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Abstract

Implementation shortfall measures the difference in performance between paper

portfolio and real portfolio, and it is decomposed as a sum of execution cost and

opportunity cost. The authors show that the original framework is not directly appli-

cable to algorithmic trading and propose a new framework to compute implementation

shortfall and its decomposition. They employ an efficient algorithm inspired by DNA

sequence alignment techniques to align the trade records from both portfolios and then

compute the implementation shortfall with a breakdown of execution cost and oppor-

tunity cost for diagnosis. Their framework is simple, objective, and computationally

efficient—the complexity only grows linearly with respect to the numbers of trades of

paper and real portfolios. Hence the framework proposed by the authors in this article

is applicable to high frequency trading data.

Keywords: Implementation Shortfall, Algorithmic Trading, Algorithmic Trading

System, Backtesting, Sequence Alignment
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Implementation shortfall, as suggested by Perold (1988), concerns the difference in perfor-

mance between the paper portfolio and the real portfolio. Perold (1988) breaks down the

difference into execution cost, which is the cost of trading, and opportunity cost, which is

the cost of not trading. The breakdown is essential to determine the best execution in the

sense of Wagner and Edwards (1993), i.e., considering all the implicit transaction costs from

the entire process of implementation. After all, as Peter Drucker stated “you can’t manage

what you can’t measure”. Accurate measurement is essential for continuous improvement of

the implementation.

In the original Perold’s framework, we can compute implementation shortfall over periods

in which there is no trading in the paper portfolio. This setting works well for traditional

portfolio management but not for algorithmic trading because a trading strategy can have

lots of trading activities even for a very short period of time.

As an illustration of Perold’s framework, Exhibit 1 shows trade records from a paper

portfolio and a real portfolio of a particular financial instrument. Since the buying price in

Exhibit 1: An example of paper and real portfolios

Paper portfolio Real portfolio
Time Stamp Price Volume Type Time Stamp Price Volume Type
Jan 8, 2018 10.12 200 Buy Jan 8, 2018 10.13 100 Buy

Jan 8, 2018 10.14 50 Buy

the real portfolio is higher than the buying price in the paper portfolio, there is an execution

cost for buying the asset and it is computed by (10.13−10.12)×100+(10.14−10.12)×50 = 2.

Besides execution cost, there is an opportunity cost caused by failure to buy the financial

instrument in the real portfolio where we only bought 150 units instead of 200 units. Hence,

there is an opportunity cost of failure to buy the 50 units. Assume that the market closes at

10.20, the opportunity cost is computed by (10.20−10.12)×(200−150) = 4. The profit of the
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paper portfolio is (10.20− 10.12)× 200 = 16 while the profit of the real portfolio is (10.20−

10.13)× 100 + (10.20− 10.14)× 50 = 10. The difference (16− 10 = 6) is the implementation

shortfall which is also the sum of the execution cost and opportunity cost (2 + 4 = 6). We

Exhibit 2: Paper and real portfolio from algorithmic trading

then consider algorithmic trading as shown in Exhibit 2. In practice, the paper portfolio is

found by a backtest, see Bailey et al. (2016) for example. In general, backtesting and trading

are implemented in different systems. The paper portfolio is considered the ideal result while

real portfolio shows the reality.

Exhibit 3 lists algorithmic trade records from the paper portfolio and the real portfolio of

a particular financial instrument. According to the Perold’s framework or other extensions

such as Kissell (2006), the implementation shortfall is measured over periods of no trading

in the paper portfolio. While they both do not address how the framework can be applied

in our example, it is standard to divide the whole period into subperiods with no trading

in the paper portfolio and apply the framework over each subperiod. In the example, the

first subperiod has to be chosen strictly before the time stamp of the second trade, namely,
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Exhibit 3: An example of paper and real portfolios

Paper Portfolio Real Portfolio
Time stamp Price Volume Type Time stamp Price Volume Type
10:23:03.332 10.12 200 Buy 10:23:03.676 10.13 200 Buy
10:23:03.443 10.13 100 Buy 10:23:03.711 10.13 100 Buy
10:23:07.121 10.14 100 Sell 10:23:10.144 10.14 200 Sell
10:23:09.574 10.15 200 Sell

10:23:03.443. The first trade from the real portfolio does not lie in this subperiod and

therefore the implementation shortfall in the first subperiod have only opportunity cost.

