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Abstract

Variational regularization models are one of the popular and efficient approaches for image
restoration. The regularization functional in the model carries prior knowledge about the image
to be restored. The prior knowledge, in particular for natural images, are the first-order (i.e.
variance in luminance) and second-order (i.e. contrast and texture) information. In this paper,
we propose a model for image restoration, using a multilevel non-stationary tight framelet system
that can capture the image’s first-order and second-order information. We develop an algorithm
to solve the proposed model and the numerical experiments show that the model is effective and
efficient as compared to other higher-order models.

1 Introduction

The restoration of a degraded image may be modeled as

z = Ku+ ϵ, (1)

where u denotes the unknown image to be recovered, K a blurring matrix, z an observed blurred
image, and ϵ the noise. In general, K is a singular or near-singular matrix and hence the prob-
lem of finding the solution u from model (1) is ill-posed. To overcome the difficulties caused by
the ill-posedness, regularization techniques such as total-variation regularization and multiscale
regularization are often adopted, see [4, 6, 12, 14, 29] and the references therein. The resulting
regularized image models have the following generic form

min
u

{F(u) + αG(u)}, α > 0 (2)

where α is the regularization parameter, F represents the data fidelity term and G the regularization
term. The fidelity term measures the closeness of the estimate obtained from (2) to the data z
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while the regularization term is used to arrive at a sensible solution. Generally speaking, model (2)
integrates knowledge about how data is generated in the fidelity term F with the regularization
functional G that carries prior knowledge about the image to be restored.

Our main focus of this paper is to choose a proper regularization G in (2) for image restoration.
Here, a proper regularization means a regularization functional that encodes prior knowledge about
the image to be restored. Prior knowledge about images, in particular for natural images, includes
first-order (i.e. variance in luminance) and second-order (i.e. contrast and texture) information [19].
One commonly used regularization term that exploits the first-order information is the bounded
variation semi-norm [29]

G(u) :=
∫
Ω
|∇u|, (3)

where the image u is defined on the bounded set Ω ⊂ Rd. The corresponding model (2), referred as
the total variation (TV) based image restoration model, performs incredibly well especially if the
image to be reconstructed is piecewise constant. The total variation functional does not penalize
discontinuities in images and thus allows us to recover the edges of the original image. However,
it does not distinguish between jumps and smooth transitions, therefore it tends to give piecewise
constant images with staircase artifacts. Due to this notably staircase phenomenon, the TV-based
model is not suited for reconstructing images that are not nearly piecewise constant. It was pointed
out in [13] that whereas the reconstruction generated with the first-order model will display jumps,
the basic geometric structure of the original intensity surfaces is missing, even if it appears in the
data. It was further mentioned that using higher order models, these artifacts from the first-order
model can be eliminated and some of the fine geometric structures, particularly planar and quadric
patches, of the original image can be recovered.

One of the earliest models using higher derivatives was proposed in [5] where the infimal con-
volution of the first and second order derivatives was proposed as regularizer

G(u) := inf
v

∫
Ω
|∇u−∇v|+ α|∇(∇v)|. (4)

It approximates locally the gradient of the function u by ∇v, that itself has a low total variation.
Different second-order functionals for staircase reduction have been considered in other papers, for
example, see [8, 26]. Based on tensor algebra, the regularizer with derivatives of arbitrary order
was introduced in [2]. The corresponding regularizer was called total generalized variation (TGV).
In particular, the TGV of second-order is

G(u) := min
v

∫
Ω
(α1|∇u− v|+ α2|E(v)|), (5)

where the parameters α1, α2 are positive, and

E(v) =
[

∂1v1
1
2(∂1v2 + ∂2v1)

1
2(∂1v2 + ∂2v1) ∂2v2

]
with v1 and v2 being the components of v. Note that for twice differentiable u, E(∇u) is the Hessian
of u. We note that the TGV of second-order (5) is similar to, but structural different from, the
regularizer (4). The use of TGV and its variants in a plethora of applications has been reported in
[1, 30] and the references therein.

Motivated from the fact that an image/signal naturally has a hierarchical structure and allows to
be represented in a multiscale structure, we exploit this structure to formulate a regularization term
G in (2) that is different from the aforementioned ones. To this end, we first construct a two-level
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non-stationary tight framelet system that is suitable for representing images to be restored. More
specifically, the tight framelet system in the first level is the directional Haar framelet (DHF) system
introduced in our recent work [21] while the one in the second level is constructed from the discrete
cosine transform (DCT). We then use the framelet coefficients of an image under this two-level
non-stationary tight framelet system to formulate the regularization term G. More precisely, the
framelet coefficients of the image with the DHF consist of the first-order information of the image
in the vertical, horizontal, and ±45

◦
directions. As a result, the regularization term G contains

not only the TV term but also ameliorates it by including the diagonal information. The coarse
approximation to this image resulting from the low-pass filter of the DHF, considered as a smooth
version of this image, will facilitate the extraction of the second-order information of the image.
As shown in our previous work [24], the second-order information of the image can be reliably
extracted from the DCT-based tight framelet coefficients of this smoothed image. Our proposed
regularization term G also includes these second-order information. We remark that the success of
tight framelets have been proven to be useful in image processing, see, e.g., [3, 7, 22, 23, 24, 31] and
the references therein. However, despite that our two-level non-stationary tight framelet system is
new, the proposed regularization is also different from the existing ones in the following perspectives:

• Due to the DHF, our regularization assimilates the advantages of both the total variation
regularization and other framelet regularizations, and remedies their drawbacks. On the
one hand, the filters associated with DHF have the shortest support among all tight framelet
systems, therefore, it can suppress ringing artifacts arising from other framelet regularizations.
In comparison, the filters associated with the 2-dimensional orthogonal Haar wavelet have the
shortest support only among all compactly supported orthogonal wavelets. On the other hand,
the diagonal first-order information provided by the DHF can reduce the staircase artifacts (or
block effect) arising from the classical TV regularization. In comparison, the 2-dimensional
orthogonal Haar wavelet only provide first-order information in the vertical and horizontal
directions.

