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Abstract:

In this paper, we first develop some properties to state the relationships among cen-

tral moments, stochastic dominance (SD), risk-seeking stochastic dominance (RSD), and

integrals for the general utility functions and the polynomial utility functions of both risk

averters and risk seekers. We then introduce the moment rule and establish some neces-

sary and/or sufficient conditions between stochastic dominance and the moment rule for the

general utility functions and the polynomial utility functions of both risk averters and risk

seekers without imposing the same-location-scale-family condition. Thereafter, we apply the

moment rules to develop some properties of portfolio diversification for the general utility

functions and the polynomial utility functions for both risk averters and risk seekers. The

findings in our paper enable academics and practitioners to draw preferences of both risk

averters and risk seekers on their choices of portfolios or assets by using different moments.

We illustrate this by using the moment rule tests to compare excess return of 49 industry

portfolios from Kenneth French’s online data library.
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1 Introduction

Lehmann (1951, 1952, 1955) first compare several sets of distributions that lead to the

development of the theory of stochastic dominance (SD). Afterwards, Hadar and Russell

(1969, 1971), Hanoch and Levy (1969), and others establish some basic relationships between

SD and the preference of different assets to the second order. Extensions of the SD theory to

the higher-order include Whitmore (1970), Ekern (1980), Bawa, et al. (1985), Muliere and

Scarsini (1989), Wong and Li (1999), Li and Wong (1999), Denuit, et al. (2013), Post and

Koppa (2013), Fang and Post (2017, 2022), Post and Kopa (2017) and many others. Jean

(1975) is one of the first few papers that express the moments in terms of successive integrals

of a probability density function so that the SD rankings can be compared with moment

rankings. Other studies, for example, Brockett and Garven (1998), establish some properties

for the relationship between risk, return, skewness, and utility preferences. Studying the

high-order moments is important because many studies, for example, Kraus and Litzenberger

(1976), Scott and Horvath (1980), Astebro (2003), Cvitanić, Polimenis, and Zapatero (2008),

Choi and Nam (2008), Chiu (2010), and Astebro, Mata, and Santos-Pinto (2015) have found

that preference of high-order moments plays an important role in asset pricing and many

other areas in finance and economics. In this paper, we first extend their work by developing

some properties to state the relationships between the nth-order (central) moments, the nth-

order SD, the nth-order risk-seeking SD (RSD), and the nth-order [reversed] integrals for both

nth- and (n+ 1)th-order [R]SD for general risk-averse [risk-seeking] utility functions and the

polynomial utility functions of both risk averters and risk seekers for any order n, including

n = 2, 3, and 4 as the special cases.

Markowitz (1952a) first introduces the mean-variance (MV) rule for risk averters, and

Wong (2007) and others introduce the MV rule for risk seekers because it is well-known that

the MV rule for risk averters cannot handle some situations, see, for example, Copeland et al.

(2005) and Levy (2015) for more information. Studies like Brockett and Garven (1998), and
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Meyer, Li, and Rose (2005) prefer other rules than the MV rule. For example, Brockett and

Garven (1998) suggest that the SD rule is better than the MV rule. One limitation of the

MV rule is that it has not measured any information from high moments, while measuring

information from high moments is very important in many empirical data.1 To circumvent

the limitations of the MV rule, in this paper, we extend the MV rule by introducing the

moment rules to acquire information from higher moments in the comparison, including the

mean-variance-skewness and mean-variance-skewness-kurtosis rules for both risk averters and

risk seekers. As far as we know, our paper is the first paper in the literature to introduce the

moment rules for both risk averters and risk seekers by establishing some necessary and/or

sufficient conditions between SD and the moment rule under some conditions, inferring that

the moment rule could be as good as the SD rule under some conditions. In addition, we

extend the theory further by removing the same-location-scale-family condition to establish

some necessary conditions between SD and the moment rule for both risk averters and risk

seekers under some conditions.

Diversification is one of the most important areas in finance. Many studies2 have de-

veloped some properties of diversification related to the MV and SD rules. In this paper,

we extend their theories by applying the moment rules to develop some properties of port-

folio diversification to compare the preferences of two sets of assets for the general utility

functions and the polynomial utility functions of both risk averters and risk seekers. In ad-

dition, applying the moment rules to develop some properties of portfolio diversification to

compare the preferences between an individual asset, a completely diversified portfolio, and

a partially diversified portfolio. We also develop some properties of portfolio diversification

1See, for example, Lim (1989), Perez-Quiros and Timmermann (2001), Jondeau and Rockinger (2003,

2006), Cvitanić, Polimenis, and Zapatero (2008), Choi and Nam (2008), Harvey, Liechty, Liechty, and Muller

(2010), Grigoletto and Lisi (2011), Buckle, Chen, and Williams (2016), and Do, Brooks, Treepongkaruna,

and Wu (2016) for more information.
2See, for example, Hadar and Russell (1971), Tesfatsion (1976), Li and Wong (1999), Wong (2007),

Egozcue and Wong (2010), Guo and Wong (2016), and Chan, et al. (2020) for more information.
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that could allow us to compare preferences of some pairs of partially diversified portfolios

for any set of independent assets or some sets of dependent assets and the general utility

functions of both risk averters and risk seekers. The findings in our paper enable academics

and practitioners to draw preferences of both risk averters and risk seekers on their choices of

portfolios or assets by using different moments. We illustrate the applications of the moment

rules introduced in this paper by using the tests of the moment rules to compare the excess

return of 49 industry portfolios from Kenneth French’s online data library. We find that the

results are reasonably stable from Jan 1992 to Dec 2021. First, around 30% of the portfolios

that are dominated by an industry portfolio under a moment rule are also dominated by an

industry portfolio under a moment rule from Jan 2002 to Dec 2011. Second, around 50% of

the portfolios that are dominated by an industry portfolio under a moment rule from Jan

2002 to Dec 2011 are also dominated by an industry portfolio under a moment rule in the

period from Jan 2012 to Dec 2021. Third, around 50% of the portfolios that are dominated

by an industry portfolio under a moment rule from Jan 1992 to Dec 2001 are also dominated

by an industry portfolio under a moment rule from Jan 2012 to Dec 2021.

The paper is organized as follows. We introduce some definitions and notations in the

next section. Section 3 develops some properties on the relationships among central mo-

ments, stochastic dominance, and expected utility. Section 4 introduces the moment rule

and develops some properties for the moment rule. Section 5 develops some properties of

portfolio diversification for the general utility functions and the polynomial utility functions

of both risk averters and risk seekers. Section 6 develops some properties for the preferences

between some partially-diversified portfolios. Section 7 provides testing procedures for the

moment rule. Section 8 illustrates the applicability of the theory developed in our paper by

using real-life data. Section 9 concludes our findings.
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2 Definitions and notations

Let R be the set of extended real numbers and Ω = [a, b] be a subset of R in which a < b.

For random variable Z = X and Y with “cumulative distribution function” (CDF) H = F

and G and probability density function h = f and g, the mean of Z is defined as µZ = µH .

The CDF H1(x) ≡ H(x) ≡ µ[a, x] of the measure µ is defined on the support Ω = [a, b] ⊂ R

with µ(Ω) = 1. For any integer n > 1, we define the following:

C
(n)
H =

∫ b

a

(x− µH)
ndH(x) , Hn(x) =

∫ x

a

Hn−1(t) dt , HR
n (x) =

∫ b

x

HR
n−1(t) dt . (2.1)

We note that H0(x) = HR
0 (x) = h(x), C

(2)
H = σ2

H is the variance of H, and C
(n)
H is the

nth-order central moment for any integer n ≥ 2. We also note that for any variable Z with

CDF H, we will use both C
(n)
Z = C

(n)
H to be the nth-order central moment of Z for any integer

n ≥ 2. We further let γH as the skewness, and κH as the kurtosis of H respectively. We

call Hn (HR
n ) the n

th-order (reversed) integral. We note that Hn is used in the development

of the SD theory for risk averters while HR
n is used in the development of the SD theory

for risk seekers, see, for example, Quirk and Saposnik (1962), Hanoch and Levy (1969),

Hammond (1974), Levy (2015), and Guo and Wong (2016) and the references therein for

more information.

In this paper, we first extend the MV rule3 for both risk averters and risk seekers in-

troduced by Markowitz (1952a), Wong (2007), and others. It is well-known that the mean-

variance rule for risk averters cannot handle some situations, see, for example, the paradox

used in the example in p66-67 of Copeland, et al. (2005). We modify the example as follows:

Example 2.1 For any pair of two prospects, X and Y , with probability functions, PX

and PY , respectively, such that PX(z) = 0.2 for z = 3, 5, 7, 9, and 11, and PY (z) = 0.2 for

z = 3, 4, 5, 6, and 7.

One could easily find that X and Y as stated in Example 2.1 do not dominate each other

3One may refer to Definition 8 in Wong (2007) for the rule.
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by using the MV rule for risk averters. However, it is obvious that X is preferred to Y . To

solve the problem, one could apply the MV rule for risk seekers introduced by Wong (2007)

and others. Now, when one applies the mean-variance rule for risk seekers, one will conclude

that X dominates Y , and thus, conclude that risk seekers will prefer X to Y . However,

there are still some limitations of using the mean-variance rules for both risk averters and

risk seekers because by using the rules, one could only conclude that risk seekers will prefer

X to Y but cannot conclude that risk averters will also prefer X to Y in the paradox as

stated in Copeland, et al. (2005) and Example 2.1 but, in fact, it is well-known that both risk

averters and risk seekers will prefer X to Y in this example. To circumvent the limitation,

a well-known solution is to apply the theory of stochastic dominance (SD). To do so, Levy

(2015), Guo and Wong (2016), Bai, et al. (2021), and others define the nth-order SD. We

state the rule briefly here. One may refer to Guo and Wong (2016) for the full definition of

the rules.

Definition 2.1 For any integer n and for any pair of random variables, X and Y , with

CDFs, F and G, respectively,

1. X is said to dominate Y by the nth-order stochastic dominance for risk averters for

n ≥ 1, denoted by X ⪰n Y , or F ⪰n G if and only if Fn(x) ≤ Gn(x) for each x and

Fk(b) ≤ Gk(b) for k = 1, · · · , n− 1 if n > 1, and

2. X is said to dominate Y by the nth-order risk-seeking stochastic dominance (RSD)4

for n ≥ 1, denoted by X ⪰R
n Y or by F ⪰R

n G, if and only if FR
n (x) ≥ GR

n (x) for each

x in [a, b], and FR
k (b) ≥ GR

k (b) for k = 1, · · · , n− 1 if n > 1.