However, it is more reasonable to conclude that the first two trades in the paper and real

portfolio results in execution cost but not opportunity cost.

We can overcome this difficulty by allocating trades in real portfolio to subperiods without

only considering the time stamps. However, this flexibility comes with subjectivity and the

results vary among different people. In addition, when the number of trades increases, this

subjective task is deemed infeasible in practice.

In essence, the problem resembles the DNA sequence alignment problem in bioinformat-

ics. DNA sequence alignment has always been an active research topic in bioinformatics.

The pioneering work of Needleman and Wunsch (1970) introduces a simple yet computa-

tionally efficient algorithm to globally align two DNA sequences. They propose a dynamic

programming approach to avoid repeated calculation in the alignment of subsequences. Since

then, many heuristics and variations of Needleman-Wunsch algorithm (NW algorithm) are

introduced. The space complexity of NW algorithm is improved by Hirschberg (1975). Smith

and Waterman (1981) introduce an algorithm for local sequence alignment algorithm. The

time and space complexity of their algorithm are optimized by Gotoh (1982) and Myers and

Miller (1988) respectively. Altschul and Erickson (1986) further improve the algorithm of

Gotoh (1982) by using affine gap costs instead of proportional to the length of a gap.

While the methods above focused on improving the complexity of the algorithm, some
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variants focus on aligning two sequences with special structures. Huang and Chao (2003)

modify NW algorithm for comparing sequences with intermittent similarities. Huang and

Brutlag (2006) extend the work of Huang and Chao (2003) by using multiple parameter sets

to compute the optimal alignment. Wallqvist et al. (2000) and Litvinov et al. (2006) take into

account specific features of protein primary structures. Besides aligning two sequences, there

are also extensive studies on aligning multiple sequences, see for example, Corpet (1988),

Notredame, Higgins, and Heringa (2000) and Katoh et al. (2002).

In this paper, we propose an effective and objective two-stage framework for computing

the decomposition of implementation shortfall. In the first stage, the trade records from

paper portfolio and real portfolio are aligned based on sequence alignment techniques. In

the second stage, the implementation shortfall is decomposed as delay cost, market impact,

over-trade cost, and under-trade cost. The computational complexity of our framework is

linear with respect to the number of trades of each trading sequence. Thus, our framework

is applicable to high frequency trading in practice.

Review of Needleman-Wunsch Algorithm

Our trading sequence alignment algorithm is based on the NW algorithm (Needleman and

Wunsch 1970), which is designed to globally align two DNA sequences effectively. It uses a

dynamic programming approach to avoid repeated calculations in the alignment of subse-

quences. The computational complexity of the NW algorithm is O(MN), where M and N

are the lengths of the two DNA sequences respectively.

The NW algorithm is shown in Algorithm 1, where p and q are two DNA sequences

to be aligned, pi and qj denote the i-th and j-th DNA of p and q respectively (e.g., pi =

A,G,C, or T ). Matrix A is called the score matrix, Ai,j denotes the entry of A at the i-th

row and j-th column, piΘqj denotes two matched DNAs pi and qj being aligned (pi and qj

are matched if pi = qj); piΦqj denotes two mismatched DNAs pi and qj being aligned (pi
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and qj are mismatched if pi 6= qj), ∆ denotes a missing DNA, piΘ∆ denotes pi being aligned

with a missing DNA, γ is a parameter penalizing the alignment with a missing DNA, and s

is a function evaluating the score of aligning two DNAs.

Since we take the maximum over the scores of the cases in the update of Ai,j, Ai,j stores

the score of the best alignment of p1:i with q1:j, where pi1:i2 denotes the subsequence of p

with consecutive DNAs from pi1 to pi2 , and AM,N stores the score of the best alignment of p

with q. After the computation of the score matrix A is completed, we trace back from AM,N

to A0,0 to construct the best alignment of p with q. For more details of the NW algorithm,

see Needleman and Wunsch (1970).

Algorithm 1 Needleman-Wunsch algorithm

1: Initialize:
M = length(p), N = length(q).
A0,0 = 0.
Ai,0 = Ai−1,0 + γ, ∀i ∈ 1, ...,M .
A0,j = A0,j−1 + γ, ∀j ∈ 1, ..., N .