• We exploit the second-order information of the underlying image from its smoothed version
rather than from the image itself. The main idea behind it is that the high frequency spatial
information of the image will be suppressed in its smoothed one and therefore the second-
order information of the image will be faithfully computed, in particularly, for images with
high degree of noise.

• Finally, the properties of the tight framelet can be easily exploited to develop algorithms with
computational efficiency and to analyze the convergence of the resulting algorithms.

To summarize, the proposed regularizer G contains the first and second order information of the
image to be constructed for (2). The resulting optimization problem (2) can be efficiently solved
and the efficiency and accuracy of this regularizer will be confirmed for image restoration.

The rest of this paper is organized as follows. In Section 2 we first briefly review the tight
framelet systems, we then propose an image restoration model regularized by a two-level non-
stationary tight framelet system and develop an algorithm to solve this model. The performance
of the proposed model for image restoration is presented in Section 3.
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2 Model and Algorithm with Multi-Level Non-Stationary Tight
Framelets

This section consists of three parts. In the first part, we briefly review the multi-level non-stationary
tight framelet systems. In the second part, we propose our image restoration model using a two-
level non-stationary tight framelet system. In the last part, we propose an algorithm to solve the
resulting optimization problem.

2.1 Multi-Level Non-Stationary Tight Framelets

Tight framelets are closely related to filter banks. A tight framelet filter bank can be used to
(sparsely) represent data sequences through its associated discrete framelet transforms as well as
its underlying discrete affine system [17]. Before proceeding to their connections, let us recall some
definitions and notation first.

By l(Zd) we denote the set of all sequences and l0(Zd) the set of all finitely supported sequences.
A filter or mask h = {h(k)}k∈Zd : Zd → C on Zd is a sequence in l0(Zd). For a filter h ∈ l0(Zd),

its Fourier series is defined to be ĥ(ξ) :=
∑

k∈Zd h(k)e−ik·ξ for ξ ∈ Rd, which is a 2πZd-periodic
trigonometric polynomial. In particular, by δ we denote the Dirac sequence such that δ(0) = 1
and δ(k) = 0 for all k ∈ Zd\{0}. Throughout the paper, we assume the tight framelets are dyadic
dilated, that is, the dilation matrix is 2Id with Id the d× d identity matrix.

For filters τ0, τ1, . . . , τs ∈ l0(Zd), we say that a filter bank {τ0; τ1, . . . , τs} is a (d-dimension
dyadic) tight framelet filter bank if

s∑
ℓ=0

τ̂ℓ(ξ)τ̂ℓ(ξ + πω) = δ(ω), ∀ ξ ∈ Rd, ω ∈ {0, 1}d, (6)

where for a number x ∈ C, x̄ denotes its complex conjugate. Equation (6) is equivalent to the
perfect reconstruction property of the discrete framelet transforms associated with the filter bank
{τ0; τ1, . . . , τs} ([18, Theorems 1.1.1 and 1.1.4]). The filter τ0 is usually a low-pass filter satisfying
τ̂0(0) = 1 while τℓ’s are the high-pass filters satisfying τ̂ℓ(0) = 0 for ℓ ⩾ 1.

In practice, multi-level decomposition and reconstruction of data using discrete framelet trans-
form associated with tight framelet filter banks are commonly used in order to exploit the sparse
property of the data. Moreover, in signal/image processing, translation invariance property of a
discrete framelet transform is desirable especially in the scenario of signal denoising/inpainting. To
preserve the translation invariance property, one usually considers the redundant version of discrete
framelet transform, that is, the undecimated discrete framelet transform (UDFmT). More precisely,
denote a filter bank at level j as ηj := {τ j0 ; τ

j
1 , . . . , τ

j
sj} and consider a sequence {ηj : j = 1, . . . , J} =

∪J
j=1{τ

j
0 ; τ

j
1 , . . . , τ

j
sj} of J filter banks with j = J ⩾ 1 being the finest level and j = 1 being the

coarsest level. Let the convolution operation * be defined by [h ∗ v](γ) :=
∑

k∈Zd h(γ − k)v(k), for
v ∈ l(Zd), h ∈ l0(Zd), γ ∈ Zd, and the upsampling operator ↑ m with m ∈ N be given by

[v ↑ m](γ) :=

{
v(m−1γ), if m−1γ ∈ Zd;

0, otherwise.

For a filter h, let h⋆ be a filter defined by h⋆(k) = h(−k), k ∈ Zd. Then, for a given input data
sequence v = vJ , the UDFmT includes (i) Decomposition:

vj−1 = vj ∗ ((τ j0 )
⋆ ↑ 2J−j), wj−1;ℓ = vj ∗ ((τ jℓ )

⋆ ↑ 2J−j), ℓ = 1, . . . , sj , j = J, . . . , 1, (7)
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and (ii) Reconstruction:

vj = vj−1 ∗ (τ j0 ↑ 2J−j) +
s∑

ℓ=1

wj−1;ℓ ∗ (τ jℓ ↑ 2J−j), j = 1, . . . , J. (8)

One can show that if each filter bank {τ j0 ; τ
j
1 , . . . , τ

j
sj} satisfies the partition of unity condition:∑sj

ℓ=0 |τ̂
j
ℓ (ξ)|

2 = 1, ξ ∈ Rd, then any input data sequence v ∈ l(Zd) can be perfectly reconstructed
via (8) from its framelet coefficient sequences {v0}∪ {wj;ℓ : ℓ = 1, . . . , sj}Jj=1 decomposed from (7).
The framelet system associated with such a sequence {ηj : j = 1, . . . , J} is then called a multi-level
non-stationary tight framelet system.