Applying Definition 2.1 to the paradox as stated in Copeland, et al. (2005) and Example

2.1, one will conclude that both risk averters and risk seekers will prefer X to Y and, in

4We note that Levy (2015) and others call it RSSD while we follow Guo and Wong (2016) and others to

call it RSD.
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fact, conclude that all investors with increasing utility, including both risk averters and risk

seekers, will prefer X to Y because we have both X ⪰1 Y and X ⪰R
1 Y .

Stochastic dominance is useful for ranking prospects with uncertainty because ranking

prospects is equivalent to maximizing the expected utility preferences.5 To show the advan-

tages of applying SD, we first define utility functions for risk averters and risk seekers (Levy,

2015; Guo and Wong, 2016; Bai, et al., 2020) as the following:

Definition 2.2 Sets of utility functions, Un and UR
n , for risk averters and risk seekers

are:

Un = {u : (−1)iu(i) ≤ 0 , i = 1, · · · , n} and UR
n = {u : u(i) ≥ 0 , i = 1, · · · , n}, (2.2)

respective, where u(i) is the ith derivative of the utility function u.

In addition, in this paper, we will develop a theory related to the nth-order polynomial

utility function. For this purpose, we define the nth-order polynomial utility function as the

following:

Definition 2.3 If u ∈ Un or UR
n and u(n) is a nonzero constant, then u ∈ Unp or UR

np is

a nth-order polynomial utility function for risk averters and risk seekers, respectively.

We note that it is easy to extend the theory to include non-differentiable utilities.6 For

any investor with u ∈ Un, it is well known that a negative second derivative for the utility

function infers that investors are risk-averse and a positive third derivative for the utility

function is a necessary, but not sufficient condition for decreasing absolute risk aversion

(DARA).

So far, it is well known that the SD rule is more superior to the MV rule. Thus, this

paper aims to improve the MV rule. To do so, we extend the MV rule to be the moment

5We follow von Neumann-Morgenstern (1944) to compare the preference among prospects. For an em-

pirical test on SD see Post(2003)
6See Wong and Ma (2008).

8



rule and we will study the relationships between the nth-order central moments with the

nth-order (reversed) integrals, the nth-order (risk-seeking) SD, and the moment rule. We

discuss the theory in the next section.

3 Theory

In this section, we develop some properties on the relationships among central moments,

stochastic dominance, and expected utility. These properties have implications for the mo-

ment rule in Section 4 and portfolio diversification in Section 5. We first develop some

properties for general utility functions defined in Definition 2.2 and develop properties for

polynomial utility functions thereafter in this section.

3.1 General utility functions

We first develop some properties on the relationships among central moments, stochastic

dominance, and expected utility for general utility functions defined in Definition 2.2. Since

µH =

∫ b

a

tdH(t) = tH(t)
∣∣∣b
a
−
∫ b

a

H(t)dt

= b−H2(b) = a+HR
2 (a) , (3.1)

where H = F or G, we have

µF − µG = G2(b)− F2(b) = FR
2 (a)−GR

2 (a). (3.2)

Chan, et al. (2020) extend the work by Jean (1975) and others by establishing the following

result:

G3(b)− F3(b) = GR
3 (a)− FR

3 (a) =
1

2

(
σ2
G − σ2

F

)
, (3.3)

given µF = µG.

In this paper, we first extend their results by establishing the following theorem to ex-

amine the relationship between the nth-order (central) moments and the nth-order integrals

for both nth- and (n+ 1)th-order SD:
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Theorem 3.1 Let C
(k)
H be the kth-order central moment for any integer k ≥ 2. For any

given n ≥ 2, if C
(k)
F = C

(k)
G for all 2 ≤ k < n and µF = µG, the following statements are

equivalent:

1.

Gn+1(b)− Fn+1(b) =
(−1)n

n!

(
C

(n)
G − C

(n)
F

)
; (3.4)

2. Gn+1(b) ≥ Fn+1(b) if and only if (−1)nC
(n)
G ≥ (−1)nC

(n)
F ;

3. If F ⪰n G, then (−1)nC
(n)
F < (−1)nC

(n)
G ; and

4. If F ⪰n+1 G, then (−1)nC
(n)
F ≤ (−1)nC

(n)
G .

The proof of Theorem 3.1 is shown in the appendix. Since F ⪰n G implies F ⪰n+1 G, one

may believe that it is not necessary to have Part 4 of Theorem 3.1. We note that this is not

true because Part 4 of Theorem 3.1 includes the case in which F ⪰n G does not hold but we

still have both F ⪰n+1 G and (−1)nC
(n)
G ≥ (−1)nC

(n)
F . Part 3 of Theorem 3.1 does not cover

this situation. Thus, we still require to have Part 4 in Theorem 3.1. We note that Fishburn

(1980) has derived Part 3 of Theorem 3.1. From Theorem 3.1, we can obtain the following

corollary to compare the second-order central moments and SD:

Corollary 3.1 If µF = µG , then

1. G3(b) ≥ F3(b) if and only if σ2
F ≤ σ2

G;

2. if F ⪰2 G, then σ2
F < σ2

G; and

3. if F ⪰3 G, then σ2
F ≤ σ2

G,

where σ2
H is the variance of H for H = F or G.

We note that Equation (3.3) is a special case of Theorem 3.1. Now, we turn to develop the

following corollary to compare the third-order central moments and SD:
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Corollary 3.2 If µF = µG and σ2
F = σ2

G, then

1. G4(b) ≥ F4(b) if and only if γG ≤ γF ;

2. if F ⪰3 G, then γF > γG; and

3. if F ⪰4 G, then γF ≥ γG,

where γH is the skewness of H for H = F or G.

Part 1 of Corollary 3.2 shows the necessary and sufficient conditions for the magnitude of

the skewnesses with that of the fourth-order integrals for any two distributions, while Part 2

of Corollary 3.2 shows the relationship of the skewnesses with the third-order SD of any two

distributions under the conditions of both equal mean and equal variance. From Theorem

3.1, we can also obtain the following corollary to show the relationships between the SD and

the kurtosises for any two distributions under the conditions of equal mean, equal variance,

and equal skewness:

Corollary 3.3 If µF = µG , σ2
F = σ2

G, and γG = γF , then

1. G5(b) ≥ F5(b) if and only if κG ≥ κF ;

2. if F ⪰4 G, then κG > κF ; and

3. if F ⪰5 G, then κG ≥ κF ,

where κH is the kurtosis of H for H = F or G.

Part 1 of Corollary 3.3 shows the necessary and sufficient conditions for the magnitude

of the kurtosises with that of the fifth-order integrals for any two distributions, while Part

2 of Corollary 3.2 shows the relationship between the kurtosises and the fourth-order SD

for two different distributions under the conditions of equal mean, equal variance, and equal

skewness.
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We turn to develop the following theorem as a complement of Theorem 3.1 to show the

relationship among the nth-order (central) moments, the nth-order reversed integrals, and

the nth- and (n+ 1)th-order RSD:

Theorem 3.2 Let C
(k)
H be the kth-order central moment for any integer k ≥ 2. For any

given n ≥ 2, if C
(k)
F = C

(k)
G for all 2 ≤ k < n and µF = µG, the following statements are

equivalent:

1.

FR
n+1(a)−GR

n+1(a) =
1

n!

(
C

(n)
F − C

(n)
G

)
; (3.5)

2. FR
n+1(a) ≥ GR

n+1(a) if and only if C
(n)
F ≥ C

(n)
G ;

3. If F ⪰R
n G, then C

(n)
F > C

(n)
G ; and

4. If F ⪰R
n+1 G, then C

(n)
F ≥ C

(n)
G .

The proof of Theorem 3.2 is shown in the appendix. Similar to Theorem 3.1, since F ⪰R
n G

implies F ⪰R
n+1 G, one may believe that it is not necessary to have Part 4 of Theorem 3.2.

We note that this is not true because Part 4 of Theorem 3.2 includes the case in which

F ⪰R
n G does not hold but we still have both F ⪰R

n+1 G and (−1)nC
(n)
G ≥ (−1)nC

(n)
F . From

Theorem 3.2, we obtain the following corollary to compare the second-order central moments

with RSD:

Corollary 3.4 If µF = µG , then

1. FR
3 (a) ≥ GR

3 (a) if and only if σ2
F ≥ σ2

G;

2. if F ⪰R
2 G, then σ2

F > σ2
G;

3. if F ⪰R
3 G, then σ2

F ≥ σ2
G; and

where σ2
H is the skewness of H for H = F or G.
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We note that Equation (3.3) is a special case of both Theorems 3.1 and 3.2.

Now, we turn to develop the following corollary to compare the third-order central mo-

ments with RSDs:

Corollary 3.5 If µF = µG and σ2
F = σ2

G, then we have

1. FR
4 (a) ≥ GR

4 (a) if and only if γF ≥ γG;

2. if F ⪰R
3 G, then γF > γG; and

3. if F ⪰R
4 G, then γF ≥ γG,

where γH is the skewness of H for H = F or G.

Part 1 of Corollary 3.5 shows the necessary and sufficient conditions on the magnitude of

the skewnesses with the fourth-order reverse integrals for any two distributions while Part 2

of Corollary 3.5 shows the relationship of the skewnesses with the third-order RSD for any

two distributions under the conditions of equal mean and equal variance.

From Theorem 3.2, we can also obtain the following corollary to show the relationships

between the kurtosises and RSDs for any two distributions under the conditions of equal

means, equal variances, and equal skewnesses:

Corollary 3.6 If µF = µG , σ2
F = σ2

G, and γG = γF , then we have

1. FR
5 (a) ≥ GR

5 (a) if and only if κF ≥ κG;

2. if F ⪰R
4 G, then κF > κG; and

3. if F ⪰R
5 G, then κF ≥ κG;

where κH is the kurtosis of H for H = F or G.

13



Part 1 of Corollary 3.5 shows the necessary and sufficient conditions on the magnitude

of the kurtosises for any two distributions with the fifth-order reverse integrals while Part 2

of Corollary 3.5 shows the relationship of the kurtosises for two different distributions with

the fourth-order RSD under the conditions of equal mean, variance, and skewness.