2: for i = 1 : M do
3: for j = 1 : N do
4:

Ai,j = max


Ai−1,j−1 + s(pi, qj), Case: piΘqj or piΦqj, (1a)

Ai−1,j + γ, Case: piΘ∆, (1b)

Ai,j−1 + γ, Case: ∆Θqj. (1c)

5: end for
6: end for
7: Trace back from AM,N to A0,0 to construct the best alignment of p with q.

Stage 1: Trading Sequences Alignment

In this section, we describe the alignment algorithm for aligning records from the real port-

folio with records from the paper portfolio. For simplicity, we consider one financial asset1.

1. in some cases, it is helpful to align trades of different assets. The modification is straightforward.
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Description and Notation of Trading Sequences

Existing literature has investigated backtesting algorithm on different types of data. For

example, Löw, Maier-Paape, and Platen (2015) and Maier-Paape and Platen (2016) investi-

gate backtesting on candle historical data, Hurlin, Colletaz, and Tokpavi (2007) and Dionne,

Duchesne, and Pacurar (2009) investigate backtesting on tick-by-tick data, Wang, Rostoker,

and Wagner (2009) investigates backtesting on bid-ask tick data. Regardless of the backtest

system chosen and the type of data, the trade records of a paper portfolio can be represented

by b with bi denoting the i-th trade record. Each trade record bi is a vector of the form:

bi = [tbi , p
b
i , v

b
i , y

b
i ], (2)

where tbi is the time when the trade is executed, pbi is the trading price, vbi is the trading

volume and ybi is the type of the trade, i.e. buy or sell. Similarly, we use l to represent the

trade records of real portfolio where lj has the form:

lj = [tlj, p
l
j, v

l
j, y

l
j]. (3)

Trading Sequence Alignment Algorithm

Each entry in the DNA sequence is represented just by a letter and hence is one-dimensional.

However a trade record is of four-dimensional, as shown in (2) and (3). In view of the di-

mensionality and the possible discrepancies between the two trading sequences, we develop

a trading sequence alignment algorithm modified from the NW algorithm. The trading se-

quence alignment algorithm is presented in Algorithm 2, where A and D are two matrices

storing scores of the best alignments and trading volume imbalances respectively, biΘlj de-

notes two matched trade records bi and lj being aligned (bi and lj are matched if ybi = ylj),

biΦlj denotes two mismatched trade records bi and lj being aligned (bi and lj are mismatched

if ybi 6= ylj), biΘ∆ denotes bi being aligned with a missing trade record, γm is a parameter
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penalizing a trade record being aligned with a missing trade record.

Algorithm 2 Trading sequence alignment algorithm

1: Initialize:
M = length(b), N = length(l).
A0,0 = 0, D0,0 = 0.
Ai,0 = Ai−1,0 + γm, Di,0 = 0, ∀i ∈ 1, ...,M .
A0,j = A0,j−1 + γm, D0,j = 0, ∀j ∈ 1, ..., N .

2: for i = 1 : M do
3: for j = 1 : N do
4:

Ai,j = max


Ai−1,j−1 +m(bi, lj), Case: biΘlj or biΦlj, (4a)

Ai,j−1 + g(Di,j−1, bi, lj), Case: biΘ{lj−1, lj} or ∆Θlj, (4b)

Ai−1,j + γm, Case: biΘ∆. (4c)

Di,j =


Vbi − Vlj , if biΘlj, (5a)

−Vlj +Di,j−1, if biΘ{lj−1, lj}, (5b)

0, if biΦlj or biΘ∆ or ∆Θlj. (5c)

5: end for
6: end for

Our trading sequence alignment algorithm has a computational complexity of O(MN),

where M and N are the lengths of the two trading sequences respectively. So the alignment

algorithm is linear with respect to the number of trades in each sequence. This makes our

framework applicable to high frequency trading. In the next two subsections, we discuss in

detail the update of the matrices D and A respectively.

Trading Volume Imbalance Matrix D

Trading volume imbalance matrix D stores the trading volume imbalances of the alignment

from the two trading sequences. In real portfolio, one trading order could be executed as

multiple trade records due to insufficient volume in one bid-ask tick. In contrast, in paper

portfolio, one trading order can always be assumed executable as only one trade record.

Hence, one record in paper portfolio can correspond to multiple live trading records. So
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our algorithm should allow one bi being aligned with multiple lj’s. The matrix D stores the

trading volume imbalances of the alignment of b and l. More specifically, Di,j stores the

trading volume imbalance of the last match of the best alignment of b1:i and l1:j. In (4b), we

then can compute the reward of reducing the volume imbalance using the value of Di,j.

