels of unlabeled data for
semi-supervised classification and data visualization.

e« We conduct extensive experiments on synthetic and
benchmark data sets by comparing with a variety of
the state-of-the-art methods in SSL. Our experimental
results show that our proposed model not only achieves
encouraging classification results for SSL, but also leads
to an optimized kernel matrix for extracting embeddings,
which are built on a learned sparse similarity matrix.

The rest of the paper is organized as follows. We first briefly

introduce various existing methods in Section II. In Section
III, we propose a unified probabilistic SSL framework with
distance preservation criterion, class separability criterion, and
various priors, and then present an optimization algorithm to
solve the reformulated problem. Extensive experiments are

conducted in Section IV. We conclude this work in Section
V.

II. RELATED WORK

We briefly discuss our SSL setting and several existing
methods that are most related to this work by illustrating
different perspectives of learning paradigms including SSL,
kernel learning, and graph structure learning.

The problem of SSL aims to learn a classifier based on
both the labeled and unlabeled data [1], [2]. There are two
SSL paradigms: transductive learning [4], [7], [27], [28] and
inductive learning [8], [10], where transductive learning ap-
plies the classifier to unlabeled data during the training stage
and the classifier does not generalize to unseen data, while
inductive learning learns a parametric function to explicitly
represent the classifier so that it is applicable to unseen data.
For graph-based SSL methods, the graph can either be derived
from data [28], or known as the external domain knowledge
such as a knowledge graph [29] or a citation network [30]. In
this paper, we mainly focus on the transductive SSL and the
graph is unknown.

Various learning criteria have been explored by existing SSL
algorithms. Transductive SVM [4], [5] maximizes the margin
of classifier based on low-density separation assumption so
that the classifier lies in a sparse area of the feature space.
Graph-based SSL methods [10], [28] assume that the nearby
vertices on the graph are more likely to have the same labels.
Learning a kernel matrix for supervised classification problem
have been widely studied, e.g., the multiple kernel learning
(MKL) [31], and it is also extended for the graph-based SSL
[32], where the spectrum of the graph Laplacian matrix derived
from data is optimized to achieve a ridge regression model for
SSL classification problems. The kernel matrix is dense so it
is not interpretable for exploring the manifold structure of the
input data as usually represented by a sparse graph.

Since the graph is the key to the success of the graph-based
SSL methods, improving the quality of the graph has become
one of the hot topics. For example, manually crafted graphs
are often used. In constrained large margin local projection
methods [33], [34], graphs are pre-constructed from a K-
NN graph of the labeled data and pairwise constraints of
the class labels such as must-link (ML) and cannot-link (CL)
constraints.

Inspired by learning the graphs from data for better quality,
the sparse representation techniques, e.g., LLE, are widely
used as a separate step for graph construction. Instead of
manually crafting graphs as in label propagation [27], lin-
ear neighborhood propagation method [35] learns a sparse
graph using LLE, which is then incorporated into the label
propagation for SSL. For large-scale data, an anchor graph
is constructed based on anchor points and the weights are
then obtained by local anchor embedding (LAE) [13]. It is
lately improved by modifying either the graph construction
step, e.g., imposing the absolute operator on the weights
of equality constraints [14], constructing a multiple layer
anchors with a pyramid-style structure [15], or the SSL model
using the flexible manifold embedding [16]. In [17], a graph
precomputed via LLE for the locality information is later
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TABLE I
NOTATION AND DEFINITIONS
Notation Definition
c the number of class labels
m the dimension of the latent space

Dy = {(xi,y:) 1ty

D“‘ = {Xi}?:nl+1
Z = z1,..

A labeled data set consists of n; data points x; €

R? and its label y; € {1,2,...,c}

An unlabeled data set

A matrix of random variables for embedded data

with the ith column z; € R™ corresponding to x;

Zri A random variable for the rth row and the ith
column of Z

.y Zn

Z =f1,... ,fm]T f, is a column random vector corresponds to the
rthrow of Z,Vr=1,...,m

b, Pairwise distance functions over two points in the
latent space and input space, respectively

p, m, E, KL Density function, prior density and the expectation

function, and KullbackLeibler divergence of two
density functions

et The Lagrangian multipliers and also the matrix
representation of the learned graph

incorporated into MMD-Isomap [18] by preserving pairwise
geodesic distance for SSL. Instead of the conventional graphs,
a hypergraph is constructed using ¢; sparse representation, and
then the hyperedge weights and predicted labels are jointly
optimized [36]. The graphs obtained by the above methods
highly rely on the LLE, so they may not work well in the
case that LLE assumption does not hold [22].

The joint optimization of LLE-type graph learning and
SSL models have also been explored. In [19], local manifold
structure learning and constrained concept factorization are
jointly optimized so as to improve the representation and
discriminating abilities by imposing the consistency among
the data reconstruction, the learned representation, and the
predicted labels. The nonnegative ¢5 regularized graph learning
is simultaneously solved with the objective of the positive
and negative label propagation [20] in kernel space for the
improvement of semi-supervised classification [37].

Another approach for graph construction is that the coeffi-
cients from the low-rank representation are used to construct
a graph for SSL [38]. In addition, metric learning is also used
to learn the weights of a graph with the fixed connectivities,
e.g., the weights parameterized by Gaussian kernel with Ma-
halanobis distance [39], [40]. These methods update weights
of graphs instead of learning a sparse representation, so it is
not easy to control the sparsity of the graph weights.

In unsupervised setting, kernel learning and graph structure
learning have been studied to capture the intrinsic manifold
structure of the input data. MVU [26] learns a kernel matrix
by maximizing the variance of the kernel and simultaneously
maintaining the pairwise distances over the set of neighbors.
Maximum posterior manifold embedding (MPME) [41] learns
a posterior distribution of low-dimensional latent variables
by preserving the expectation distances over an unknown
density distribution, so it is treated as a probabilistic version
of MVU. MPME owns the advantages to easily incorporate
prior information of data. Moreover, various graph structure
learning algorithms [11], [23], [24] have been proposed to
automatically derive a good weighted graph for dimensionality
reduction and clustering. However, these learning criteria are
seldom explored for SSL.

III. PROBABILISTIC SEMI-SUPERVISED LEARNING VIA
SPARSE GRAPH STRUCTURE LEARNING

In this section, we first present the motivation of the
proposed work, and then give the detailed descriptions on
model formulation, optimization method, and the inference of
unlabeled data. For the ease of reference, we summarize some
important notation and definitions in Table I, which will be
used throughout the whole paper.

A. Motivation

As discussed in Section II, graphs are the key information
extracted from the input data for graph-based SSL methods.
Most commonly used graph construction approaches are con-
sidered as some variants of LLE, including 1) vertexes of
graphs are defined in the original data space together with
constraints, e.g., simplex constraints [13], [16] and linear
constraints with absolute operator [14]; 2) vertexes of graphs
are defined in some representation space [17], but the weights
are learned from the input data; 3) vertexes of graphs are
consistent in the input space, some representation space and
label space [19], or kernel space and label space [37]. Hence,
they inherit the assumption of LLE, that is, a manifold is
formed by local patches which are nearly linear and overlap
with one another. However, LLE has its intrinsic drawbacks
[22]:

1) It is unavoidable to derive the non-uniform warps and
folds if the sample density is low or the points are
unevenly sampled.