Guo et al. (2014) and others comment that there is no equivalence relationship between

moments and SD. In Section 3.1, we find the sufficient condition but not the necessary

condition from SD to moment. Is it possible to get the necessary condition, and thus, obtain

the equivalence relationship between moments and SD? We explore the answer in the next

subsection.

3.2 Polynomial utility functions

We turn to develop some properties on relationships among central moments, stochastic

dominance, and expected utility for the polynomial utility functions defined in Definition

2.3. We first develop the following theorem as a complement of Theorem 3.1 to establish

some relationships between the nth-order (central) moments and nth-order SD under nth-

order polynomial utility functions.

Theorem 3.3 Let C
(k)
H be the kth-order central moment for any integer k ≥ 2. For any

given n ≥ 2, if C
(k)
F = C

(k)
G for all 2 ≤ k < n, and µF = µG, then for all nth-order polynomial

utility function u ∈ Unp, the following statements are equivalent:

1. F ⪰n G,

2. Eu(F ) ≥ Eu(G), and

3. (−1)nC
(n)
F ≤ (−1)nC

(n)
G .

By applying Theorem 3.1, one could conclude that Gn+1(b) ≥ Fn+1(b) is equivalent

to (−1)nC
(n)
G ≥ (−1)nC

(n)
F under the assumption of the theorem. Thus, we just need to
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prove that Gn+1(b) ≥ Fn+1(b) is equivalent to Eu(F ) ≥ Eu(G) under the assumption of

the theorem. The proof of Theorem 3.3 is shown in appendix. Thereafter, by using both

Theorem 3.3 and Equation (3.2), we can obtain the following corollaries:

Corollary 3.7 Suppose µF = µG. For any quadratic utility function u ∈ U2p, the following

statements are equivalent

1. F ⪰2 G,

2. Eu(F ) ≥ Eu(G), and

3. σ2
F ≤ σ2

G.

We now construct a simple counterexample to show that if the utility function u is cubic,

even µF = µG = µ and σ2
F ≤ σ2

G, we may still have Eu(F ) < Eu(G).

Example 3.1 For a cubic utility function, we have:

u(x) = u(µ) + u′(µ)(x− µ) +
u′′(µ)

2
(x− µ)2 +

u′′′(µ)

6
(x− µ)3.

As a result, we have:

Eu(F ) = u(µ) +
u′′(µ)

2
σ2
F +

u′′′(µ)

6
C

(3)
F .

Then, we get:

Eu(F )− Eu(G) =
u′′(µ)

2
(σ2

F − σ2
G) +

u′′′(µ)

6
(C

(3)
F − C

(3)
G ).

This implies that the sign of Eu(F )−Eu(G) depends on the sign of u′′(µ), u′′′(µ), σ2
F−σ2

G, and

C
(3)
F −C

(3)
G . Although under the assumed condition, the first term u′′(µ)

2
(σ2

F − σ2
G) is positive,

the second term may be negative and this would finally lead the whole term Eu(F )−Eu(G)

be negative or positive. For example, consider u′′(µ) = −2, u′′′(µ) = 6, σ2
F = 1, σ2

G = 2, C
(3)
F =

1, C
(3)
G = 2.5, we get Eu(F )− Eu(G) = −0.5 < 0.

From Theorem 3.3, we obtain the following corollary for any cubic utility function:
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Corollary 3.8 Suppose µF = µG and σ2
F = σ2

G. For any cubic utility function u ∈ U3p, the

following statements are equivalent

1. F ⪰3 G,

2. Eu(F ) ≥ Eu(G), and

3. γF ≥ γG.

From Theorem 3.3, we obtain the following corollary for any quartic utility function:

Corollary 3.9 Suppose µF = µG, σ
2
F = σ2

G, and γG = γF . For any quartic utility function

u ∈ U4p, the following statements are equivalent

1. F ⪰4 G,

2. Eu(F ) ≥ Eu(G), and

3. κF ≤ κG.

Corollary 3.7 tells us that if the means are equal, then under the quadratic utility func-

tions, the preference of the second-order SD is equivalent to the preference (smaller) of the

variance (for risk averters); Corollary 3.8 tells us that if the means and variance are equal,

then under the cubic utility functions, the preference of the third-order SD is equivalent to

the preference (bigger) of the skewness (for risk averters); Corollary 3.9 tells us that if the

means, variance, and skewness are equal, then under the quartic utility functions, the prefer-

ence of the fourth-order SD is equivalent to the preference (smaller) of the kurtosis (for risk

averters). In general, Theorem 3.3 tells us that under the conditions that all moments less

than n are equal for two assets and under the nth-order polynomial utility functions, then

the preference of the nth-order SD is equivalent to the preference of the nth-order central

moments (for risk averters). We note that this is very strong result. So far, in literature,

for example, Guo et al. (2014) comment that there is no equivalence relationship between
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moments and SD and we believe that our paper is the first paper finds that under some

conditions (that is, all moments less than n are equal for two assets and under polynomial

utility functions), then the preference of the nth-order SD is equivalent to the preference of

the nth-order central moments (for risk averters). In this paper, we hypothesize that this

result only holds for polynomial utility functions, not any other nontrivial utility functions.

Now, we turn to develop the results for convex utility functions. We first state the following

theorem:

Theorem 3.4 Let C
(k)
H be the kth-order central moment for any integer k ≥ 2. For any

given n ≥ 2, if C
(k)
F = C

(k)
G for all 2 ≤ k < n, and µF = µG. Then, for all nth-order

polynomial utility function u ∈ UR
np, the following statements are equivalent:

1. F ⪰R
n G,

2. Eu(F ) ≥ Eu(G), and

3. C
(n)
F ≥ C

(n)
G .

The proof of Theorem 3.4 is shown in appendix. Combining Equation (3.2) and Theorem

3.4, we can obtain the following corollaries. We first obtain the following corollary for any

quadratic utility function:

Corollary 3.10 Suppose µF = µG. For any quadratic utility function u ∈ UR
2p, the following

statements are equivalent

1. F ⪰R
2 G,

2. Eu(F ) ≥ Eu(G), and

3. σ2
F ≥ σ2

G.

We then obtain the following corollary for any cubic utility function:
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Corollary 3.11 Suppose µF = µG and σ2
F = σ2

G. For any cubic utility function u ∈ UR
3p,

the following statements are equivalent:

1. F ⪰R
3 G,

2. Eu(F ) ≥ Eu(G), and

3. γF ≥ γG.

And obtain the following corollary for any quartic utility function:

Corollary 3.12 Suppose µF = µG, σ
2
F = σ2

G, and γG = γF . For any quartic utility function

u ∈ UR
4p, the following statements are equivalent:

1. F ⪰R
4 G,

2. Eu(F ) ≥ Eu(G), and

3. κF ≥ κG.

4 Moment rule

There are many applications of the theory developed in Section 3. In this section, we discuss

the applications on the extension of the mean-variance (MV) rule and we call it the moment

rule. We also develop some properties for the moment rule in this section.

We first modify the MV rule (for risk averters) as follows:

Definition 4.1 For any two prospects X and Y with means µX and µY and standard

deviations σX and σY , respectively, X is said to dominate Y by the MV rule for risk averters,

denoted by X MVRA Y , if µX ≥ µY and σX ≤ σY , in which the inequality holds in at least

one of the two.

It is well-known that the mean-variance rule cannot handle some situations. For example,

the paradox as shown in Example in p66-67 of Copeland et al. (2005). There are several

18



solutions to the paradox.7 Among them, Wong (2007) introduces the MV rule for risk seekers

to solve the paradox. We modify it as follows:

Definition 4.2 For any two prospects X and Y with means µX and µY and standard

deviations σX and σY , respectively, X is said to dominate Y by the MV rule for risk seekers,

denoted by X MVRS Y , if µX ≥ µY and σX ≥ σY , in which the inequality holds in at least

one of the two.

We note that Meyer, Li, and Rose (2005) use stochastic dominance to examine whether

adding internationally based assets to a wholly domestic portfolio generates diversification

benefits for an investor. They conclude that stochastic dominance is superior to MV rule.

To circumvent the limitation of the MV rule, we first extend the MV rule for risk averters

introduced by Markowitz (1952a) and the MV rule for risk seekers introduced by Wong

(2007) and others to obtain the following mean-variance-skewness rule for both risk averters

and risk seekers to check their preferences on assets based on the first three moments of the

distributions:

Definition 4.3 For any two prospects X and Y with means µX and µY , standard devia-

tions σX and σY , and skewnesses γX and γY , respectively,

1. X is said to dominate Y by the mean-variance-skewness rule for risk averters, denoted

by X MV SRA Y , if µX ≥ µY , σX ≤ σY , and γX ≥ γY , and

2. X is said to dominate Y by the mean-variance-skewness rule for risk seekers, denoted

by X MV SRS Y , if µX ≥ µY , σX ≥ σY , and γX ≥ γY ,

in which the inequality holds in at least one of the three.

Brockett and Garven (1998) comment that it is possible to have X and Y with positive and

equal means, X having a larger variance and lower positive skewness than Y , and yet X has

7See Levy (2015) for more information.
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a larger expected utility than Y , implying skewness preference for risk averters. Definition

4.3 and the corresponding results in this section could be used to address some concerns

for Brockett and Garven (1998). In this paper, we further extend the rule to the following

mean-variance-skewness-kurtosis rule for both risk averters and risk seekers:

Definition 4.4 For any two prospects X and Y with means µX and µY , standard devia-

tions σX and σY , skewnesses γX and γY , and kurtosises, κX and κY , respectively,

1. X is said to dominate Y by the mean-variance-skewness-kurtosis rule for risk averters,

denoted by X MV SKRA Y , if µX ≥ µY , σX ≤ σY , γX ≥ γY , and κX ≤ κY ,

2. X is said to dominate Y by the mean-variance-skewness-kurtosis rule for risk seekers,

denoted by X MV SKRS Y , if µX ≥ µY , σX ≥ σY , γX ≥ γY , and κX ≥ κY ,

in which the inequality holds in at least one of the four.