In this paper, we consider J = 2, that is, two-level non-stationary tight framelet system. One
can of course consider J > 2. However, in terms of efficiency and simplicity, J = 2 is the best
choice for the development of this paper.

2.2 Regularization with a Two-level Non-stationary Tight Framelet System

In this subsection, we integrate two different tight framelet systems as a two-level non-stationary
tight framelet system which will be exploited for the optimization problem (2).

The tight framelets in the first level is the directional Haar framelet (DHF) system proposed in
[21]. The filters associated with this DHF are

τ0 =
1
4

[
1 1
1 1

]
, τ1 =

1
4

[
1 0
0 −1

]
, τ2 =

1
4

[
0 −1
1 0

]
, τ3 =

1
4

[
1 −1
0 0

]
,

τ4 =
1
4

[
1 0
−1 0

]
, τ5 =

1
4

[
0 0
1 −1

]
, τ6 =

1
4

[
0 1
0 −1

]
.

As two-dimensional filters, the indices of the entries (top-left, top-right, bottom-left, and bottom-
right) in each filter are (0, 0), (0, 1), (1, 0), and (1, 1), respectively. The first filter τ0 is a low-pass
filter and the rest are high-pass filters that have the ability to provide directional information of
an image when these filters are applied to the image. More precisely, the filters τ1 and τ2 act as
the first-order difference operators in the 45

◦
and 135

◦
directions, respectively. The results of these

two filters convolving with an image will highlight changes in intensity of the image in these two
diagonal directions. The filters τ3 and τ5 are the first-order difference operators in the horizontal
direction while the filters τ4 and τ6 are the first-order difference operators in the vertical direction.
The convolutions of these filters with the underlying image are the coefficients of the image under
the corresponding filters, which are the multiplications of some associated transformation matrices
with the image.

Now, we propose a generic regularization term based on DHF. Let u ∈ Rn be the vector
representing the column-stacked version of an image. We denote by Mκ the associated matrix
representation of the filters τκ, κ = 0, 1, . . . , 6, under a proper boundary condition. We further
denote

B1ℓ := M0 and B1h := [M⊤
1 , . . . ,M⊤

6 ]⊤. (9)

By the tight frame property of {τ0; τ1, . . . , τs}, these two matrices satisfy the following perfect
reconstruction condition

B⊤
1ℓB1ℓ +B⊤

1hB1h = I.
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Let Φ1Λ : R6n → R be defined through a function φ1 : R6 → R and a non-negative parameter
vector Λ =

[
λ1, λ2, . . . , λn

]
as follows

Φ1Λ(v) :=

n∑
i=1

λiφ1(vi, vi+n, . . . , vi+5n). (10)

With this function Φ1Λ, we propose a functional based on DHF in the following form

G1(u) := Φ1Λ(B1hu), (11)

from which the TV regularization and its variants can be derived by properly chosen φ1 in (10).
For example, if we choose φ1(x1, x2, x3, x4, x5, x6) = |x3| + |x4|, the regularization in (11) is re-
duced to the so-called anisotropic TV; If we choose φ1(x1, x2, x3, x4, x5, x6) =

√
|x3|2 + |x4|2, the

regularization in (11) is reduced to the so-called isotropic TV.
We choose, in this paper,

φ1(x1, x2, x3, x4, x5, x6) =
√
|x1|2 + |x2|2 +

√
|x3|2 + |x4|2. (12)

One of the advantages of the regularization G1 with φ1 given in (12) is that it assimilates the
advantages of both total variation and wavelet regularizations and remedies their drawbacks. The
way of avoiding or suppressing ringing artifacts arising from wavelet regularizations is to choose
a wavelet system whose filters have small supports. The filters associated with the 2-dimensional
orthogonal Haar wavelet have the shortest support among all compactly supported orthogonal
wavelets, but the staircase artifacts (or blocky effect) will appear in the neighborhoods of edges in
the directions about ±45

◦
. Since φ1 in (12) includes the diagonal first-order information from the

filters τ1 and τ2, the staircase artifacts can be reduced.
The tight framelet in the second level is generated from the standard 3× 3 DCT-II orthogonal

matrix whose three rows are c0 =
√
3
3 [1, 1, 1], c1 =

√
2
2 [1, 0,−1], and c2 =

√
6
6 [1,−2, 1]. In the sequel,

this system is referred to as the DCT-based tight framelet system. The filters of the DCT-based
tight framelet system are τ3i+j = 1

3c
⊤
i cj with i, j ∈ {0, 1, 2}, where τ0 is the low-pass filter and

the others are high-pass filters. Here, for simplicity of notation, we use τκ to denote the filters
associated with both the DHF or DCT-based tight framelet. The expansions of these filters are

τ0 =
1
9

1 1 1
1 1 1
1 1 1

 , τ1 =
√
6

18

1 0 −1
1 0 −1
1 0 −1

 , τ2 =
√
2

18

1 −2 1
1 −2 1
1 −2 1

 ,

τ3 =
√
6

18

 1 1 1
0 0 0
−1 −1 −1

 , τ4 =
1
6

 1 0 −1
0 0 0
−1 0 1

 , τ5 =
√
3

18

 1 −2 1
0 0 0
−1 2 −1

 ,

τ6 =
√
2

18

 1 1 1
−2 −2 −2
1 1 1

 , τ7 =
√
3

18

 1 0 −1
−2 0 2
1 0 −1

 , τ8 =
1
18

 1 −2 1
−2 4 −2
1 −2 1

 .