2) It is very sensitive to noise.

3) The general metric is not easy to be incorporated except
the inherent Euclidean distance.

4) It cannot guarantee two embedded points must be differ-
ent if their corresponding input data points are different.

5) A single continuous manifold is assumed, so it is not
proper for multi-class classification problems.

As a result, the graph-based SSL methods discussed in Section
II face the similar drawbacks as LLE.

Inspired by overcoming the above drawbacks brought by
LLE, we in this paper seek a completely different approach
for learning graphs from the input data. We aim at estimating
a density function for unknown embeddings given a dataset
with certain priors. The drawback 1) will not be an issue if
the manifold is built on a continuous density function instead
of a set of drawn data points. Moreover, the probabilistic
density estimation approach can easily incorporate priors such
as noise model for drawback 2) and a general metric function
for calculating proper pairwise distances between any two
input data points for drawback 3). Furthermore, our approach
is built on distance preservation criterion by simultaneously
integrating labeled data so it does not assume any single
continuous manifold. Hence, the drawbacks 4) and 5) will be
resolved.

B. Model formulation

Let Dy = {(xi,v:)};L, be a labeled dataset, and D, =
{xi}i=,, 11 be an unlabeled dataset, where n data points
{x;}"_, and their associated labels {y;}? ; are sampled from
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some unknown distribution. Every data point x;,Ve = 1,...,n
resides in R and its label y; is assigned as one of the given
set {1,2,...,c} of c classes. There are only n; known labels,
although n data points are given. We aim to develop a novel
probabilistic density estimation approach for SSL via graph
structure learning based on I; and D, and then predict the
labels of unlabeled data.

Our method is motivated from the idea of distance preser-
vation [26], where pairwise distances between data points are
preserved, so that the distances between two data points in
the original space can be maintained for their corresponding
embedded points. Based on this motivation, we assume that
both labeled data and unlabeled data share some latent space
in terms of distances. We further infer the class labels of
unlabeled data through this latent space. Moreover, the given
set of labeled data is leveraged to push away data points of
different classes and pull data points of same classes as close
as possible.

Denote the latent space by R” where m < d. Let {z;}!" ;
with z; € R™, Vi, be the latent embeddings associated to the
given data points {x;}?_,. Now, the pairwise distance between
two latent points is defined as

O(zi,2;) = ||z — 2513, Vi, j, (1)

where the Euclidean distance is used in the latent space. As
mentioned above, we assume that data points are sampled from
some unknown distribution, so it is reasonable to assume there
is a density function over the latent variables. To model the
unknown distribution over latent variables, we treat z as a set
of real values sampled from m random vectors of size n and
denote its density function as

p(Z) =[] p(£.), 2)
r=1
where Z = [z1,...,2,] = [f1,...,f,]T € R™>*" In other

words, the m random vectors {f.}"; are independent and
identically distributed by following p(f,) with samples in
R™. Since Z is assumed to be a matrix of m X n random
variables, equation (1) now stands for a probability distribution
instead of a distance metric. To model the distance metric
in the probabilistic latent space, the expectation of (1) over
the given density function of Z is used. As a result, we
define the following function as the transformed distance in
the probability space, Vi, j,

E[6(2:,7;)] = B[ll2: — 23]
= Em:/p(fr)(zr,i —z5)dE, ()

r=1
where the second equality holds due to (2). It is clear that the
Bayesian average of pairwise distances over the density of la-
tent embeddings (3) can be more robust than the deterministic
counterparts (1).

Given labeled data set ID;, we aim to maximize the class
separation by minimizing the within-class distances and max-
imizing the between-class distances. To achieve this goal, we
propose to minimize the following function as

v 1—v
Lo =15 (i%SE[qﬁ(zi,zj)] - (i§pm[¢(zi,zj)] @)
where § = {(4,j)lyi = v;,Vi,j = 1,...,m} and D =
{6, )lyi # y;j,Vi,5 = 1,...,n} are pairs of labeled data
points with same and different classes, respectively. |S| is
the size of the set S (same notation for |D|), and v €
[0,1] is a parameter to regulate the strength of pushing and
pulling operations on I);. We notice that similar criterion
for leveraging supervised information can be found in the
literature. In supervised learning, the learning criterion called
class separability is widely used in linear discriminant analysis
(LDA) [42]. In semi-supervised learning, the ML and CL
constraints from labeled data are also explored [33], [34]. The
key advantage of (4) is the robustness of the class separability
criterion to the data noise because of the Bayesian average on
the pairwise distances, which is not applicable for the above
methods.

For all data points {x;}? ; from both I; and D,, the
pairwise distances need to be preserved in the latent space
so as to build the bridge between I); and D,,, that is,

]E|:¢(Zi7zj):| = @(xiaxj)avz.a.ﬁ (5)

where ¢ is a task-specific distance function. The distance
preservation provides a simple and natural way to incorporate
various distance metrics. Some examples of various distance
functions are shown as follows:

o the Euclidean distance:
p(xi,%5) = [|xi — x4|[*, ¥4, j, (6)

« the cosine discrepancy:

XTX :
(p(xﬁx'):l_lijuvzlmﬁ (7)
R |3 |2[x;] |2
where cosine similarity is frequently used in document
classification.
o the Gaussian kernel distance:
o(xi,x5) = 2(1 — K(xi, %)), Vi, J, (8)

where x is the Gaussian kernel function defined as
K(xi,%;) = exp(—2Z2X%) ) with bandwidth o.

In some cases, it is known that the input data has some
manifold structure, and the structure can be properly captured
by a neighborhood graph such as the K-NN graph. Denote the
neighbors of x; by &;. We preserve these distances represented

for the manifold given by
E{¢(Zi,zj)} = ¢(x4,%x5),Vi,j € &. )

It is worth noting that the neighborhood graph here can be
less sensitive to SSL than the prefixed graph used in existing
graph-based methods since our method is able to impose the
sparsity over a full connectivity graph. However, the neighbors
of each data point can significantly reduce the computation
complexity of the proposed method, which will be clarified in
the following of this section.
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To prevent p(Z) from being arbitrary, we further constrain
the unknown distribution to be close to a prior distribution

m m

w(2) = [ =) = [TV (E[0,4D),

r=1

(10)

where I is the identity matrix of size n X n and v > 0 is the
bandwidth of the normal distribution with zero mean and -y
variance. The noise of embeddings can be naturally modeled
by density 7. The above constraint can be achieved effectively
by minimizing the KL-divergence between p(Z) and 7(Z2)
given by

KLG(2)7(2)) = [ 9210 27302

= i / p(f;) log

By combining the above three ingredients (4), (9), and
(11), we propose the probabilistic semi-supervised learning
by solving the following optimization problem

p(f,)
W(fr)dfr. (11)

min  KL(p(Z)[|7(Z)) + A2Lp,
{P(fr):,ﬂ:1

s.t. E[qﬁ(zi, zj)} = p(x4,%4),Vi,5 € &
p(f.) € P,

12)

where P, is a feasible set of all density functions over f,. and
A2 > 0 is the regularizaiton parameter.