We can also extend the rule further to the following mean-variance-skewness-kurtosis-· · · -

nth-order central moment rule (we call it first nth-order moments rule or, in short, n-moment

rule, or just moment rule) for both risk averters and risk seekers for their preferences on

assets based on the first nth-order moments of the distributions:

Definition 4.5 For any two prospects X and Y with means µX and µY , and the kth-order

central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n,

1. X is said to dominate Y by the n-moment rule for risk averters, denoted by X Mn
RA Y ,

if µX ≥ µY , and (−1)kC
(k)
X ≤ (−1)kC

(k)
Y for any 2 ≤ k ≤ n, and

2. X is said to dominate Y by the n-moment rule for risk seekers, denoted by X Mn
RS Y ,

if µX ≥ µY , and C
(k)
X ≥ C

(k)
Y for any 2 ≤ k ≤ n,

in which the inequality holds in at least one of the above.

Consider the following conjecture for the preferences of both risk averters and risk seekers

for the n-moment rule:
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Conjecture 1 For any two prospects X and Y with means µX and µY and the kth-order

central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n, under some conditions we

have

1. if X Mn
RA Y , then E [u(X)] ≥ E [u(Y )] for any risk-averse investor with the utility

function u ∈ Un, and

2. if X Mn
RS Y , then E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with the utility

function u ∈ UR
n .

One could easily set an example that Conjecture 1 does not hold if we do not impose any

condition. Readers may refer to Chapter 3.13 in Levy (2015) for such a counterexample. In

fact, Levy (2015) has shown that X M2
RA Y is neither sufficient nor necessary for the SSD

relationship. Could Conjecture 1 hold true under some conditions? These rules are useful

because Wong (2006) and Wong (2007) establish the results8 to get the necessary conditions

between stochastic dominance and the mean-variance rules for risk averters and risk seekers.

Theorem 5 in Wong (2007) tells us that if both X and Y belong to the same location-scale

family or the same linear combination of location-scale families, then Conjecture 1 holds for

risk averters (n = 2) and for risk seekers (n = 2). However, the condition that both X

and Y belong to the same location-scale family or the same linear combination of location-

scale families is very strong. Not many real-life data follow the same-location-scale-family

condition. Could we relax in this condition?

Readers may believe that one could use the result from Theorems 3.1 and 3.2 to remove

the same-location-scale-family condition. That is true in the sense that they can be used to

obtain the necessary but not sufficient conditions for Conjecture 1 as stated in the following

theorem:

Theorem 4.1 For any two prospects X and Y with means µX and µY and the kth-order

8Readers may refer to Theorem 5 in Wong (2007).
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central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n, if µX = µY and if C

(k)
X = C

(k)
Y

for any 2 ≤ k ≤ n− 1, then we have

1. if E [u(X)] ≥ E [u(Y )] for any risk-averse investor with the utility function u ∈ Un,

then X Mn
RA Y , and

2. if E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with the utility function u ∈ UR
n ,

then X Mn
RS Y .

We note that applying the result from Theorems 3.1 and 3.2 could help us to obtain the

necessary but not sufficient conditions for Conjecture 1. On the other hand, employing the

result from Theorems 3.3 and 3.4 could get us both necessary and sufficient conditions for

Conjecture 1 as the following:

Theorem 4.2 For any two prospects X and Y with means µX and µY and the kth-order

central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n, if µX = µY and if C

(k)
X = C

(k)
Y

for any 2 ≤ k ≤ n− 1, then we have

1. X Mn
RA Y if and only if E [u(X)] ≥ E [u(Y )] for any risk-averse investor with the

utility function u ∈ Unp, and

2. X Mn
RS Y if and only if E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with the

utility function u ∈ UR
np.

Applying the results from Theorems 3.3 and 3.4 does getting us a very nice result that

both necessary and sufficient conditions for Conjecture 1 are satisfied. Nonetheless, we need

to impose another very strong (equal-n − 1-moments) assumption of first n − 1 moments

being equal that most real-life data do not satisfied. In addition, it may be the case that

practitioners are only interested in knowing the sufficient condition of Conjecture 1, but not

the necessary condition of Conjecture 1. In view of this, we develop the following theo-

rem to relax both the same-location-scale-family assumption and the equal-n − 1-moments

assumption:
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Theorem 4.3 For any two prospects X and Y with means µX and µY , and the kth-order

central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n, if µX = µY , then

1. if X Mn
RA Y , then E [u(X)] ≥ E [u(Y )] for any risk-averse investor with the utility

function u ∈ Unp, and

2. if X Mn
RS Y , then E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with the utility

function u ∈ UR
np.

Theorem 4.3 does relax both the strong same-location-scale-family assumption and the

equal-n−1-moments assumption that most real-life data do not satisfied. However, Theorem

4.3 requires another assumption that u ∈ Unp or UR
np. it does not require assumption on the

distribution (except equal mean), but it is restricted to the types of investors that only

belong to polynomial utility functions.

Academics and practitioners may ask: is it possible we do not impose the strong same-

location-scale-family assumption, the equal-n−1-moments assumption, and we do not restrict

to the types of investors that only belong to polynomial utility functions? We get the

following theorem for this purpose:

Theorem 4.4 For any two prospects X and Y with means µX and µY , and the kth-order

central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n, if µX = µY and if the

summation of all the terms in Taylor expansion of the utility after the n term is ignorable,

then

1. if X Mn
RA Y , then E [u(X)] ≥ E [u(Y )] for any risk-averse investor with the utility

function u ∈ Un, and

2. if X Mn
RS Y , then E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with the utility

function u ∈ UR
n .

We note that Theorem 4.4 does relax both the strong same-location-scale-family assumption

and the equal-n−1-moments assumption that most real-life data do not satisfied. In addition,
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it does not restrict u ∈ Unp or U
R
np. But then, there is no free lunch. The price to pay is that

we need to impose the assumption that the summation of all the terms in Taylor expansion

of the utility after the n term is ignorable that makes Theorem 4.4 “ugly”.

Could we relax the strong “equal-mean” condition? The answer is “YES” as we have got

two as following:

Theorem 4.5 For any two prospects X and Y with means µX and µY ( µX ̸= µY ), and the

kth-order central moments C
(k)
X and C

(k)
Y , respectively, for any k = 2, 3, for any n = 2, 3 we

have

1. if X Mn
RA Y , then E [u(X)] ≥ E [u(Y )] for any risk-averse investor with the utility

function u ∈ Unp, and

2. if X Mn
RS Y , then E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with the utility

function u ∈ UR
np.

Theorem 4.6 For any two prospects X and Y with means µX and µY ( µX ̸= µY ), and the

kth-order central moments C
(k)
X and C

(k)
Y , respectively, for any 2 ≤ k ≤ n,

1. if X Mn
RA Y , and C

(k)
Y ≤ 0 for any odd integer k ≥ 3, then E [u(X)] ≥ E [u(Y )] for

any risk-averse investor with the utility function u ∈ Unp and

2. if X Mn
RS Y and C

(k)
X ≥ 0 for any odd integer k ≥ 3, then E [u(X)] ≥ E [u(Y )] for

any risk-seeking investor with the utility function u ∈ UR
np.

We note that in Part 1 of Theorem 4.6, we only require C
(k)
Y ≤ 0 for any odd integer k ≥ 3,

while the sign of C
(k)
X is not required. It can be positive as long as C

(k)
X ≥ C

(k)
Y holds.

Similarly, in Part 2 of Theorem 4.6, we only require C
(k)
X ≥ 0 for any odd integer k ≥ 3, the

sign of C
(k)
Y is not required. It can be negative as long as C

(k)
X ≥ C

(k)
Y holds.
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5 Portfolio Diversification

We now extend the theory developed in Section 4 to develop some properties of portfolio

diversification for the general utility functions and the polynomial utility functions of both

risk averters and risk seekers. We will apply some results in Hadar and Russell (1971),

Tesfatsion (1976), Li and Wong (1999), Wong (2007), Guo and Wong (2016), Chan, et al.

(2020), and others. First, we apply Theorem 5 in Wong (2007) and Theorem 4.1 to develop

the following properties of portfolio diversification to compare the preferences of two sets of

assets for the general utility functions of both risk averters and risk seekers:

Theorem 5.1 For any i = 1, · · · ,m, let {Xi} and {Yi} be two sets of independent variables

with means µXi
and µYi

and the kth-order central moments C
(k)
Xi

and C
(k)
Yi

, respectively, for

any 2 ≤ k ≤ n, if both Xi and Yi belong to the same location-scale family or the same

linear combination of location-scale families, then, for any 2 ≤ k ≤ n, if µXi
= µYi

and if

C
(k)
Xi

= C
(k)
Yi

for any 2 ≤ k ≤ n− 1, then we have

1. if E [u(Xi)] ≥ E [u(Yi)] for any risk-averse investor with the utility function u ∈ Un,

then
∑m

i=1 αiXi M
n
RA

∑m
i=1 αiYi, and

2. if E [u(Xi)] ≥ E [u(Yi)] for any risk-seeking investor with the utility function u ∈ UR
n ,

then
∑m

i=1 αiXi M
n
RS

∑m
i=1 αiYi,

for any αi ≥ 0, i = 1, · · · ,m.

Next, we apply Theorem 5 in Wong (2007) and Theorem 4.2 to obtain the following theorem

to compare the preferences two sets of assets for the polynomial utility functions of both risk

averters and risk seekers:

Theorem 5.2 For any i = 1, · · · ,m, let {Xi} and {Yi} be two sets of independent variables

with means µXi
and µYi

and the kth-order central moments C
(k)
Xi

and C
(k)
Yi

, respectively, for

any 2 ≤ k ≤ n, if µXi
= µYi

and if C
(k)
Xi

= C
(k)
Yi

for any 2 ≤ k ≤ n− 1, then we have
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1.
∑m

i=1 αiXi M
n
RA

∑m
i=1 αiYi if and only if E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any

risk-averse investor with the utility function u ∈ Unp, and

2.
∑m

i=1 αiXi M
n
RS

∑m
i=1 αiYi if and only if E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any

risk-seeking investor with the utility function u ∈ UR
np,

for any αi ≥ 0, i = 1, · · · ,m.