The filters τ1 and τ3, known as the Prewitt operator in image processing, are used to compute
an approximation of the gradient (i.e., the first-order information) of the image intensity function.
The convolution of τ1 (resp. τ3) with an image gives the horizontal (resp. vertical) changes of
the image intensity and they compute changes of intensity with smoothing due to τ1 = 1

3c
⊤
0 c1 and

τ3 =
1
3c

⊤
1 c0. The filter τ2 (resp. τ6) computes the discrete second-order difference in vertical (resp.

horizontal) direction with smoothing due to τ2 = 1
3c

⊤
0 c2 and τ6 = 1

3c
⊤
2 c0. The other filters τ4, τ5,

τ7, and τ8 perform like discrete high-order difference operators.
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We should note that the first-order derivative operators exaggerate the effects of noise while the
second-order derivatives will exaggerated noise twice as much [15]. Therefore, the applicability of
the second-order derivatives is limited to images with low noise level. Motivated from the Laplacian
of a Gaussian (LOG) and difference of Gaussian (DOG) operators in computer vision, see, for
example, [25, 27], we propose to take the second-order derivatives on the blurred or smoothed
images in order to reduce the effect of the presence of noise in an image. To this end, we denote by
Pκ the matrix representation of the filters τκ, κ = 0, 1, . . . 8, under a proper boundary condition.
Let us define

B2ℓ := P0 and B2h := [P⊤
1 , . . . , P⊤

8 ]⊤. (13)

We have that
B⊤

2ℓB2ℓ +B⊤
2hB2h = I.

Let Φ2Θ : R8n → R be defined through a nonnegative parameter sequence Θ = {θi = (θi1, θi2, . . . , θi8) ∈
R8 : 1 ⩽ i ⩽ n} with non-negative elements as follows

Φ2Θ(v) :=

n∑
i=1

∥[θi1vi, θi2vi+n, . . . , θi8vi+7n]∥1, (14)

where ∥ · ∥1 denotes the ℓ1 norm. With this function Φ2Θ, we propose a functional based on the
DCT-based tight framelet system in the following form

G2(u) := Φ2Θ(B2hB1ℓu), (15)

where B1ℓu is viewed as the smooth version of u.
All together, our proposed image restoration model is

min
u

{F(u) + G1(u) + G2(u)}. (16)

The efficiency of the regularization functional G1(u) + G2(u) in (16) will be presented in Section 3
when it is compared with several possible regularization functionals formulated from the DHF and
DCT-based tight framelet, and with other existing higher-order regularization functionals.

2.3 Algorithm

In this subsection, we specify the data fidelity F in (16). For Gaussian noise, the natural choice
for F is F(u) = 1

2∥Ku− z∥2 where ∥ · ∥ denotes either the vector 2-norm or matrix 2-norm. That
is, the optimization problem we consider here is

min
u∈[0,1]n

1

2
∥Ku− z∥2 +Φ1Λ(B1hu) + Φ2Θ(B2hB1ℓu), (17)

where Φ1Λ is given in (10) and Φ2Θ is given in (14). Here, we assume that all pixel values of an
image are in [0, 1].

We next introduce our notation and recall some necessary background from convex analysis.
The class of all lower semicontinuous convex functions f : Rd → (−∞,+∞] such that dom f :=
{x ∈ Rd : f(x) < +∞} ̸= ∅ is denoted by Γ0(Rd). The indicator function of a closed convex set C
in Rd is defined, at u ∈ Rd, as

ιC(u) :=

{
0, if u ∈ C,
+∞, otherwise.
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Clearly, the indicator function ιC is in Γ0(Rd) for any closed nonempty convex set C.
For a function f ∈ Γ0(Rd), the proximity operator of f with parameter λ, denoted by proxλf ,

is a mapping from Rd to itself, defined for a given point x ∈ Rd by

proxλf (x) := argmin

{
1

2
∥u− x∥2 + λf(u) : u ∈ Rd

}
.

We also need the notation of conjugate. The conjugate of f ∈ Γ0(Rd) is the function f∗ ∈ Γ0(Rd)
defined at x ∈ Rd by f∗(x) := sup{⟨u, x⟩ − f(u) : u ∈ Rd}. A key property of the proximity
operators of f and its conjugate is

proxλf (x) + λproxλ−1f∗(x/λ) = x, (18)

which holds for all x ∈ Rn and any λ > 0.
Now, we turn to the optimization problem (17). Define

f(u) =
1

2
∥Ku− z∥2, g(u) = ι[0,1]n , p(s) = Φ1Λ(s1) + Φ2Θ(s2), and A =

[
B1h

B2hB1ℓ

]
, (19)

where u ∈ Rn and s = (s1, s2) with s1 ∈ R6n and s2 ∈ R8n. Then, our optimization problem (17)
can be viewed as a special case of the optimization problem whose objective function is the sum of
three lower semicontinuous convex functions in the form of

min
u∈Rn

f(u) + g(u) + p(Au), (20)

where A is a d× n matrix, f ∈ Γ0(Rn) is differentiable, g ∈ Γ0(Rn), and p ∈ Γ0(Rd).
Several algorithms have been developed for the optimization problem (20), see, for example,

[10, 11, 20, 33]. We adopt the algorithm given in [33] for problem (20) since it converges under
a much weaker condition and can choose a larger step-size, yielding a faster convergence. This
algorithm, named as Primal-Dual Three-Operator splitting (PD3O), has the following iteration:

uk = proxγg(v
k) (21a)

sk+1 = proxδp∗
(
(I − γδAA⊤)sk + δA(2uk − vk − γ∇f(uk))

)
(21b)

vk+1 = uk − γ∇f(uk)− γA⊤sk+1 (21c)

One PD3O iteration can be viewed as an operator TPD3O such that (vk+1, sk+1) = TPD3O(v
k, sk).