In reality, data points are usually contaminated with noisy
signals. Strictly preserving distances might not be the best
choice. To tolerate the data noise, in this paper, we consider
to learn a smooth skeleton structure of latent variables to
represent the inherent manifold of the input data via the
shrinkage approach [43] given by

(P(2)Im(2)) + M g+ AeLn,

1,5€E;

min KL (13)
{p(fr)7e 1€}

s.t. IE[gb(zi,zj)} < o(x, %)+ & 5,Vi, 5 €&
fi,j > O,Vi,j € &
p(f.) € P.

where \; is the regularization parameter for shrinkage effect.
Next, we transform (13) to its dual problem and present an
optimization method to solve the dual problem.

C. Problem reformulation

As problem (13) involves the functional optimization vari-
ables, it is challenging to solve it directly. Fortunately, problem
(13) is convex with respect to {p(f;)}; and {¢; ;}. Rather
than solving (13), we consider to solve its dual problem
by applying an equivalent transformation via the Lagrangian
duality [44]. Specifically, we introduce multipliers {«; ; > 0},
{B,; > 0}. The Lagrangian function can be written as

L({p(f:);ta}, {€is ) {ous b {Bis})
=>" [ p(f)log i((t;:)) dfe + A1) iy — Y Biiiy

1,JEE; i,JEE;

+ Qg (E [(ﬁ(zmzj)} — p(xi, x5) — §m‘)

1—v

+A2 <|SV| Z E[Qﬁ(zhzj)] - D] Z E[qb(zi’zj)}).
(3)€s ep

Here, we assume that the neighborhood graph is undirected,
so the shrinkage constraints are symmetric. This leads to the
symmetric multipliers, i.e., oy ; = «;, Vi, j. Moreover, the
distance function ¢ enforces the condition that the shrinkage
constraint always holds, so «;; = 0,V¢ is optimal for (13).
Let 1 be the vector of all ones. We derive the KKT conditions

O, ; L=XM —a;j—Bij =0,Vi,j €&
Opey L = logp(f,.) — logm(f.) + 1

(14)

v g 1—-v 9
+ A2 F\ Z (2ri — 2rj)° — W Z (2ri — 2r,j)
(4,5)€S (4,7)ED
+ > iz — )

z‘,jeé‘i
=logp(f.) —logm(f,) + 1 + 2Tr(f. (Ao Lsp + La)f")
=0,Vr

/ p(£)dE, = 1,p(£,) > 0,¥r,

Qg j (E {Qﬁ(zuzj)} — o(xi,x5) — fz‘,j) =0,Vi,j €&, (17

15)
(16)

where LSD = FV|LS - 1\_TI|/LD’ LS = diag(Sl) - S, LD =
diag(D1) — D, L4 = diag(A1) — A, with matrices S, D and
A are defined as

_J L (L5)€eS
S { 0, otherwise. (18)
o _J 1, (,j)eD
Dij = { 0, otherwise. (19)
) oy, €&
Aij = { 0, otherwise. (20)

According to (15) and (16), we have the analytic solution

p(£,) oc w(f,) exp(—2Tr(f.(AaLsp + L )fT)

- L g (1R
V2 2y
1

— (2m)F oxp (-5 TEC QL)

2Tr(f, (Ao Lsp 4+ L )fT >
(21

where Q = I + 4y(X2Lsp + La). According to (17), it is
clear to see that a;; = O if pairwise distance constraint is
strictly unequal. As a result, the optimal solution of « should
be sparser than the initial neighborhood graph. By substituting
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the above equations back to the Lagrangian function, we obtain
the dual problem of (13) as

maX—ZQ — Z o X;, X,
AGA 7,,]%0 19 ]

1,j€E;

(22)

where the logarithm of partition term of density (21) is

Q, = 10g/(27r7)_% exp <_;Tr(fr(flyQ)f,T)> df,

1 1
= —ilogdet(;Q). (23)

Let A be the bounded feasible set for matrix A and matrix
A = [0y ;] with the (4, j)th element defined as

o= 0,
YA oy c

where the box constraints over «; ; is obtained from (14) and
the multipliers o; ; > 0 and §; ; > 0, V4,5 € &;.
Finally, we obtain the simplified dual problem as

+ Y @ip(xix;)
i

S.L. Q =1 +4’)’(>\2L5D + LA)

j¢gi\/’i:]

otherwise, (24)

[07)‘1]7

min

25
A€A,Q>0 (25)

m
—3 log det(Q)

Problem (25) is the dual problem of (13) as a semidefinite
programming (SDP) [44]. Next, we will present an efficient
optimization method for solving (25).

D. Optimization algorithm

Due to the positive semidefinite constraint and sepcial
structure of A, we propose to solve (25) using the alternating
direction method of multipliers (ADMM) [45]. Specifically,
we first formulate the proximal regularized Lagrangian func-
tion with multiplier R and parameter p given by

Lp(A7Q7’Ya +ZO‘77]¢(X1?X])
%]

(I +~(4X2Lsp +4L4)))

(I +~(4XaLsp +4LA))||F

R)=— %bgdet(Q)
- <RaQ -

0
+§|\Q—

According to [45], the following updates can be taken to solve
(25) by iterating them until convergence:

A < ar minZau X, X
gAeAH i, (Xi, X;)
i,

1
+51Q = I+ (WhaLsp +4La) = Rl (26
. m
Q earggli%—glog det(Q)
1
+511Q — U+ 5(WeLsp +4La) ~ RIF @D
R—R—p(Q— (I+~v(4X2Lsp +4LyA))). (28)

Below, we will show the method for solving each subproblem
separately.

1) Solve problem (26): Define 4yP = Q—1—4XyyLsp —
SR and ¥ = [¢)(x;,x;)]. We have

FIA) = aijeo(xi x;) + 807 ||La — P[%
,J
— (A, 0) + 8p7?||diag(A1) — A — P2

Let U = diag(A1) — A — P. We obtain the first derivative
with respect to «; ; for i < j,
af(A) — 8p? UT@(dlag(Al) A—P)
O Oa j

= 8p7*Tr (UT B, ;) + 2¢(xi, ;)

)+ 200

(29)

(]

due to the symmetric property of A where the (s,t) entry of
matrix B; ; is given by
1, s=t=to0ors=t=j
Bfﬁ‘f: —-1, s=iandt=jors=jandt=1
0, otherwise.

(30)

We can further simplify the computation of gradient for the
upper triangular part of the symmetric matrix A as

9f(A) _
80&1‘,]‘ B
With this reformulation, the total number of variables to be
optimized in (26) is about £ > 7" | |&|. For a large n, the
total number of variables will be a linear function of the total
number of data points. Fortunately, problem (26) is convex
with box constraints, so it can be solved efficiently for large-
scale problems by existing methods such as L-BFGS-B [46].
2) Solve problem (27): Denote C = I+4y(AoLsp+La)+
%R and eigen-decomposition C = VXV with diagonal
matrix ¥; ; = o;,v: and matrix V' of orthonormal columns.
The optimization problem (27) is reformulated as

p
+2Ie-cl,

which has the optimal solution [41]

N 2
Q:VZVT:@:— \/Z’Jri,vz', (32)

where 3 is a diagonal matrix with the (i,4)th entry &;.
The adaptive update of p is adopted for fast convergence
[45]. The convergence criteria of ADMM in [45] is employed.