We then apply Theorem 5 in Wong (2007) and Theorem 4.3 to obtain the following theorem

to compare the preferences two sets of assets for the polynomial utility functions of both risk

averters and risk seekers:

Theorem 5.3 For any i = 1, · · · ,m, let {Xi} and {Yi} be two sets of independent variables

with means µXi
and µYi

and the kth-order central moments C
(k)
Xi

and C
(k)
Yi

, respectively, for

any 2 ≤ k ≤ n, if µXi
= µYi

, then

1. if
∑m

i=1 αiXi M
n
RA

∑m
i=1 αiYi, then E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any risk-

averse investor with the utility function u ∈ Unp, and

2. if
∑m

i=1 αiXi M
n
RS

∑m
i=1 αiYi, then E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any risk-

seeking investor with the utility function u ∈ UR
np,

for any αi ≥ 0, i = 1, · · · ,m.

In addition, applying Theorem 5 in Wong (2007) and Theorem 4.4, we obtain the following

theorem to compare the preferences two sets of assets for the general utility functions of

both risk averters and risk seekers:

Theorem 5.4 For any i = 1, · · · ,m, let {Xi} and {Yi} be two sets of independent variables

with means µXi
and µYi

and the kth-order central moments C
(k)
Xi

and C
(k)
Yi

, respectively, for

any 2 ≤ k ≤ n, if µXi
= µYi

and if the summation of all the terms in Taylor expansion of

the utility after the n term is ignorable, then
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1. if
∑m

i=1 αiXi M
n
RA

∑m
i=1 αiYi, then E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any risk-

averse investor with the utility function u ∈ Un, and

2. if
∑m

i=1 αiXi M
n
RS

∑m
i=1 αiYi, then E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any risk-

seeking investor with the utility function u ∈ UR
n ,

for any αi ≥ 0, i = 1, · · · ,m.

Moreover, applying Theorem 5 in Wong (2007) and Theorem 4.5, we obtain the following

theorem to compare the preferences of two sets of assets for the polynomial utility functions

of both risk averters and risk seekers:

Theorem 5.5 For any i = 1, · · · ,m, let {Xi} and {Yi} be two sets of independent variables

with means µXi
and µYi

and the kth-order central moments C
(k)
Xi

and C
(k)
Yi

, respectively, for

any k = 2, 3, for any n = 2, 3 we have

1. if
∑m

i=1 αiXi M
n
RA

∑m
i=1 αiYi, then E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any risk-

averse investor with the utility function u ∈ Unp, and

2. if
∑m

i=1 αiXi M
n
RS

∑m
i=1 αiYi, then E [u(

∑m
i=1 αiXi)] ≥ E [u(

∑m
i=1 αiYi)] for any risk-

seeking investor with the utility function u ∈ UR
np,

for any αi ≥ 0, i = 1, · · · ,m.

Last, we apply Theorem 5 in Wong (2007) and Theorem 4.6 to obtain the following theorem

to compare the preferences of two sets of assets for the polynomial utility functions of both

risk averters and risk seekers:

Theorem 5.6 For any i = 1, · · · ,m, let {Xi} and {Yi} be two sets of independent variables

with means µXi
and µYi

and the kth-order central moments C
(k)
Xi

and C
(k)
Yi

, respectively, for

any 2 ≤ k ≤ n,
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1. if
∑m

i=1 αiXi Mn
RA

∑m
i=1 αiYi, and C

(k)
Yi

≤ 0 for any odd integer k ≥ 3 for any i,

then E [u(
∑m

i=1 αiXi)] ≥ E [u(
∑m

i=1 αiYi)] for any risk-averse investor with the utility

function u ∈ Unp and

2. if
∑m

i=1 αiXi Mn
RS

∑m
i=1 αiYi and C

(k)
Xi

≥ 0 for any odd integer k ≥ 3 for any i,

then E [u(
∑m

i=1 αiXi)] ≥ E [u(
∑m

i=1 αiYi)] for any risk-seeking investor with the utility

function u ∈ UR
np.

Theorems 5.1 to 5.6 establishe some necessary and sufficient conditions between the prefer-

ences of portfolio diversification by using the moment rules and by using expected utility for

both risk averters and risk seekers. We note that Theorems 5.1 to 5.6 compare two sets of

assets with the same non-negative weight, αi, in the corresponding ith assets. We turn to

establish some necessary and sufficient conditions between the preferences of portfolio diver-

sification by using the moment rules to compare two sets of assets with different weights in

the corresponding assets. To do so, we first define

Λ0
n =

{
(λ1, λ2, · · · , λn)

′ ∈ Rn : 0 ≤ λi ≤ 1 for any i ,
n∑

i=1

λi = 1

}
(5.1)

and call Xi be an an individual asset, 1
n

∑n
i=1Xi be the completely diversified portfolio,

and
∑n

i=1 λiXi be a partially diversified portfolio if there exists i such that 0 < λi < 1 and

λi ∈ Λ0
n. We then extend Theorem 12 in Li and Wong (1999) to obtain the following theorems

to compare preference among an individual asset, a completely diversified portfolio, and a

partially diversified portfolio for the general utility functions of both risk averters and risk

seekers:

Theorem 5.7 For any X1, · · · , Xn with n ≥ 2, if X1, · · · , Xn are i.i.d., then we have

1. 1
n

∑n
i=1Xi M2

RA

∑n
i=1 λiXi M2

RA Xi and E
[
u
(
1
n

∑n
i=1 Xi

)]
≥ E [u (

∑n
i=1 λiXi)] ≥

E [u ( Xi)] for any risk-averse investor with the utility function u ∈ U2, and

2. Xi M2
RS

∑n
i=1 λiXiM

2
RS

1
n

∑n
i=1Xi and E [u (Xi)] ≥ E [u (

∑n
i=1 λiXi)] ≥ E

[
u
(
1
n

∑n
i=1 Xi

)]
for any risk-seeking investor with the utility function u ∈ UR

2 , and
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for any (λ1, · · · , λn) ∈ Λn defined in Equation (5.1).

Theorem 5.7 establishes the preferences among individual asset, partially-diversified portfo-

lio, and completely-diversified portfolio by using both moment rule and expected-utility rule

for both risk averters and risk seekers.

6 Majorization

Using the results in Section 5, one can compare the preferences among individual asset,

partially-diversified portfolio, and completely-diversified portfolio, but cannot compare the

preferences between two partially-diversified portfolios. To circumvent the limitation, we

apply the results in Egozcue and Wong (2010) to compare the preferences between some

partially-diversified portfolios in this section. To do so, we first define

Λn =

{
(λ1, λ2, · · · , λn)

′ ∈ Rn : 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,
n∑

i=1

λi = 1

}
. (6.1)

We then follow Hardy, et al. (1934) and others to make the following definition:

Definition 6.1 Let a⃗n, b⃗n ∈ Λn defined in (6.1). bn is defined to majorize a⃗n, represented

by b⃗n ⪰M a⃗n, if
k∑

i=1

bi ≥
k∑

i=1

ai, for any k = 1, 2, · · · , n.

Applying Theorem 4.2, Theorem 7 in Egozcue and Wong (2010), and Theorem 3.8 in

Guo and Wong (2016), we obtain the following theorem to compare preference of any two

partially diversified portfolios for any set of independent assets and for the general utility

functions of both risk averters and risk seekers:

Theorem 6.1 For n > 1, let a⃗n, b⃗n ∈ Λn and X⃗n = (X1, · · · , Xn)
′ in which X1, · · · , Xn

are i.i.d, if b⃗n ⪰M a⃗n, then

1. a⃗′nX⃗n M2
RA b⃗′nX⃗n and E

[
u
(
a⃗′nX⃗n

)]
≥ E

[
u
(⃗
b′nX⃗n

)]
for any risk-averse investor with

the utility function u ∈ U2, and
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2. b⃗′nX⃗n M2
RS a⃗′nX⃗n and E

[
u
(⃗
b′nX⃗n

)]
≥ E

[
u
(
a⃗′nX⃗n

)]
for any risk-seeking investor

with the utility function u ∈ UR
2 .

Can we drop the i.i.d. assumption to compare non-i.i.d. portfolio? Samuelson (1967) ar-

gues that, in general, we can’t, but he does obtain some results to drop the i.i.d. assumption.

To follow Samuelson’s idea to drop the i.i.d. assumption, we apply Theorem 6.1, Corollary

9 in Egozcue and Wong (2010), and Corollary 3.2 in Guo and Wong (2016) to obtain the

following corollary to compare preferences of some pairs of two partially diversified portfolios

for some sets of dependent assets and for the general utility functions of both risk averters

and risk seekers:

Corollary 6.1 For n > 1, X⃗n = (X1, · · · , Xn)
′ is a series of dependent or independent

random variables, For any a⃗n, b⃗n ∈ Λn, if there exist i.i.d. Y⃗n = (Y1, · · · , Yn)
′ and Pnn in

which X⃗n = PnnY⃗n such that b⃗′nPnn ⪰M a⃗′nPnn with a⃗′nPnn, then

1. a⃗′nX⃗n M2
RA b⃗′nX⃗n and E

[
u
(
a⃗′nX⃗n

)]
≥ E

[
u
(⃗
b′nX⃗n

)]
for any risk-averse investor with

the utility function u ∈ U2, and

2. b⃗′nX⃗n M2
RS a⃗′nX⃗n and E

[
u
(⃗
b′nX⃗n

)]
≥ E

[
u
(
a⃗′nX⃗n

)]
for any risk-seeking investor

with the utility function u ∈ UR
2 .

Last, we turn to apply Theorem 6.1, Corollary 12 in Egozcue and Wong (2010), and Corollary

3.3 in Guo and Wong (2016) to obtain the following corollary to compare preferences of

some pairs of two partially diversified portfolios for some sets of dependent assets and for

the general utility functions of both risk averters and risk seekers:

Corollary 6.2

For n > 1, X⃗n = (X1, · · · , Xn)
′ and Y⃗n = (Y1, · · · , Yn)

′ are two series of dependent

or independent random variables and V⃗n = (V1, · · · , Vn)
′ and W⃗n = (W1, · · · ,Wn)

′ are two

series of i.i.d. random variables. For any a⃗n, b⃗n ∈ Λn, if there exist Pnn and Qnn such that
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a⃗′nPnn, b⃗′nQnn ∈ Λn and b⃗′nQnn ⪰M a⃗′nPnn, X⃗n = PnnV⃗n, Y⃗n = QnnW⃗n, Vi ⪰2 Wi for all

i = 1, 2, ..., n; then

1. a⃗′nX⃗n M2
RA b⃗′nY⃗n and E

[
u
(
a⃗′nX⃗n

)]
≥ E

[
u
(⃗
b′nY⃗n

)]
for any risk-averse investor with

the utility function u ∈ U2, and

2. b⃗′nX⃗n M2
RS a⃗′nY⃗n and E

[
u
(⃗
b′nX⃗n

)]
≥ E

[
u
(
a⃗′nY⃗n

)]
for any risk-seeking investor with

the utility function u ∈ UR
2 .