The convergence analysis of PD3O is given in the following lemma.

Lemma 1 (Sublinear convergence rate [33]). Let f ∈ Γ0(Rn) and its gradient be Lipschitz contin-
uous with constant L, let g ∈ Γ0(Rn), and p ∈ Γ0(Rd). Choose γ and δ such that γ < 2/L and
M = γ

δ (I − γδAA⊤) is positive definite. Let (v∗, s∗) be any fixed point of TPD3O, and {(vk, sk)}k⩾0

be the sequence generated by PD3O. Define ∥(v, s)∥M :=
√
∥v∥2 + ⟨s,Ms⟩. Then, the following

statements hold.

(i) The sequence {(∥(vk, sk)− (v∗, s∗)∥M )}k⩾0 is monotonically nonincreasing.

(ii) The sequence {(∥(vk+1, sk+1) − (vk, sk)∥M )}k⩾0 is monotonically nonincreasing. Moreover,

∥(vk+1, sk+1)− (vk, sk)∥2M = o
(

1
k+1

)
.
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To adapt PD3O for our optimization problem (17) with f , g and p, and the matrix A given in
(19), some preparations are provided in the following lemmas.

Lemma 2. Let δ > 0 and Φ1Λ be given in (10). For any v ∈ R6n, if y = proxδ−1Φ1Λ
(v), then

y(i) = proxδ−1λiφ1
(v(i)), (22)

where y(i) =
[
yi yi+n · · · yi+5n

]⊤
and v(i) =

[
vi vi+n · · · vi+5n

]⊤
. Furthermore, let y(ij) and

v(ij) be yi+(j−1)n and vi+(j−1)n, respectively, for i = 1, . . . , n and j = 1, . . . , 6, then[
y(i1)
y(i2)

]
=

(
1− λiδ

−1

max{∥
[
v(i1) v(i2)

]
∥, λiδ−1}

)[
v(i1)
v(i2)

]
,

where the pair (y(i3), y(i4)) is obtained by simply replacing (v(i1), v(i2)) in the right hand side of the
above formula by (v(i3), v(i4)), and y(i5) = v(i5), y(i6) = v(i6).

Proof. The proof is based on the block separable property of Φ1Λ in (10). By the definition of
proximity operator and equations (10) and (12),

proxδ−1Φ1Λ
(v) = argmin

{
1

2
∥u− v∥2 + δ−1Φ1Λ(u) : u ∈ R6n

}
= argmin

{
n∑

i=1

1

2
∥u(i) − v(i)∥2 + δ−1λiφ1(u(i)) : u(i) ∈ R6, i = 1, . . . , n

}
.

Hence, equation (22) holds. Notice that φ1 is also a block separable function. By using the definition
of proximity again and the proximity operator of the ℓ2 norm (see, for example, [9, 28]), we obtain
the explicit expression for y(i) as given above.

Lemma 3. Let δ > 0 and Φ2Θ be given in (14). For any v ∈ R8n, if y = proxδ−1Φ2Θ
(v), then

y(i) = proxδ−1∥·∥1◦diag(θi)(diag(v(i)). (23)

where y(i) =
[
yi yi+n · · · yi+7n

]⊤
and v(i) =

[
vi vi+n · · · vi+7n

]⊤
. Furthermore, let y(ij) and

v(ij) be yi+(j−1)n and vi+(j−1)n, respectively, for i = 1, . . . n and j = 1, . . . , 8, then

y(ij) = max{|v(ij)| − δ−1θij , 0}sgn(v(ij)).

Proof. The proof is based on the block separable property of Φ2Θ in (14). By the definition of
proximity operator,

proxδ−1Φ2Θ
(v) = argmin

{
1

2
∥u− v∥22 + δ−1Φ2Θ(u) : u ∈ R8n

}
= argmin

{
n∑

i=1

1

2
∥u(i) − v(i)∥22 + δ−1∥diag(θi)u(i)∥1 : u(i) ∈ R8, i = 1, . . . , n

}
.

Hence, equation (23) holds. Furthermore, notice that proxδ−1∥·∥1◦diag(θi) is the well-known soft
thresholding operator, the rest of result holds.

Lemma 4. Let Φ1Λ be given in (10) and Φ2Θ be given in (14). For any v ∈ R14n, write v = (v1, v2)
with v1 ∈ R6n and v2 ∈ R8n, and define p(v) = Φ1Λ(v1) + Φ2Θ(v2). Then, for any δ > 0,

proxδ−1p(v) = proxδ−1Φ1Λ
(v1)× proxδ−1Φ2Θ

(v2).
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The result in the above lemma comes from the block separability of the function p. Therefore, we
omit its proof here.