8 72(Ui,i + Uj,j —

Uiy — Uji) + 2¢(Xi, X;).

..m
min — - log det(Q) 31

E. Initialization

To solve problem (25) using ADMM, a good initializer
can speed up the convergence. If we disable the supervised
information in (13), i.e., Ay = 0, we have

KL(p(Z)||m(Z)) + A1y &ij

min
{p(f7')7~=1}»{£i,j} i,jEE;

s.t. ]E[q[)(z%zj)} < o(xi,x5) + &y, Vi j €&
fi_’j > O,Vi,j S 52

(33)

p(f,) € Pr.
Accordingly, we have its dual problem as
min — — log det(I +4yLa) + > aijd(xi, ;). (34)

AcA —
2¥)
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Algorithm 1 Structure Semi-supervised Learning (StructSSL)

1: Input: labeled data D; and unlabeled data D,,, neighbors &;, Vi,
reduced dimension m, parameters A1, A2, v, ¥

. compute distance measures using (6), or (7), or (8)

: Initialize A by solving (34)

repeat
update @ using (32)
update R using (28)
obtain A by solving (26) using L-BFGS-B

: until Convergence

: obtain Z using KPCA

: train a classifier on labeled embeddings and predict labels for
unlabeled data R

: Output: embeddings Z, sparse graph matrix A, kernel matrix
Q' and the labels of unlabeled data

—

—
—_

It is well-known that the graph Laplacian matrix L 4 is positive
semidefinite for A > 0. Hence, the semidefinite constraint in
(34) is automatically satisfied for all A € A. As a result,
(34) can also be solved by L-BFGS-B due to the similar
formulation to subproblem (26). It is worth noting that problem
(34) is the same as MPME [43], so our newly proposed model
(25) is more general than MPME with the capability of semi-
supervised learning and various distance measures.

F. Inferring the labels of unlabeled data via the learned graph

After () is obtained, we recover the embeddings of the input
points, and then conduct supervised classification based on
the embedded points by training on labeled data only and
predicting the labels of the unlabeled data.

First, we need to recover the latent variables {z;}" ; via
point estimation based on (21), which is further written as a
multivariate normal distribution

p(f.) = N(07 'YQil)'

The expectation of pairwise distance between two latent vari-
ables can be simplified as

(35)

E[o(zi,25)| = my[Qi} + Q) —2Q7}] Vii. G6)
which leads to the point-based estimation {z;}? ; as
212, = myQ; . Vi, j. (37)

Interestingly, this is equivalent to the definition of a linear
kernel over {Zz;}! , according to the kernel trick [47]. For
kernel-based classification method, this kernel can be directly
used to measure the similarity between two input data points,
such as support vector machines (SVMs) [47]. To further
investigate the property of the latent variables such as the
visualization for exploration analysis, it is natural to use KPCA
[48] to uncover {z;}"_, from Q' by keeping the top m basis
with the largest eigenvalues of the centralized matrix of QN

Given Z = {z;}_;, we can construct two new data
sets including the labeled data D, = {(2;,y:)};; and the
unlabeled data D, = {z;}j_, ;. Any classifiers such as

support vector machines (SVM) [49] and K-NN classifier can
be trained on the labeled data I); and applied to make the
prediction of unlabeled data D,,. The proposed SSL algorithm
is shown in Algorithm 1.

G. Computational Complexity Analysis

The computational cost of Algorithm 1 is mainly con-
tributed by the following components. Denote by ¢ the num-
ber of non-zeros in the lower triangular part of the initial
neighborhood graph {&;}?_,. In step 2, the computational cost
for the distance measures of pairs of neighbors is O(qd). In
step 5, the eigenproblem is solved for ), so the complexity
is in O(n?). In step 6, updating R takes O(n?). In step 7,
problem (26) is solved by L-BFGS-B, where the number of
optimized variables is ¢. In L-BFGS-B, the computational
complexity is contributed mostly by the following parts: 1)
computing gradients with respect to A takes 4¢ since there is
only 4 nonzeros in B; ;; and 2) computing objective value
takes O(n?). As discussed in [46], L-BFGS-B algorithm
shares many features of quasi-Newton algorithms but it is very
efficient for computing the approximate Newton’s direction
using efficient Hessian updates with limited memory footprint.
In practice, it is very efficient for solving problem (26)
with millions of variables. KPCA takes O(n?) to get the
embeddings of the whole data in step 9. Except the cost of
training classifier on the data of size n; X m is negligible,
the majority cost of Algorithm 1 is in the scale of O(n?).
Due to the cubic computation complexity, Algorithm 1 is not
scalable for large-scale data, but it works well for moderate-
size datasets.

IV. NUMERICAL EXPERIMENTS
A. Experimental setting

We evaluate the performance of our proposed method in
terms of three predefined distance measures, i.e., (6), (7)
and (8), on one synthetic data set and five benchmark SSL
data sets as shown in Table II, by comparing against var-
ious existing methods that are capable of conducting SSL
and following the experimental setting used in [32], [50],
[51]. The synthetic three-moon data is simulated with details
shown in Section IV-B. Except Opt-digits from UCI machine
learning repository!, the other four datasets are available?. The
descriptions of all benchmark data sets are given in Section
IV-C. All compared methods in this paper are illustrated
with their specific parameters (common parameters shared
by various baselines will be discussed later for the concise
representation), and are tuned in their own proper ranges in
order to report their best results for fair comparisons:

e K-nearest neighbor classifier (K-NN): K is tuned in a
wide range {1,2,4,5,10, 20,30, 40, 50, 70, 90, 100, 120,
140, 150, 160, 180, 200}.

o Spectral Graph Transformation (SGT) [7]: the parameter
c is searched in {103a : a € {3,3.2,3.4,3.8,5,100} }.

o Laplacian Regularized Least Squares (LapRLS) [10]: two
regularization parameters are tuned over y4 € {10% :
a € {-6,—-4,-2,0,2}} and 7y € {10* a €
{—00,—4,-2,0,2}}.

e Psqg using SQ-Loss-1 and Measure Propagation (MP)
[50]: the trade-off parameters ;o and v are tuned over

Larchive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
2olivier.chapelle.cc/ssl-book/benchmarks.html
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{10 : a € {-8,—6,—4,-2,0,1,2}} and {10% : a €
{-8,—6,—4,—2,0,1}}, respectively.

o Multiclass Ginzburg-Landau energy (Multiclass GL) and
Multiclass graph-based Merriman-Bence-Osher (Multi-
class MBO) [52]: the convexity parameter C' = u+ 1/¢
is used in multiclass GL, and diffusion step Ng = 3 is
used before any thresholding. As claimed in the paper,
other parameters are specially tuned for each data set.