7 Moment rule tests

In this section, we describe the testing procedure to test the performance of assets by using

the moment rule up to the fourth order. To do so, we let null hypothesisH1
0 beH

1
0 : µX < µY ,

H2
0 be H2

0 : σ2
X > σ2

Y , H
2
0S be H2

0S : σ2
X < σ2

Y , H
3
0 be H3

0 : γX < γY , H
4
0 be H4

0 : κX > κY ,

H4
0S be H4

0S : κX < κY . Further, we let H i
A be alternative hypothesis of H i

0 for i = 1, 2, 3, 4

and H i
AS be alternative hypothesis of H i

0S for i = 2, 4.

To test whether X MVRA Y (X MVRS Y ), we simply test the joint null hypotheses

HMV
0 : H1

0∪H2
0 (H

MV
0S : H1

0∪H2
0S), if we reject the joint null hypotheses, we will conclude that

X MVRA Y (X MVRS Y ) because the joint alternative hypotheses are HMV
A : H1

A∩H2
A(H

MV
AS :

H1
A ∩ H2

AS). On the other hand, to test whether X MV SRA Y (X MV SRS Y ), we simply

test the joint null hypotheses HMV S
0 : H1

0 ∪H2
0 ∪H3

0 (H
MV
0S : H1

0 ∪H2
0S ∪H3

0 ), if we reject the

joint null hypotheses, we will conclude that X MV SRA Y (X MV SRS Y ) because the joint

alternative hypotheses are HMV S
A : H1

A ∩H2
A ∩H3

A(H
MV S
AS : H1

A ∩H2
AS ∩H3

A). Last, but not

the least, to test whether X MV SKRA Y (X MV SKRS Y ), we simply test the joint null

hypotheses HMV SK
0 : H1

0∪H2
0∪H3

0∪H4
0 (H

MV SK
0S : H1

0∪H2
0S∪H3

0∪H4
0S). If we reject the joint

null hypotheses, we will conclude that X MV SKRA Y (X MV SKRS Y ) because the joint

alternative hypotheses are HMV SK
A : H1

A ∩H2
A ∩H3

A ∩H4
A(H

MV SK
AS : H1

A ∩H2
AS ∩H3

A ∩H4
AS).

Because HMV
0 , HMV

0S , HMV S
0 , HMV S

0S , HMV SK
0 , or HMV SK

0S , can be viewed as a composite

of multiple hypotheses, we can test those individual hypotheses separately and see whether
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all of them are rejected in order to reject HMV
0 , HMV

0S , HMV S
0 , HMV S

0S , HMV SK
0 , or HMV SK

0S .

For convenient, we let the p-values of HMV
0 , HMV

0S , HMV S
0 , HMV S

0S , HMV SK
0 , and HMV SK

0S as

the largest p-values for their corresponding multiple hypotheses. Take HMV S
0 as an example,

we can find out the p-values for testing H1
0 , H

2
0 , and H3

0 , say p1, p2 and p3, then we reject

HMV S
0 at α significant level if pMV S = max{pi} ≤ α for i = 1, 2, 3. In order to test H1

0 , H
2
0 ,

and H2
0S we use the commonly-used T and F tests. To test H3

0 b, H4
0 be and H4

0S, we use

the bootstrap method (Efron and LePage, 1992; Shao and Tu, 2012).

Since the existing statistical tests for SD, see, for example, Davidson and Duclos (2000),

Barrett and Donald (2003), Post and Versijp (2007), Bai, et al. (2011, 2015), and Ng, et al.

(2017), are generally computationally intensive due to the need to use resampling methods,

researchers may not want to use the SD tests. In this situation, they could just apply

the moment rule tests. Using the moment tests, readers should be able to draw similar

conclusions in Vinod (2004), Tsang, et al. (2016). Chan, et al. (2020), Lv, et al. (2021), and

many others when one uses their data.

8 Applications

In this section, we illustrate the applicability of the theory developed in our paper by using

real-life data.9 We use the excess return of 49 industry average value-weighted portfolios

from Kenneth French’s online data library to illustrate the statistical test on HMV S
0 , HMV S

0S ,

9There are various studies that try to apply the SD approach in the real data. For example, Qiao, et

al. (2014) and Clark, et al. (2016) find that risk averters prefer investing spot to futures while risk seekers

prefer investing futures to spot, Wong, et al. (2008) conclude that third-order risk averters prefer investing

in some Asian hedge funds to other Asian hedge funds, Chan, et al. (2020) find that the third-order risk

averters prefer investing in the S&P 500 index to the Nasdaq 100 index and the third-order risk seekers

prefer investing in the Nasdaq 100 index to the S&P 500 index. Vinod (2004) examines mutual funds and

finds fourth-order SD dominance among the funds. Kallio and Hardoroudi (2019) obtain new results for

fourth and fifth-order stochastic dominance. On the other hand, Hoang, et al. (2015) find that risk-averse

investors prefer not to include gold while risk-seeking investors prefer to include it in their portfolios. Chui,

et al. (2020) use SD test to check whether the market is efficient.
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HMV
0 , and HMV

0S . The portfolios we used in our analysis contain almost all common stocks

listed on NYSE, AMEX, and NASDAQ, which are formed by using the four-digit standard

industrial classification code.10

We denote the portfolios by their names in Kenneth French’s online data library. In

addition, we use the one-month US Treasury bill as a risk-free rate to help us calculate the

excess returns. In this paper, we mainly focus on the monthly excess return from Jan 1992

to December 2021. All data is pulled directly from Kenneth French’s online data library.

We first divide our data into three sub-periods, including 1) Jan 1992 to Dec 2001, 2) Jan

2002 to Dec 2011, and 3) Jan 2012 to Dec 2021. We then compare the portfolios by using

the relevant test on HMV S
0 , HMV S

0S , HMV
0 , and HMV

0S . For any portfolio that is dominated by

any other portfolio in MVRA, MVRS, MV SRA, or MV SRS sense for at least two periods, we

will show them in Table 1. In Table 1, the second column represents the minimum p-value

among all the 48 p-values for testing hypothesis HMV S
0 in which Y is the excess return of the

industry portfolio denoted in the first column, and X is the excess return of another industry

portfolio. To be more specific, under MV SRA, we will perform 48 times of the test for each

Y (in order to compare Y with all the other 48 portfolios) and display the smallest p-value

among the tests in the second column when the p-value is smaller than 10%. The same logic

is applied to the third, fourth, and fifth columns, which represent the minimum p-values

among all the 48 p-values for testing hypothesis HMV S
0S , HMV

0 , and HMV
0S , respectively, in

which Y is the excess return of the industry portfolio denoted in the first column and X is

the excess return of another industry portfolio when the minimum p-value is smaller than

10%. We also compares all the relevant moments for MVRA, MVRS, MV SRA, or MV SRS

by using the corresponding 90% bootstrap confidence interval (CI). We will denote “All” if

the confidence interval results are consistent with the test results in all of our hypotheses,

“Partial” if the confidence interval results are consistent with one or some but not all the test

10See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html for more details about

the portfolios.

33



results in our hypotheses, and “None” if the confidence interval results are not consistent

with any of the test results in all of our hypotheses.

From Table 1, we first discuss the results for the period from Jan 1992 to Dec 2001. The

results show that “Other” is dominated by at least one industry portfolio in the sense of

MV SRS; that is, there exists an industry portfolio that has a significantly higher return,

higher variance, and higher skewness compared to “Other”. For the MVRA relationship, we

find that “Toys”, “Gold”, “Boxes”, and “Other” are dominated by at least one industry

portfolio; that is, there exists an industry portfolio that has a significantly higher return

and lower variance compared to “Toys”, “Gold”, “Boxes”, or “Other”. For the MVRS

relationship, we find that “Food”, “Toys”, “Util”, “PerSv”, “Boxes”, “Whlsl”, and “Other”

are dominated by at least one industry portfolio; that is, there exists an industry portfolio

has significantly higher return and higher variance compared to “Food”, “Toys”, “Util”,

“PerSv”, “Boxes”, “Whlsl”, and “Other”. The results from the confidence intervals are all

consistent with the results from the hypothesis test.

We then discuss the results for the period from Jan 2002 to Dec 2011. From the table,

“Books” and “Other” are found to be dominated by at least one industry portfolio in the

sense of MVRA. For the MVRS relationship, all portfolios displayed in Table 1 in the period

are dominated by at least one industry portfolio. On the other hand, in the period from

Jan 2012 to Dec 2021, “Gold” is dominated by at least one industry portfolio in the sense of

MV SRA; that is, there exists an industry portfolio that has a significantly higher return, lower

variance, and higher skewness compared to “Gold”; for the MV SRS relationship, “Books”,

“Util”, “Telem”, “PerSv”, and “Paper” are dominated by at least one industry portfolio; for

the MVRA relationship, both “Gold” and “PerSv” are dominated by at least one industry

portfolio; and for the MVRS relationship, except “Gold”, all portfolios shown in Table 1 in

the period are dominated by at least one industry portfolio. The results from the confidence

interval are all consistent with those from the hypothesis test.
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Table 1: Moment rule tests