To apply Lemma 1 to problem (17), we verify all the requirements listed in Lemma 1. First,
for the function f in (19), we have that ∇f(u) = K⊤(Ku− z), the gradient of f is ∥K∥2-Lipschitz
continuous. Next, we discuss the positive definiteness of the matrix I − γδAA⊤.

Lemma 5. Let A be given in (19). Then, for positive numbers γ and δ, the matrix I − γδAA⊤ is
positive semidefinite (or definite) if and only if γδ ⩽ 1 (or γδ < 1).

Proof. First, we show that ∥A∥ = 1. For any u ∈ Rn, we have that

u⊤A⊤Au = u⊤B⊤
1hB1hu+ u⊤B⊤

1ℓB
⊤
2hB2hB1ℓu.

Since B⊤
2hB2h +B⊤

2ℓB2ℓ = I and B⊤
1hB1h +B⊤

1ℓB1ℓ = I, from the above we have that

u⊤A⊤Au ⩽ u⊤B⊤
1hB1hu+ u⊤B⊤

1ℓB1ℓu = u⊤u.

Hence ∥A∥ ⩽ 1. Further, since the null space of B1h is non-empty, therefore, ∥A∥ = 1.
Next, since AA⊤ is positive semi-definite and its largest eigenvalue is 1, hence, I − γδAA⊤ is

positive semidefinite (or definite) if and only if γδ ⩽ 1 (or γδ < 1).

The explicit form of proxδ−1p is given in Lemma 4 with the help of Lemmas 2 and 3. Therefore,
the proximity operator proxδp∗ can be computed via (18). With the above preparation, the complete
procedure for solving (17) based on (21a)-(21c) is described in Algorithm 1. This algorithm is
refereed to as TNTF (two-level non-stationary tight framelet) algorithm.

Algorithm 1 Two-level Non-stationary Tight Framelet (TNTF) Algorithm

1: Set parameters γ < 2
∥K∥2 , γδ < 1; pre-given parameters Λ and Θ.

2: Initialize v0 = 0 and s0 = 0
3: Auxiliary variable xk and write sk = (sk1, s

k
2)

4: for k = 1, 2, . . . do
5:

uk = Proj[0,1](v
k) (24a)

xk = γ(B⊤
1hs

k
1 +B⊤

1ℓB
⊤
2hs

k
2)− (2uk − vk) + γK⊤(Kuk − z) (24b)

sk+1
1 = (sk1 − δB1hx

k)− δ · proxδ−1Φ1Λ
(δ−1(sk1 − δB1hx

k)) (24c)

sk+2
1 = (sk2 − δB2hB1ℓx

k)− δ · proxδ−1Φ2Θ
(δ−1(sk2 − δB2hB1ℓx

k)) (24d)

vk+1 = uk − γK⊤(Kuk − z)− γ(B⊤
1hs

k+1
1 +B⊤

1ℓB
⊤
2hs

k+2
2 ) (24e)

6: end for

The convergence analysis for Algorithm 1 is as follows.

Theorem 1. Let (v∗, s∗) be any fixed point of TPD3O with f , g, p and A given in (19). Let
{(vk, sk)}k⩾0 be the sequence generated by Algorithm 1, where sk = (sk1, s

k
2). Choose γ and δ such

that γ < 2/∥K∥2 and γδ < 1. Define M = γ
δ (I − γδAA⊤). Then, the following statements hold.

(i) The sequence {(∥(vk, sk)− (v∗, s∗)∥M )}k⩾0 is monotonically nonincreasing.
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(ii) The sequence {(∥(vk+1, sk+1) − (vk, sk)∥M )}k⩾0 is monotonically nonincreasing. Moreover,

∥(vk+1, sk+1)− (vk, sk)∥2M = o
(

1
k+1

)
.

Proof. We know that the gradient of f in (19) is ∥K∥2-Lipschitz continuous. By Lemma 5,
the matrix M is positive definite if γδ < 1, the result of this theorem follows immediately from
Lemma 1.

Remark: the computational cost of Algorithm 1 depends on mainly two factors: the UDFmT
used in steps (24b-e) and the total number of iterations for k. The UDFmT decompositions
include B1hx

k, B2hB1ℓx
k in (24c-d) while the UDFmT reconstructions include B⊤

1hs
k
1, B

T
1ℓB

⊤
2hs

k
2

in (24b) and B⊤
1hs

k+1
1 and B⊤

1ℓB
⊤
2hs

k+2
2 in (24e). Since UDFmT in Algorithm 1 uses convolutions

with 7 DHF filters in the first level and 9 DCT-based filters in the second level, the UDFmT can
be implemented with computational cost O(n), where n is the number of pixels in u. For the
total number of iterations k in Algorithm 1, it depends on when the algorithm converges and the
maximum number K of iterations set manually. Consequently, the total computational cost for
Algorithm 1 is O(Kn).

Finally, we discuss how to choose the parameters in the algorithm. In our tests below we choose
γ = 1.99, δ = 0.5 to ensure γδ < 1. Recall from (12) that we only use the first four subband
coefficients of DHF in the first level. The corresponding regularization parameters λi (defined in
(10)) are chosen to adaptively adjust to local variations. Let I(i) be the set containing all indices
in the neighborhood at the ith pixel. Then λi is set as

λi =
λ× |I(i)|

max{
∑

p∈I(i) ∥wp∥, 10−10}
, (25)

where wp = [v(p1), v(p2)]
⊤ or wp = [v(p3), v(p4)]

⊤ are defined as in (22). In our tests, we choose the
neighborhood of window size 3× 3 and the parameter λ is set by hand.