o Laplacian-based multiclass graph partitioning with a
region-force (LapRF) and TV-based multiclass graph
partitioning with a region-force (TVRF) [51]. m =1
considers the direct neighbors of the labeled points and
m = 2 uses the second neighbors. Other parameters are
tuned as suggested by the authors.

o SimpleMKL [31] and Spectral kernel learning (SKL)
[32]. Two kernel learning methods can be used for semi-
supervised learning. SimpleMKL learns a convex combi-
nation of multiple base kernels including Gaussian ker-
nels with bandwidth in {0.5,1,2,5,7,10,12,15,17,20}
and polynomial kernels with degrees in {1,2,3}. The
graph Laplacian in SKL is constructed from K-NN
using heat kernel weights and its degree in {2,5}.
For both methods, parameter C is turned in €
{0.01,0.1,1,10,100}.

e« AGR [13] and fr-FME [16]. f/r-FME methods extend
FME by taking the use of LAE graph for scalable SSL.
The number of anchor points are the ratio of the number
of data tuned in range {0.01,0.1 : 0.1 : 1}, where
large anchor points are used in order to achieve good
performance on mediate datasets. The tradeoff parameters
p and «y in FME are tuned in 1079, 10°]. The rest of other
parameters follow the experimental settings in [16].

o KernelLP [37], a joint optimization method for positive
and negative label propagation and adaptive weights
learning in kernel space. In the experiments, the Gaus-
sian kernel is used and tuned as explained below.
Both tradeoff parameters o and (3 are tuned in range
{0.01,0.1,1,10,100}. The weighting factors u* = 100
and v~ = 1 are used for labeled data, and O for unlabeled
data, as stated in [37].

o SSLRR [38]. Low rank representation is used for graph
construction by incorporating label information of the
labeled data. The parameter A for balancing the effects
of nuclear norm of the coefficient matrix and the sample-
specific corruptions and regularization parameter u of la-
bel propagation are tuned in range {0.01,0.1, 1,10, 100}.

e MVU [26] and MPME [41]. Both methods are learning
the embeddings of all data points in the unsupervised
setting. Due to the high complexity of SDP solver used
in MVU, we try two variants of MVU called Landmark
MVU and Fast MVU and choose the best results for
comparison [53].

o StructSSL, which is the proposed method as shown in
Algorithm 1. Two base classifiers, SVM and K-NN
classier, are used, and three distance functions are tested.
We fix A\ = 1.0, and tune m € {5,10,20,50} for the
dimensionality of latent points and K € {5,10,20} for
K-NN graph. The label balance parameter v is chosen

TABLE 11
DATA SETS USED IN THE EXPERIMENTS
Data Set n c d
three-moon | 1500 3 100
Digitl 1500 2 241
Text 1500 2 11960

USPS 1500 2 241
COIL6 1500 6 241
Opt-Digits | 5620 10 64

in the grid {0.2,0.4,0.8} and the trade-off parameter for
supervised information is A2 € {0.01,0.1,1}. The prior
parameter ~ is tuned in {0.1,1}.

In addition to the method-specific parameters, some param-
eters shared by the above-mentioned methods are discussed
as follows. In the graph-based methods, K in the neighbor-
hood graph is tuned over {2,5,10,50,100,200,n — 1}. The
bandwidth parameter of the Gaussian kernel in SQ-Loss-1,
SGT and MP is determined over {g,/3:a € {2,3,...,10}},
where g, is the average distance between each sample and its
ath nearest neighbor over the entire data set. In LapRLS, the
bandwidth parameter is tuned in a slightly different set {2%0 :
a € {-3,-2,-1,0,1,2,3}} where o is the average norm
of the feature vectors as recommended in [1]. In StructSSL
with (8), the bandwidth parameters tuned for LapRLS are
used to calculate the Gaussian kernel. For methods without
inherent classification model, SVM for classification [49] with
Gaussian kernel is used for evaluation. In the following results,
we mark the unavailable results from corresponding methods
as ‘-’. And, results taken from [50] do not report the standard
deviation of each setting.

For binary classification methods such as SGT, LapRLS and
SimpleMKL, the one vs. rest strategy is used to obtain the
results for multiclass data sets. The average accuracies over
10 runs with randomly selected number of labeled samples
are reported, where n; € {10, 20,50, 80,100, 150}. For fair
comparison, we compare the results of our proposed method
StructSSL with the best results reported in baseline methods
on the same data sets when the experiments are conducted
under the same setting.

B. Synthetic data

The three-moon data is used to investigate the properties of
the proposed method, which has also been used in the existing
SSL methods [51], [52]. The three-moon data consists of three
two-dimensional half circles with added Gaussian noise, i.e.,
N(0,0.14). The center locations of three points are (0,0.5),
(3,0.5) and (1.5, —0.5) with radius 1, 1 and 1.5, respectively.
500 points are uniformly sampled from each half circle. The
data is expanded to the space R!%° with only Gaussian noise
for the rest 98 dimensions. The data is visualized in 2-D space
using the two true features as shown in Fig. 1(a). The results
are obtained by applying three different classifiers (1-NN, 3-
NN and SVM) on the learned embeddings in 2-D space using
the Euclidean distance (6) with prefixed parameters: Ao =
1073, » = 0.9, and K = 5.

The mean accuracies of StructSSL over 10 runs with
randomly sampled labels are shown in Table III by comparing
with other methods on the same data, where the results of these
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TABLE III
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 8 COMPARED METHODS ON THREE-MOON DATA OVER 10 RUNS WITH RANDOMLY SELECTED
NUMBER OF LABELS. THE BEST RESULTS ARE IN BOLD.

ny 6 (0.4%) 15 (1%) 25 (1.67%) 30 2%) 50 (3.3%) 75 (5%)

multicalss MBO - - 68.3 - 84.1 94.3

LapRF (m=1) - - 95.1 - 96.4 98.1

TVRF (m=1) - - 96.4 - 98.2 98.4

LapRF (m=2) - - 96.4 - 97.9 98.5

TVRF (m=2) - - 96.4 - 98.2 98.6
StructSSL (Euclidean, 1-NN) | 99.26 + 0.08  99.27 +£ 0.06  99.14 + 0.36  99.19 4+ 0.23  99.19 + 0.26  99.25 + 0.18
StructSSL (Euclidean, 3-NN) | 99.26 £ 0.03  99.25 4+ 0.04 99.32 + 0.07 99.26 + 0.14  99.28 £+ 0.07  99.31 £ 0.06
StructSSL (Euclidean, SVM) | 99.34 4+ 0.06 99.33 + 0.05 99.38 + 0.08 99.37 + 0.06 99.36 + 0.09 99.39 + 0.07

o Y .

(b)

(d)

a C
Fig. 1. The results obtained by StructSSL for three-moon data with 6 labels. (a) The ground truth data in 2-D space over the two true features where
pentagram markers stands for the selected labeled data. (b) The adjacency matrix A learned by StructSSL (nz is the number of non-zero entries). (c) The
kernel matrix Q' learned by StructSSL. (d) The visualization of latent points in 2-D space with the corresponding predicted labels.