Industry MV SRA MV SRS MVRA MVRS CI

Jan 1992 to Dec 2001

Food n.a. n.a. n.a. 0.0778* All

Toys n.a. n.a. 0.0825* 0.0407** All

Gold n.a. n.a. 0.0912* n.a. All

Util n.a. n.a. n.a. 0.0811* All

PerSv n.a. n.a. n.a. 0.0903* All

Boxes n.a. n.a. 0.0546* 0.0573* All

Whlsl n.a. n.a. n.a. 0.0625* All

Other n.a. 0.0834* 0.0339** 0.0395** All

Jan 2002 to Dec 2011

Food n.a. n.a. n.a. 0.0907* All

Beer n.a. n.a. n.a. 0.0964* All

Toys n.a. n.a. n.a. 0.0968* All

Books n.a. n.a. 0.0610 0.0394** All

Hshld n.a. n.a. n.a. 0.0908* All

Drugs n.a. n.a. n.a. 0.0395** All

Telcm n.a. n.a. n.a. 0.0582* All

PerSv n.a. n.a. n.a. 0.0971* All

Paper n.a. n.a. n.a. 0.0960* All

Other n.a. n.a. 0.0811* 0.0480** All

Jan 2012 to Dec 2021

Food n.a. n.a. n.a. 0.0194** All

Beer n.a. n.a. n.a. 0.0568* All

Books n.a. 0.0898* n.a. 0.0898* Partial

Hshld n.a. n.a. n.a. 0.03808** All

Drugs n.a. n.a. n.a. 0.0850* All

Gold 0.0782* n.a. 0.0689* n.a. Partial

Util n.a. 0.0793* n.a. 0.0167** All

Telcm n.a. 0.0943* n.a. 0.0339** All

PerSv n.a. 0.0567* 0.0650* 0.0567* Partial

Paper n.a. 0.0833* n.a. 0.0297** All

Boxes n.a. n.a. n.a. 0.0737* All

Whlsl n.a. n.a. n.a. 0.0740* None

Other n.a. n.a. n.a. 0.0385** All

The *, and ** denote the significance at 10%, and 5%, respectively.
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In summary from all the results, we notice that around 30% of the portfolios are domi-

nated by at least one industry portfolio in MV SRA, MV SRS, MVRA, or MVRS sense in the

period from Jan 1992 to Dec 2001 and are dominated by at least one industry portfolio in

MV SRA, MV SRS, MVRA, or MVRS sense during the period from Jan 2002 to Dec 2011.

Second, around 50% of the portfolios are dominated by at least one industry portfolio in

MV SRA, MV SRS, MVRA, or MVRS sense in the period from Jan 2002 to Dec 2011 and are

also dominated by at least one industry portfolio in MV SRA, MV SRS, MVRA, or MVRS

sense in the period from Jan 2012 to Dec 2021. Third, around 50% of the portfolios are

dominated by at least one industry portfolio in MV SRA, MV SRS, MVRA, or MVRS sense in

the period from Jan 1992 to Dec 2001 and are dominated by at least one industry portfolio

in MV SRA, MV SRS, MVRA, or MVRS sense in the period from Jan 2012 to Dec 2021. Most

of the results from the confidence interval are consistent with those from the hypothesis test,

except they only partially support the results for “Books”, “Gold”, and “PerSv”. The result

of the confidence interval does not support that of the hypothesis test for “Whlsl”.

Kindly noted that the empirical application is not conclusive. Significant amount of

industries that is classified as significantly dominated seems not hold over time in this study.

One possible interpretation is that the location, dispersion and/or shape of the probability

distributions of the industries could change over time. Future research could focus on the

evaluation of the statistical properties of the proposed tests using Monte Carlo simulations,

and the development of universally valid statistical inference methods based on statistical

subsampling and moment estimation methods.

9 Concluding remarks

In this paper, we first extend the work of Markowitz (1952a), Tobin (1958), Chan, et al.

(2020), and others by developing some theorems to state the relationships among central

moments, stochastic dominance (SD), risk-seeking stochastic dominance (RSD), and inte-
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grals and establishing the relationship between the nth-order (central) moments and the

nth-order [reversed] integrals for both nth- and (n + 1)th-order [R]SD for general risk-averse

[risk-seeking] utility functions and the polynomial utility functions of both risk averters and

risk seekers for any order n, including n = 2, 3, and 4 as the special cases. We then apply

the relationships to extend the mean-variance (MV) rule established by Markowitz (1952a),

Wong (2007), and others by introducing the moment rule. As far as we know, our paper

is the first introduces it in the literature, including the mean-variance-skewness rule, the

mean-variance-skewness-kurtosis rule, for both risk averters and risk seekers.

Wong (2006, 2007) establish the necessary conditions between stochastic dominance and

the mean-variance rules for both risk averters and risk seekers when the assets belong to the

same location-scale family or the same linear combination of location-scale families. In this

paper, we extend the theory further by removing the same-location-scale-family condition to

establish some necessary conditions between SD and the moment rule for both risk averters

and risk seekers under some conditions. Thereafter, we apply the moment rules to develop

some properties of portfolio diversification for the general utility functions and the polynomial

utility functions of both risk averters and risk seekers. Last, we incorporate the idea of

majorization with the moment rules to develop some properties of portfolio diversification

for the general utility functions to compare the preferences between two partially diversified

portfolios.

The findings in our paper enable academics and practitioners to draw preferences of

both risk averters and risk seekers on their choices of portfolios or assets by using different

moments. We illustrate this point by using the moment rule tests to compare the excess

return of 49 industry portfolios from Kenneth French’s online data library. We find that the

results are reasonably stable from Jan 1992 to Dec 2021. First, around 30% of the portfolios

that are dominated by an industry portfolio under a moment rule are also dominated by an

industry portfolio under a moment rule from Jan 2002 to Dec 2011. Second, around 50% of
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the portfolios that are dominated by an industry portfolio under a moment rule from Jan

2002 to Dec 2011 are also dominated by an industry portfolio under a moment rule in the

period from Jan 2012 to Dec 2021. Third, around 50% of the portfolios that are dominated

by an industry portfolio under a moment rule from Jan 1992 to Dec 2001 are also dominated

by an industry portfolio under a moment rule from Jan 2012 to Dec 2021. Significant amount

of industries that are classified as significantly dominated seems not hold over time in this

study. One possible interpretation is that the location, dispersion, and/or shape of the

probability distributions of the industries have changed over time. Future research could

focus on the evaluation of the statistical properties of the proposed tests using Monte Carlo

simulations, and the development of universally valid statistical inference methods based on

statistical subsampling and moment estimation methods.

Higher orders stochastic dominance and risk measure are useful in many empirical stud-

ies, see, for example, Tehranian (1980) and Ogryczak and Ruszczyński (1999). Meyer, Li,

and Rose (2005) use stochastic dominance to examine whether adding internationally-based

assets to a wholly domestic portfolio generates diversification benefits for an investor. They

conclude that stochastic dominance is superior to the mean-variance rule. Further extensions

could examine whether stochastic dominance is superior to the moment rule.

Extensions of our paper could also include developing properties between central moments

with prospect and Markowitz stochastic dominance for investors with S-shaped or reverse

S-shaped utility function, developing the moment rule, establishing the necessary and/or

sufficient conditions between prospect and Markowitz stochastic dominance, and developing

some properties of portfolio diversification for investors with S-shaped or reverse S-shaped

utility function.11 Readers may read Levy and Wiener (1998), Levy and Levy (2002, 2004),

Post and Levy (2005), and Wong and Chan (2008) for more information on prospect and

Markowitz stochastic dominance, read Egozcue, et al. (2011) and Ortobelli Lozza, et al.

11S-shaped utility function is proposed by Kahneman and Tversky (1979) and reverse S-shaped utility

function is proposed by Markowitz (1952b)
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(2018) for the diversification properties for other types of investors, including investors with

S-shaped or reverse S-shaped utility function. In addition, our paper develops some proper-

ties by using the information of higher-order moments but has not used any information on

the joint effects from moments. Thus, extensions of our paper could study the joint effects

of moments, see, for example, Martellini and Ziemann (2009), Kostakis, Muhammad, and

Siganos (2012), Lambert and Hubner (2013), Vo and Tran (2020), and many others.
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Appendix

Proof of Theorem 3.1.

We prove Part 1 of the theorem by induction. Under the assumption that µF = µG,

Chan, et al. (2020) have already proved formula (3.4) for n = 2 (see (3.3)). Now we prove

that if the theorem holds for all 2 ≤ k ≤ n − 1, then it also holds for n. By the induction

hypothesis, we have

Gk+1(b)− Fk+1(b) =
(−1)k

k!

(
C

(k)
G − C

(k)
F

)
, ∀2 ≤ k ≤ n− 1.

The assumption of the theorem for n implies that C
(k)
G = C

(k)
F for all 2 ≤ k < n. Hence we

have Gk(b) = Fk(b) for all 2 ≤ k ≤ n. We also have G1(b) = 1 = F1(b).

To get (3.4) for n, we note that for H where H can be F or G:

C
(n)
H =

∫ b

a

(
x− µH

)n
dH(x)

=
(
x− µH

)n
H(x)

∣∣∣b
a
− n

∫ b

a

(
x− µH

)n−1
H(x)dx

=
(
b− µH

)n − n
(
x− µH

)n−1
H2(x)

∣∣∣b
a
+

n!

(n− 2)!

∫ b

a

(
x− µH

)n−2
H2(x)dx

=
n∑

k=1

(−1)k+1n!

(n+ 1− k)!

(
b− µH

)n+1−k
Hk(b) +

n!

(−1)n
Hn+1(b).

Hence

C
(n)
G − C

(n)
F

=
n∑

k=2

(−1)k+1n!

(n+ 1− k)!

(
b− µ

)n+1−k
[Gk(b)− Fk(b)] +

n!

(−1)n
[Gn+1(b)− Fn+1(b)]

=
n!

(−1)n
[Gn+1(b)− Fn+1(b)]

which is precisely (3.4) for n. Thus, the assertion of Part 1 of Theorem 3.1 holds. Part 2

and part 4 of Theorem 3.1 can be obtained from using the result from Part 1 of Theorem

3.1 holds. We turn to prove Part 3 of Theorem 3.1.

To prove Part 3, we will try to prove F ⪰n G implies Gn+1(b) > Fn+1(b) under the

assumption of Theorem 3.1. Since Gn(x) ≥ Fn(x) for each x and Gn(x) > Fn(x) for at least
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one x0 in [a, b] implies
∫ b

a
Gn(x)dx >

∫ b

a
Fn(x)dx, that is Gn+1(b) > Fn+1(b). Thus, the Part

3 of Theorem 3.1 holds.

Proof of Theorem 3.2. We prove Part 1 of the theorem by induction. Under the

assumption that µF = µG, Chan, et al. (2020) have already proved formula (3.5) for n = 2

(see (3.3)). Now we prove that if the theorem holds for all 2 ≤ k ≤ n− 1, then it also holds

for n. By the induction hypothesis, we have

FR
k+1(a)−GR

k+1(a) =
1

k!

(
C

(k)
F − C

(k)
G

)
, ∀2 ≤ k ≤ n− 1.