For the regularization parameters θi associated with the DCT-based tight framelet coefficients
(see (14)), they are all automatically estimated and updated using the approach in our previous
work [24]. More precisely, for the regularization parameters θiκ, κ = 1, . . . , 8, used in (14), they are
automatically estimated according to the local variations of framelet coefficients and noise level.
Suppose the ϵ in model (1) is the Gaussian noise with the standard deviation σ. As it was done in
our previous work [24], σ2

κ the noise variance of the framelet coefficients coming from the filter τκ
at the second decomposed level is estimated as σ2

κ = σ2

4 ∥τκ∥2F , where ∥τκ∥F is the Frobenius norm
of τκ; (σ

κ
i )

2, the local signal variance of the ith framelet coefficients coming from the filter κth, is
computed as (σκ

i )
2 = max{(

∑
p∈Iκ(i) |vp|/|Iκ(i)|)2 − σ2

κ, 10
−10}, where Iκ(i) is the set containing

all indices in the neighborhood at the ith framelet coefficients from the filter κ. With them, the
regularization parameters are estimated as

θiκ =

√
2σ2

κ

σκ
i

, κ = 1, . . . , 8. (26)

To save computational cost of estimating parameters λi in (25) and θiκ in (26), we only update
these parameters when the iteration k is a multiple of 30 and fix them after the 200th iteration in
our numerical experiments.

3 Experiments

In this section, we present numerical experiments to illustrate the effectiveness and efficiency of
our proposed model (17) for image restoration. We use the images “Square Circle”, “Cameraman”,
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and “Montage” of size 256 × 256 as the original images u in our experiments, see Figure 1. The
pixel values of these images are normalized to the interval [0, 1]. The quality of the restored image,
say ũ, is evaluated in terms of the peak-signal-to-noise ratio (PSNR) that is defined by

PSNR := 10 log10
2552n

∥ũ− u∥2
,

where n is the number of pixels in u. To incorporate structural information in image comparisons,
the metric of structural similarity (SSIM) [32] of ũ to u is reported as well. The higher the PSNR
and SSIM, the better the quality of the restored image.

(a) (b) (c)

Figure 1: Original image: (a) Square Circle; (b) Cameraman; (c) Montage.

Two sets of comparisons for image restoration will be conducted in this section. The first
set is to compare with other tight frame regularizers. The second set is to compare with some
derivative-based models.

3.1 Comparison with Tight Frame Regularizers

Here we compare the proposed regularization functional (16) with two other tight frame regular-
ization functionals GDCT and GDHF+DCT while using the classical TV regularizer GTV (see (3)) as
a benchmark. The GDCT is defined as GDCT(u) = Φ2Θ(B2hu) which only uses the DCT-based tight
framelet and takes the first- and second-order information on the image u, where Φ2Θ is given in
(14). The GDHF+DCT is defined as GDHF+DCT(u) = Φ1Λ(B1hu) + Φ2Θ(B2hu), where Φ1Λ is given
in (11) with φ1 in (12). The main difference between our proposed regularization functional (16)
and GDHF+DCT is that the action B2h takes on the smoothed image B1ℓu for our regularization
functional while the action B2h takes directly on the image u for GDHF+DCT.

In our experiment, the image of “Square Circle” in Figure 1(a) (which is the same as Fig-
ure 2(a)) is blurred by a 5 × 5 average kernel (using the Matlab command fspecial(’average’,
[5:5]), followed by adding Gaussian noise of mean zero and standard deviation σ = 0.04. The
values of the pair of (PSNR, SSIM) of these restored images by GTV, GDCT, GDHF+DCT, and the
proposed regularization functional (16) are (33.66dB, 0.962), (32.54dB, 0.970), (33.14dB, 0.980),
and (35.00dB, 0.980), respectively. To view the visual quality of the restored images, the square
portion marked in the image 1(a) is displayed in Figure 2. For the regions pointed by two arrows,
we can conclude that the proposed regularization functional (16) leads to the restored images hav-
ing better visual quality than the others. The results clearly show that our combined tight frame
model is better than other intuitive tight frame models.
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) A region of the image of “Square Circle”; (b) The blurred image by the kernel
fspecial(’average’, [5:5]) with Gaussian noise of mean zero and variance σ = 0.04; The restored
images with regularization (c) TV with α = 0.04 (see (2) and (3)); (d) GDCT; (e) GDHF+DCT; and (f)
the proposed regularization functional (16) with λ = 0.00035 (see (25)) in the first level, respectively.
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3.2 Comparison with Derivative-based Regularizers

Now we give a comprehensive comparison between our model (17) and the TV and TGV models.
The TV model uses G(u) in (3) as its regularization term while the TGV model uses G(u) in (5)
as its regularization term. The software of TGV model was provided by the authors in [16]. All
algorithms are carried out until the stopping condition ∥u(k+1) − u(k)∥2/∥u(k)∥2 < 10−9 is satisfied
or the maximal iterations is 400.

In our experiments, the test images in Figure 1 are blurred by a 5× 5 average kernel (using the
Matlab command fspecial(’average’, [5:5]), followed by adding Gaussian noise of mean zero
and standard deviation σ. For different values of σ, the PSNR and SSIM values of the restored
images by TV, TGV, and our TNTF are reported in Table 1. The highest values of PSNR and
SSIM for each σ in each test image are highlighted. It clearly shows that our proposed TNTF
performs the best in terms of both PSNR and SSIM values. We remark that the regularization
parameters in the second level for our TNTF are automatically estimated based on the approach
in our work [24].