TABLE IV
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 16 COMPARED METHODS ON DIGIT]1 DATA OVER 10 RUNS WITH RANDOMLY SELECTED NUMBER
OF LABELS. THE BEST RESULTS ARE IN BOLD.

n; 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 67.6 79.5 90.2 93.2 91.2 95.2
SGT 92.1 93.6 96.2 97.1 97.4 97.7
LapRLS 92.4 95.3 95.7 96.2 97.1 97.4
SQ-Loss-1 91.2 94.9 96.9 96.6 97.2 97.1
MP 92.1 95.4 96.1 97.4 97.4 97.8
AnchorGraph 9397 £ 183 9675 £ 103 97.11 £ 129 9757 £0.60 98.02+0.25 97.77 £ 0.59
f-FME 9423 £2.00 96.71 £1.00 9730 +£0.55 97.61 £0.61 97.82 +0.31 97.70 £+ 0.39
r-FME 9422 £2.05 9649 £ 089 97.07 £0.79 9744 £0.53 9749 + 043 97.54 £ 043
KernelLP 93.08 £2.75 94.09 £ 186 9574 £ 129 96.01 £ 1.17 9556 £ 0.86 95.61 £ 0.66
SSLRR 83.02 £3.50 8845 +247 93.04 £122 9473 £1.64 9549 £0.82 96.01 + 0.66
SimpleMKL 7828 £ 4.16 8436 + 432 9141 £237 9391 £ 190 94.67 £ 0.78 94.69 £ 1.10
SKL 9376 £ 3.01 9591 £ 150 9732 +0.87 9753 £0.67 97.78 £049 97.87 £ 0.35
MVU 91.78 £ 1.53 9276 £ 1.33 9383 £ 1.05 9435094 9435+ 0.79 94.40 £ 0.58
MPME 90.65 +3.39 9232 +3.60 9645 £ 1.16 9742 + 127 97.83 + 0.64 97.81 £ 0.64
StructSSL (Euclidean, SVM) | 95.58 £ 2.48 9632 + 1.62  98.65 £ 0.39  98.66 + 0.50 98.91 £ 0.35 98.81 + 0.35
StructSSL (Gaussian, SVM) | 95.62 + 2.09 96.84 + 1.48 98.85 + 040 9849 + 0.54 9886 £ 041 98.90 + 0.33

methods are taken from [51]. From the results in Table III, we
observe that 1) StructSSLs outperform compared methods over
all the varied number of labels such as n; € {25,50,75}. 2)
StructSSLs with the less labeled data, for example, n; = 6,
outperform baseline methods with more labeled data. 3) SVM
as the classifier in StructSSL is marginally better than 1-
NN and 3-NN. In the following experiments, we will report
StructSSL based on the SVM classifier.

In addition, we show various intermediate results ob-
tained by StructSSL including the sparse similarity matrix A
(weighted graph), kernel matrix Q~', and latent embeddings
Z of the three-moon data with the predicted labels in Fig 1.
First, we observe from Fig. 1(b) that the number of non-zero
entries of the learned sparse similarity matrix is 12, 344, which
is less than 0.6% of 1500 x 1500 matrix and also smaller than
the 5-NN graph. Hence, StructSSL can reduce the initial non-
zero entries of the K-NN graph to a sparser similarity matrix.
The kernel matrix in Fig. 1(c) shows very clear blockwise

diagonal structure, which corresponds to the fact that data
points are sampled from three half-circles. Finally, from Fig.
1(d), it is easy to see that the embedded points in the 2-D space
demonstrate three components where two smaller ones (blue
and red) and a larger one (green). Each component corresponds
to one half-circle of the ground truth data. Hence, StructSSL
can recover the proper inherent smooth manifold structure of
data regardless of the noise.

Since the classification results of six available labels can
achieve much better results than compared methods over
varied number of labels, this implies that StructSSL with
distance preservation is effective and less sensitive to the
number of labeled data due to the robustness of the embedding
space over a smooth skeleton structure for SSL.

C. Benchmark data sets

We conduct extensive experiments by comparing StructSSL
with various baseline methods for both binary classification
and multiclass classification in terms of classification accuracy
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TABLE V
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 15 COMPARED METHODS ON TEXT DATA OVER 10 RUNS WITH RANDOMLY SELECTED NUMBER OF
LABELS. THE BEST RESULTS ARE IN BOLD.

n] 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 60.2 64.2 71.6 72.4 72.3 74.5
SGT 70.4 70.9 73.1 76.9 71.0 78.1

LapRLS 68.2 69.1 71.2 73.4 742 76.2

SQ-Loss-I 67.9 72.0 74.1 76.8 76.8 76.6

MP 70.3 72.6 73.0 759 75.4 77.9
AnchorGraph 62.11 593 6443 + 1.39 6855 £ 0.10 6944 +£1.79 73.61 =096 73.19 £ 0.73
f-FME 63.66 = 0.52  69.05 £3.73 7355+ 1.12 7408 £ 0.60 76.71 + 0.40 78.52 £ 1.57
r-FME 69.40 = 1.14 6841 £330 7221 £039 7408 £1.79 7521 £0.10 7533 £ 0.73
KernelLP 6591 + 484 7034 + 343 7494 £ 127 7678 £0.94 78.08 & 1.35 78.94 £ 1.09
SSLRR 61.66 =545 6652 +£3.08 7217 £3.71 7481 £ 136 76.69 = 1.33  78.70 £ 1.15
SimpleMKL 6240 £ 4.62 6846 £ 326 7386 £1.62 7485+ 1.02 76.86 £ 0.89 73.93 £ 2.81
SKL 6238 £ 524 67.08 £392 7178 £294 7464 £ 183 7529+ 1.06 76.19 £ 1.24
MVU 62.88 £ 1.76  62.72 £ 2775 63.83 £ 094 6442 £0.52 6446 £0.79 65.02 £ 0.38
MPME 67.30 £ 4.87 7241 £2.10 7478 £196 77.06 £ 1.00 76.84 = 1.19 77.38 £ 0.85
StructSSL (Cosine, SVM) | 73.97 £ 4.27 76.69 + 1.65 78.26 £ 0.71 78.78 + 1.26  79.47 £ 0.97 79.55 + 1.05

TABLE VI

MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 16 COMPARED METHODS ON USPS DATA OVER 10 RUNS WITH RANDOMLY SELECTED NUMBER OF
LABELS. THE BEST RESULTS ARE IN BOLD.