To get (3.5) for n, we note that

C
(n)
F − C

(n)
G

= −n

∫ b

a

(x− µ)n−1[F (x)−G(x)]dx

= n

∫ b

a

(x− µ)n−1[FR
1 (x)−GR

1 (x)]dx

= n(x− µ)n−1[GR
2 (x)− FR

2 (x)]
∣∣∣b
a
+

n!

(n− 2)!

∫ b

a

(x− µ)n−2[FR
2 (x)−GR

2 (x)]dx

=
n∑

k=2

n!

(n+ 1− k)!

(
a− µ

)n+1−k
[FR

k (a)−GR
k (a)] + n![FR

n+1(a)−GR
n+1(a)]

Hence

C
(n)
F − C

(n)
G = n![FR

n+1(a)−GR
n+1(a)]

Fn+1(a)−Gn+1(a) =
1

n!
(C

(n)
F − C

(n)
G )

which is precisely (3.5) for n. Thus, the assertion of Part 1 of Theorem 3.2 holds. Part 2

and part 3 of Theorem 3.2 can be obtained from using the result from Part 1 of Theorem

3.2 holds. We turn to prove Part 4 of Theorem 3.2.

To prove Part 3, we will try to prove F ⪰R
n G implies FR

n+1(a) > GR
n+1(a) under the

assumption of Theorem 3.2. Since FR
n (x) ≥ GR

n (x) for each x and FR
n (x) > GR

n (x) for at
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least one x0 in [a, b] implies
∫ b

a
FR
n (x)dx >

∫ b

a
GR

n (x)dx, that is FR
n+1(a) > GR

n+1(a). Thus,

the Part 3 of Theorem 3.2 holds.

Proof of Theorem 3.3.

By theorem 3.1, Gn+1(b) ≥ Fn+1(b) is equivalent to (−1)nC
(n)
G ≥ (−1)nC

(n)
F under the

assumption of this theorem. Thus, we just need to prove that Gn+1(b) ≥ Fn+1(b) is equivalent

to Eu(F ) ≥ Eu(G) under the assumption of this theorem.

∆Eu ≡ Eu(F )− Eu(G) ≡
∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x)

= [G2(b)− F2(b)]u
(1)(b)−

∫ b

a

[G2(x)− F2(x)]u
(2)(x)dx

= [G2(b)− F2(b)]u
(1)(b)− [G3(b)− F3(b)]u

(2)(b) +

∫ b

a

[G3(x)− F3(x)]u
(3)(x)dx

=
n∑

k=2

(−1)i[Gi(b)− Fi(b)]u
(i−1)(b) + (−1)n+1

∫ b

a

[Gn(x)− Fn(x)]u
(n)(x)dx.

By our assumptions , Theorem 3.1 and Equation 3.2, we get Gk(b) = Fk(b) for all 2 ≤ k ≤ n.

We have

∆Eu = (−1)n+1

∫ b

a

[Gn(x)− Fn(x)]u
(n)(x)dx.

By the assumption, we have nonzero constant u(n)(x) = u(n), thus

∆Eu = (−1)n+1u(n)[Gn+1(b)− Fn+1(b)].

Since (−1)n+1u(n) is always positive, [Gn+1(b)−Fn+1(b)] ≥ 0 implies ∆Eu ≥ 0 and ∆Eu ≥ 0

implies [Gn+1(b)− Fn+1(b)] ≥ 0. Thus, the Theorem 3.3 holds.

Proof of Theorem 3.4.

By theorem 3.3, FR
n+1(a) ≥ GR

n+1(a) is equivalent to C
(n)
F ≥ C

(n)
G under the assumption

of this theorem. Thus, we just need to prove that FR
n+1(a) ≥ GR

n+1(a) is equivalent to
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Eu(F ) ≥ Eu(G) under the assumption of this theorem.

∆Eu ≡ Eu(F )− Eu(G) ≡
∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x)

=

∫ b

a

[FR
1 (x)−GR

1 (x)]u
(1)(x)dx

= [FR
2 (a)−GR

2 (a)]u
(1)(a) +

∫ b

a

[FR
2 (x)−GR

2 (x)]u
(2)(x)dx

= [FR
2 (a)−GR

2 (a)]u
(1)(a) + [FR

3 (a)−GR
3 (a)]u

(2)(a) +

∫ b

a

[FR
3 (x)−GR

3 (x)]u
(3)(x)dx

=
n∑

k=2

[FR
i (a)−GR

i (a)]u
(i−1)(a) +

∫ b

a

[FR
n (x)−GR

n (x)]u
(n)(x)dx.

By our assumptions, Theorem 3.3 and Equation 3.2, we get FR
k (a) = GR

k (a) for all 2 ≤ k ≤ n.

We have

∆Eu =

∫ b

a

[FR
n (x)−GR

n (x)]u
(n)(x)dx.

By the assumption, we have nonzero constant u(n)(x) = u(n), thus

∆Eu = u(n)[FR
n+1(a)−GR

n+1(a)].

Since u(n) is always positive, [FR
n+1(a)−GR

n+1(a)] ≥ 0 implies ∆Eu ≥ 0 and ∆Eu ≥ 0 implies

[FR
n+1(a)−GR

n+1(a)] ≥ 0. Thus, the Theorem 3.4 holds.

Proof of Theorems 4.3 and 4.4:

Using the Taylor formula, we can express the u(F ) as:

u(F ) = u(µ) + (x− µ)u(1)(µ) +
1

2
(x− µ)2u(2)(µ) + ...+

1

n!
(x− µ)nu(n)(µ) +RX .

Assuming that the remainder RX is negligible (or u(n+1) = 0 ), then the expected utility

could be expressed as:

Eu(F ) = u(µ) +
1

2
C

(2)
F u(2)(µ) + ...+

1

n!
C

(n)
F u(n)(µ) +RF

n .

Similarly, for u(G) we have:

Eu(G) = u(µ) +
1

2
C

(2)
G u(2)(µ) + ...+

1

n!
C

(n)
G u(n)(µ) +RG

n .
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Under Theorem 4.3, u(i) = 0 for any i > n and thus the difference of expected utility between

F and G could be expressed as:

Eu(F )− Eu(G) =
1

2
u(2)(µ)(C

(2)
F − C

(2)
G ) + · · ·+ 1

n!
u(n)(µ)(C

(n)
F − C

(n)
G ).

Thus, X Mn
RA Y or X Mn

RS Y implies Eu(F ) − Eu(G) ≥ 0 under its corresponding utility

assumption.

Under Theorem 4.4, both RF
n and RG

n are ignorable. Hence,

Eu(F )− Eu(G) ≈ 1

2
u(2)(µ)(C

(2)
F − C

(2)
G ) + · · ·+ 1

n!
u(n)(µ)(C

(n)
F − C

(n)
G ),

and thus, X Mn
RA Y or X Mn

RS Y implies Eu(F ) − Eu(G) ≥ 0 under its corresponding

utility assumption.

Proof of Theorem 4.5:

Consider first the M2
RA rule. Assume that u(3) = 0. Then we have u(2)(µX) = u(2)(µY ) =

c < 0 and further:

Eu(F ) = u(µX) +
1

2
C

(2)
F u(2)(µX);

Eu(G) = u(µY ) +
1

2
C

(2)
G u(2)(µY ).

Thus the difference of expected utility between F and G could be expressed as:

Eu(F )− Eu(G) = u(µX)− u(µY ) +
1

2
[C

(2)
F − C

(2)
G ]c.

Since XM2
RAY , we have µX ≥ µY and C

(2)
F ≤ C

(2)
G , thus we have Eu(F ) ≥ Eu(G).

Now we turn to consider M3
RA rule. Assume now that u(4) = 0. Then we have u(3)(µX) =

u(3)(µY ) = c > 0 and further:

Eu(F ) = u(µX) +
1

2
C

(2)
F u(2)(µX) +

1

3!
C

(3)
F u(3)(µX);

Eu(G) = u(µY ) +
1

2
C

(2)
G u(2)(µY ) +

1

3!
C

(3)
F u(3)(µY ).

Thus the difference of expected utility between F and G could be expressed as:

Eu(F )− Eu(G) = u(µX)− u(µY ) +
1

2
[C

(2)
F u(2)(µX)− C

(2)
G u(2)(µY )] +

1

3!
c(C

(3)
F − C

(3)
G ).
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Since u(3) > 0 and µX ≥ µY , we have u(2)(µX) ≥ u(2)(µY ). It follows that

C
(2)
F u(2)(µX)− C

(2)
G u(2)(µY )

= C
(2)
F (u(2)(µX)− u(2)(µY )) + u(2)(µY )(C

(2)
F − C

(2)
G ) ≥ 0.

Since XM3
RAY , we have µX ≥ µY , 0 ≤ C

(2)
F ≤ C

(2)
G and C

(3)
F ≥ C

(3)
G , thus we have Eu(F ) ≥

Eu(G). The proofs for Part 2 in Theorem 4.5 are similar and thus omitted here.

Proof of Theorem 4.6:

Similar to the derivations in the proof for Theorem 4.5, we can have:

Eu(F )− Eu(G) = u(µX)− u(µY ) +
1

2
[C

(2)
F u(2)(µX)− C

(2)
G u(2)(µY )] + · · ·

+
1

n!
[C

(n)
F u(n)(µX)− C

(n)
G u(n)(µY )].

We need to consider the sign of the terms Ai = C
(i)
F u(i)(µX) − C

(i)
G u(i)(µY ), i = 2, · · · , n.

First consider the even numbers i. In this situation, we have

u(i) ≤ 0, u(i+1) ≥ 0, C
(i)
F ≤ C

(i)
G and C

(i)
F ≥ 0.

Then we get:

Ai = C
(i)
F (u(i)(µX)− u(i)(µY )) + u(i)(µY )(C

(i)
F − C

(i)
G ) ≥ 0.

Now assume that i is odd number. We have:

u(i) ≥ 0, u(i+1) ≤ 0, C
(i)
F ≥ C

(i)
G .

Then we get:

Ai = u(i)(µX)(C
(i)
F − C

(i)
G ) + C

(i)
G (u(i)(µX)− u(i)(µY )).

A sufficient condition for Ai being positive is that C
(i)
G ≤ 0. As a result, Part 1 of Theorem

4.6 holds. The proofs for Part 2 in Theorem 4.6 are similar and thus omitted here.
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