Table 1: The PSNR (dB) and SSIM for the restored results of each algorithm with blurred im-
ages contaminated by Gaussian noise. The test images are blurred by the blurring kernel fspe-
cial(’average’,[5:5]).

Algorithm “ Square Circle” “Cameraman” “Montage” Case
PSNR SSIM PSNR SSIM PSNR SSIM

TV 35.40dB 0.980 26.43dB 0.815 28.21dB 0.907
TGV 35.58dB 0.976 26.27dB 0.811 28.84dB 0.910 STD σ=0.02
TNTF 38.19dB 0.992 27.06dB 0.821 30.19dB 0.924
TV 34.51dB 0.969 25.64dB 0.791 26.92dB 0.886
TGV 34.33dB 0.967 25.58dB 0.788 26.93dB 0.884 STD σ=0.03
TNTF 36.14dB 0.985 26.01dB 0.800 28.91dB 0.910
TV 33.66dB 0.962 25.10dB 0.774 25.94dB 0.867
TGV 33.41dB 0.955 24.94dB 0.770 26.17dB 0.875 STD σ=0.04
TNTF 35.00dB 0.980 25.31dB 0.784 27.88dB 0.898

In the rest of this section, we provide qualitative results of the restored images from the above
three algorithms. We first show the case for the blurred image of “Square Circle” with Gaussian
noise of STD σ = 0.03 in Figure 3. The noisy and blurry image is shown in Figure 3(a). The
regularization parameter α = 0.02 (see (2) and (3)) is used for the TV model and (α1, α2) =
(0.0105, 0.026) (see (5)) is used for the TGV model based on the best achievable PSNR values.
The regularization parameter λ = 0.0002 in the first level (see (25)) is used in our proposed model.
We can observe that Figure 3(b) produced by the TV has lots of staircase artifacts even without
zooming in. As we can see from Figure 3(c) and (d), this kind of staircase artifacts is significantly
reduced by the TGV and TNTF. To have a closer look at the visual quality of the restored images
by various algorithms, two parts of Figure 3 are zoomed in and displayed in the first column of
Figure 4. The corresponding parts in the restored images by TV, TGV, and TNTF are shown in
Figure 4(b), (c), and (d), respectively. We can conclude that the horizontal line in the image is
well preserved by the TNTF.

Figure 5(a) is the blurred image of “Cameraman” corrupted by Gaussian noise of STD σ=0.02.
The restored images by TV, TGV, and TNTF are displayed in Figure 5(b), (c), and (d), respectively.
The regularization parameters for TV, TGV, and TNGV are α = 0.006, (α1, α2) = (0.0035, 0.0095),
and λ = 0.0004, respectively. The structures of the building as well as the man are well preserved
in the restored image by our TNTF. Block artifacts are clearly observed in the sky of the restored
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(a) (b)

(c) (d)

Figure 3: (a) Image blurred by kernel fspecial(’average’, [5:5]) and added Gaussian noise
with σ = 0.03; Images reconstructed by (b) TV with α = 0.02 (see (2) and (3)), (c) TGV with
(α1, α2) = (0.0105, 0.026) (see (5)), and (d) TNTF with λ = 0.0002 (see (25)), respectively.

(a) (b) (c) (d)

Figure 4: Two zoom-in parts of Fig. 3: (a) Original image; images reconstructed by (b) TV, (c)
TGV, and (d) TNTF, respectively.
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images by TV and TGV (see Figure 5(b), (c)), but not in Figure 5(d). The zoom-in part of Figure 5
is displayed in Figure 6. The shape of the camera lens in the restored image by TNTF is more
closer to the original one than that by TV and TGV.

(a) (b)

(c) (d)

Figure 5: (a) Image blurred by kernel fspecial(’average’, [5:5]) and added Gaussian noise with
σ = 0.02; images reconstructed by (b) TV with α = 0.006; (c) TGV with (α1, α2) = (0.0035, 0.0095),
and (d) TNTF with λ = 0.0004, respectively.

Figure 7(a) is the blurred image of “Montage” corrupted by Gaussian noise of STD σ=0.04. The
restored images by TV, TGV, and TNTF are displayed in Figure 7(b), (c), and (d), respectively.
The regularization parameters for TV, TGV, and TNGV are α = 0.019, (α1, α2) = (0.0085, 0.0155),
and λ = 0.00015, respectively. Severe artifacts appeared in Figure 7(b) by TV, are significantly
suppressed in Figure 7(c) and (d) by TGV and TNTF. Two zoom-in parts of the results are shown
in Figure 8. It is evident that the lines are well preserved in Figure 8(d) by TNTF.

4 Conclusion

In this paper, we have designed a two-level non-stationary tight framelet system and utilized it in
a regularization model for image restoration. This framelet system has the ability to capture the
first and second order information of the image to be reconstructed. We developed an algorithm
to solve the resulting optimization problem. The numerical experiments show the effectiveness of
the proposed image restoration model and the corresponding algorithm.
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(a) (b) (c) (d)

Figure 6: Zoom-in parts of Figure 5: (a) Original image; images reconstructed by (b) TV, (c) TGV,
and (d) TNTF.

(a) (b)

(c) (d)

Figure 7: (a) Image blurred by kernel fspecial(’average’, [5:5]) and added Gaussian noise with
σ = 0.04; images reconstructed by (b) TV with α = 0.019, (c) TGV with (α1, α2) = (0.0035, 0.0095),
and (d) TNTF with λ = 0.00015.
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(a) (b) (c) (d)

Figure 8: Two zoom-in parts of Fig. 7: (a) Original image; images reconstructed by (b) TV, (c)
TGV, and (d) TNTF.
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