ny 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 80.0 80.4 90.7 92.7 93.6 94.9
SGT 86.2 87.9 94.0 95.7 96.0 97.0
LapRLS 83.9 86.9 93.7 94.7 95.4 95.9
SQ-Loss-1 81.4 82.0 93.6 95.8 95.2 95.2
MP 88.1 90.4 93.9 95.0 96.2 96.8
AnchorGraph 7290 £ 6.17  77.05 £ 6.60 8225 £ 4.68 87.96 + 3.62 86.46 £ 3.64 91.32 £ 2.17
f-FME 73.34 £+ 6.63 80.70 £ 6.20 8726 £ 3.63 90.52 + 1.71  90.05 £ 348 9238 £ 1.51
r-FME 72.89 £ 6.18 7722 £ 4.86 8224 £470 8797 £3.60 86.44 £3.74 91.01 &+ 3.07
KernelLP 69.68 £ 550 7893 £ 6.28 86.15 =448 89.26 £ 3.08 9139 £ 1.75 93.45 £ 1.48
SSLRR 79.66 £+ 2.28 80.80 £ 091  80.88 £ 0.48 81.69 + 0.00 82.14 £ 0.00  83.33 £ 0.00
SimpleMKL 62.48 +22.06 80.78 £5.74 81.26 +4.82 84.14 £ 632 8453 £ 6.32  89.70 £ 2.36
SKL 66.83 + 9.17 84.52 £856 9094 £2.81 9501 £ 1.13 9284 £ 1.61 9546 £ 0.69
MVU 78.08 £+ 9.17 88.14 £2.78 9033 £2.23 9254 + 129 9121 £ 155 9357 £0.73
MPME 86.68 & 7.82  93.07 £2.62 9566 + 1.39 96.77 £ 0.86  96.81 + 0.86 97.27 £ 0.36
StructSSL (Euclidean, SVM) | 91.11 4+ 3.37 9422 £2.29 96.34 + 041 96.83 £ 022 96.81 £0.33 97.03 + 0.21
StructSSL (Gaussian, SVM) 9148 £ 295 9532+ 191 9697 + 0.62 9741 £ 0.19 9748 + 0.24 97.59 + 0.13

over the unlabeled data and report the mean (% standard devi-
ation) accuracies over 10 runs with randomly selected number
of labels. Data descriptions for three binary classification and
two multiclass classifcation, as well as the best experimental
results of the compared methods with parameter tuning in the

above-mentioned grids are shown as follows:
1) Digitl data: This data consists of artificially generated

writings (images) of the digit “1” developed by [54], which
was designed to show that the low-dimensional manifold is
not the cluster structure. Each image is the size of 16 x 16
and 1500 images are sampled. The class labels are assigned
according to the tilt angle, with the boundary corresponding to
an upright digit. A sequence of transformations are applied to
the data for increasing the learning difficulty. Both Euclidean
distance (6) and Gaussian kernel distance (8) are evaluated in
StructSSL. The mean accuracies of 16 compared methods on

Digitl are reported in Table IV.
2) Text data: This is the 5 comp.* groups from the

Newsgroups data set for classifying the IBM category versus
the rest [55]. Each document is a sparse representation of
a term frequency/inverse document frequency with 11,960
dimensions. The cosine discrepancy (7) is used in StructSSL
as the input distance since it generally works better in text
classification. The mean accuracies of 15 compared methods

on Text are reported in Table V.
3) USPS data: The benchmark USPS data is derived from

the famous USPS set of handwritten digits. 150 images are

randomly drawn for each of the ten digits. The digits “2”
and “5” are assigned to the class +1 and the others are
assigned to the class —1. The obscured data [1] is obtained in
order to prevent researchers from exploiting the known spatial
relationship of features in the image. Both Euclidean distance
(6) and Gaussian kernel distance (8) are used in StructSSL.
The mean accuracies of 16 compared methods on USPS are

reported in Table VI
4) COIL6 data: COILG6 [1] is created from the Columbia

object image library (COIL-100), which is a set of color
images of 100 different objects taken from different angles
(in steps of 5 degrees) at a resolution of 128 x 128 [56]. The
red channel of each image is downsampled to 16 x 16 by
averaging over blocks of 8 x 8 pixels. 24 of the 100 objects
are randomly selected and then are partitioned to six classes of
four objects each. Both Euclidean distance (6) and Gaussian
kernel distance (8) are used in StructSSL. The mean accuracies

of 19 compared methods are reported in Table VII.
5) Opt-Digits data: This data consists of normalized

bitmaps of handwritten digits from a preprinted form. 32 x 32
bitmaps are divided into nonoverlapping blocks of 4x4 and the
number of on pixels are counted in each block. This generates
an input matrix of 8 x 8 where each element is an integer in
the range [0, 16]. Each bitmap has one label of 10 classes, i.e.,
{0,1,...,9}. Both Euclidean distance (6) and Gaussian kernel
distance (8) are used in StructSSL. The mean accuracies of 17
compared methods are reported in Table VIII.
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TABLE VII
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 19 COMPARED METHODS ON COIL6 DATA OVER 10 RUNS WITH RANDOMLY SELECTED NUMBER
OF LABELS. WE MARK THE UNAVAILABLE RESULTS FROM CORRESPONDING METHODS AS ’-’. THE BEST RESULTS ARE IN BOLD.

ng 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 34.5 53.9 66.9 77.9 79.2 83.5
SGT 40.1 61.2 78.0 88.5 89.0 89.9
LapRLS 49.2 61.4 78.4 80.1 84.5 87.8
SQ-Loss-1 48.9 63.0 81.0 87.35 89.0 90.9
MP 47.7 65.7 78.5 89.6 90.2 91.1
LapRF (m=1) - - 71.7 - 87.0 91.0
TVRF (m=1) - - 80.3 - 90.0 91.7
multiclass GL - - - - - 91.2
multiclass MBO - - - - - 91.46
AnchorGraph 4822 + 439 5833 +559 8043 £533 8767+ 191 91.09 +2.12 91.53 £ 1.24
f-FME 47.07 &+ 3.11 57.03 + 586 81.52 +£ 638 8942 +2.68 9148 + 141 92.87 £+ 0.66
r-FME 47.64 +4.11  57.19 +3.84 81.59 + 6.27 8940 + 2.67 91.60 + 1.51 92.87 £+ 0.64
KernelLP 41.96 + 2.86 4736 + 4.08 69.13 +£ 428 7851 £2.23 81.79 +1.85 86.10 £ 1.63
SSLRR 3579 +4.69 38.08 &334 43.09 + 430 4893 430 51.08 +2.60 53.41 + 3.72
SimpleMKL 21.16 £ 254 2113 £ 2.15 27.67 +£3.67 31.05 +497 3559 +4.86 41.04 + 3.56
SKL 44.60 + 573 5489 +5.16 78.88 £ 695 8648 +2.63 86.83 + 1.82 89.85 £ 1.46
MPME 48.86 & 6.73  56.00 + 522 7474 £2.71 80.39 £ 1.15 80.86 + 1.39 8241 £ 1.83
StructSSL (Euclidean, SVM)  52.76 + 5.19  65.89 + 4.78 82.27 £3.95 88.81 £ 1.58 90.60 £ 1.68 91.72 £+ 0.55
StructSSL (Gaussian, SVM) 5491 + 4.31 67.36 - 490 85.09 + 4.76 89.54 + 1.87 91.88 + 1.06 93.24 + 0.84
TABLE VIII

MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 17 COMPARED METHODS ON OPT-DIGITS DATA OVER 10 RUNS WITH RANDOMLY SELECTED
NUMBER OF LABELS. WE MARK THE UNAVAILABLE RESULTS FROM CORRESPONDING METHODS AS ’-’. THE BEST RESULTS ARE IN BOLD.

ny 10 (0.18%) 20 (0.36%) 50 (0.89%) 80 (1.42%) 100 (1.78%) 150 (2.67%)
k-NN 79.6 83.9 85.5 90.5 92.0 93.8
SGT 90.4 90.6 91.4 94.7 97.4 97.4
LapRLS 89.7 91.2 92.3 96.1 97.6 97.3
SQ-Loss-1 922 90.2 95.9 97.2 97.3 97.7
MP 90.6 90.8 94.7 96.6 97.0 97.1
LapRF (m=1) - - 79.0 - 95.2 96.8
TVRF (m=1) - - 95.9 - 97.2 98.3
AnchorGraph 9229 £3.02 9329 £4.87 9752 +£059 97.88 £0.60 9790 £ 0.55 98.01 £ 0.38
f-FME 9222 +3.00 9339 £4.76 9731 £056 97.86 £ 0.60 9790 £ 0.55 98.05 &+ 0.61
r-FME 9230 +3.02 9331 £4.86 97.54 £0.60 9791 £0.60 97.90 £ 0.55 98.03 & 0.38
KernelLP 69.17 + 8.81 72.09 £2.00 86.99 + 0.67 89.17 £ 020 91.68 £ 1.83  93.78 + 0.28
SSLRR 69.67 + 9.01 69.81 +3.30 83.68 £ 048 86.71 = 0.71 86.86 £ 3.27 89.25 + 0.16
SimpleMKL 4227 £ 23.00 7556 £329 87.01 £2.32 90.63 £ 1.27 9212 £ 0.82 93.24 £ 0.93
SKL 88.02 £3.89 9134 £447 9679 £0.93 9721 +£1.02 97.66 £ 0.80 97.98 £ 0.75
MPME 91.81 +£4.54 9536 £ 1.62 97.68 £038 9792 +0.20 97.97 £ 026 98.18 &+ 0.20
StructSSL (Euclidean, SVM)  92.39 +4.03 9581 £ 1.81 97.71 £ 045 98.10 £ 0.15 9820 £ 0.20  98.33 £+ 0.15
StructSSL (Gaussian, SVM) 96.30 + 2.64 97.61 + 1.50 98.35 + 0.29 98.53 £+ 0.09 98.59 + 0.14 98.67 + 0.10

D. Discussions on experimental results

Experimental results in Tables IV-VIII show that the pro-
posed method StructSSL in terms of three different distance
measurements are very competitive to baseline methods in-
cluding the state-of-the-art SSL methods, two unsupervised
dimensionality reduction methods, and two kernel learning
approaches on five datasets with three binary-class and two
multiclass problems. By looking into the details, we have the
following observations:

o StructSSLs show promising results compared with other
SSL methods. The significant improvements can be ob-
served with small amounts of labels over all the datasets
used in the experiments. Moreover, StructSSL is flexible
to take different distance functions as the input. This is
crucially important for the success of StructSSL applied
to Text data, where cosine similarity is known to be a
good measurement. Distance metric derived from Gaus-
sian kernel generally works better than the Euclidean dis-
tance. Although some methods are specifically designed
for multiclass SSL such as multiclass MBO and TVREF,
StructSSL can achieve competitive or even better results.

o Although the distance preservation criterion is used in

MVU, MPME and StructSSL, our StructSSL demon-
strates the better performance than MVU and MPME on
SSL due to the integration of labels into the learning
model.

 In regards to kernel learning, StructSSL shows significant
better results than SimpleMKL which does not take
the advantage of labels. SKL takes labels into learning
a better kernel for unlabeled data. However, it is less
robust when the number of available labels is small. In
contrast, StructSSL shows good results in all levels of
available labels. The key difference of our StructSSL
from SimpleMKL and SKL is the learning of a sparse
weighted graph, which is not able to be obtained by the
compared kernel learning methods.

We further demonstrate the effectiveness of StructSSL in
terms of sparse graph matrix, kernel matrix, and the embed-
dings with ground truth labels by comparing with baseline
methods. For methods without naturally embeddings as the
output such as SKL and simpleMKL, we take KPCA as the
embedding approach. In addition, we also show the sparse
weighted graphs learned by MPME and our method. Figs. 2
and 3 show these intermediate results on Digitl and COIL6,
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Fig. 4. Parameter sensitivity analysis of the proposed StructSSL (Euclidean
SVM) method using USPS with 150 labels.

respectively. We have the following observations:

o The weighted graph learned by StructSSL is much sparser
than that learned by MPME. This is because the labeled
data as the guide contributes to the learned density func-
tion, and this guidance promotes the sparsity so that more
inactive distance preservation constraints are obtained. As
observed in Figs. 2 and 3, embeddings of StructSSL show
better class separation than MPME.

e Both MVU and simpleMKL learn kernel matrices in an
unsupervised setting. Their class separation patterns are
not as good as StructSSL. This can be confirmed easily
on COIL6. Although SKL takes both the manifold of the
data and labels into account, the learned kernel does not
properly capture the manifold structure, which is affected
significantly by the initial weighted graph.

The above observations imply that both the distance preser-
vation criterion and label information contribute to the success
of our proposed method. It is worth noting that the weighted
graph, kernel matrix and the embeddings learned by the
proposed method can be useful for other purposes such as
data visualization, which is not restricted to semi-supervised
classification problems as studied in this paper.

E. Parameter sensitivity analysis

We conduct the sensitivity analysis of six parameters used
in Algorithm 1. Parameters v and A\; have impacts on the
embeddings and the learned graph, while v, and v balance
the influence from labels and the whole input data. Moreover,
the neighborhood size K and the dimensionality of latent

embeddings m improves the sparsity of the initial graph
for learning and the performance of classification by using
dimensionality reduction to remove data noise. As there are six
parameters, we cannot visualize results of all varied parameters
in one plot. We take the commonly used strategy by varying
one parameter in a given range and fixing the others by
reporting the best results over all the other parameters.

Fig. 4 shows the sensitivity analysis of one parameter by
fixing the others. We have the following observations:

e Our proposed method is robust in terms of v and \;
for constructing graph based on distance preservation
criterion.

o The proposed method is a bit sensitive to the supervised
information. We observe that the classification perfor-
mance decreases when Ay becomes large on USPS. In
other words, the balance between graph structure learning
and the importance of labels is data-dependent.

¢ For both K and m, they demonstrate the better accuracies
at the beginning and tune to be stable later if both
parameter values increases. In general, the accuracies
vary in a small interval.

From the above observations, StructSSL is a bit sensitive
to Ao, but robust to other parameters. More importantly, the
embeddings and the learned graph are not too sensitive to their
controlled parameters.

V. CONCLUSION

In this paper, we propose a probabilistic semi-supervised
learning framework based on the assumption of distance
preservation criterion, which has been successfully explored
in unsupervised dimensionality reduction methods, and class
separability criterion on labeled data. Moreover, our proposed
method can naturally integrate different priors from either
probability perspective or prior knowledge in the form of
constraints. In addition to classification problems, our method
can also provide the learned sparse weighted graph with
the optimized similarities between data points, and also the
embeddings for data visualization. Experiments on synthetic
and benchmark datasets show promising results by comparing
with the best results of a variety of existing methods, with the
significant improvement on small amounts of labeled data.
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