There are three cases in the update of Di,j, see (5a)–(5c). The update of Di,j depends on

which case we have in the update of Ai,j. We explain the cases separately in the following:

1. For (5a), two matched trade records bi and lj are aligned. If Di,j > 0 then there are

more trading volume in bi than lj, and vice versa. If Di,j = 0, then there is no trading

volume imbalance.

2. For (5b), one live trading record lj is added to the alignment containing bi and lj−1.

Since the trading volume imbalance in the alignment of bi and lj−1 is already stored in

Di,j−1, we calculate Di,j by subtracting the trading volume of lj from Di,j−1.

3. For (5c), two mismatched trade records bi and lj are aligned or a trade record is aligned

with a missing trade record. In either case, there is no trading volume imbalance, so

we set Di,j to be 0.

Score Matrix A

Score matrix A stores the scores of the best alignment of the two trading sequences. There

are 3 cases in the update of Ai,j, see (4a)–(4c). The maximum score among the three cases

is used to update Ai,j. We explain the cases separately in the following:

1. For (4a), two trade records bi and lj are aligned. If the two trade records are matched,

we assign a score with its magnitude depending on the similarity between the two trade

records; if they are mismatched, we assign a penalty. The following function m(bi, lj)
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is used to evaluate the score:

m(bi, lj) =

1− λt|tbi − tlj| − λp
|pbi − plj|
pbi + plj

− λv
|vbi − vlj|
|vbi + vlj|

, if ybi = ylj, (6a)

−∞, if ybi 6= ylj, (6b)

where λt, λp and λv are parameters of the weights on time, price, and volume respec-

tively. Recall that the yi, ti, pi, and vi are defined in (2) and (3). Since it is irrational

to align two mismatched trade records, the output of m is −∞ if the two trade records

are mismatched, i.e. ybi 6= ylj. Hence two mismatched records will not be aligned. If bi

and lj are matched, m(bi, lj) will return a value that depends on how similar the trade

records bi and lj are, i.e. the more similar they are, the larger the m(bi, lj).

2. In case (4b), the j-th live trading record lj is added to the alignment of bi with lj−1,

or lj is aligned with a missing trade record. A function g is used to evaluate the score

in such case and the function is given by the following:

g(Di,j−1, bi, lj) =

h(Di,j−1, bi, lj) if Di,j−1 > 0 and ybi = ylj, (7a)

γm, if Di,j−1 ≤ 0 or ybi 6= ylj, (7b)

where the function h is given by:

h(Di,j−1, bi, lj) = max

−γt|t
b
i − tlj| − γp

|pbi − plj|
pbi + plj

+ γvf(Di,j−1, v
l
j), (8a)

γm, (8b)

with

f(Di,j−1, v
l
j) =


vlj −Di,j−1

Di,j−1

, if vlj > Di,j−1, (9a)

0, if vlj ≤ Di,j−1, (9b)

where γt, γp and γv are the weights on time, price, and volume imbalance respectively.

We recall γm is the weight of alignment with a missing trade record.
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For (7a), it is under the condition that Di,j−1 > 0, i.e. there are more backtesting

volumes than live trading volumes in the last alignment. When this happens, we

would like to align lj with the alignment in order to reduce the volume imbalance if

the backtesting trade record and the live trading record are not too dissimilar. Hence

for (8a), we evaluate the time and price similarity between bi and lj and we use the

function f in (9) to evaluate the reward of reducing the order imbalance. For (9a), the

volume imbalance will be overcompensated as vlj > Di,j−1. We then assign a penalty

which is the ratio of the overcompensation to the volume imbalance. For (9b), if the

volume vlj is less than or equal to the volume imbalance Di,j−1, we do not put any

penalty to encourage reducing the volume imbalance. However, if lj and bi are too

dissimilar in the sense that the score is lower than lj being aligned with a missing

trade record, we will align lj with a missing trade record instead. After that, we then

take the maximum over the score of (8a), which is the score of aligning lj with the last

alignment, and the score of (8b), which is the score of aligning lj with a missing trade

record. Note that we can keep adding live trading records to the last alignment and

eventually have an alignment with two or more lj’s.

The case (7b) is when the live trading volume is not larger than the backtesting volume

or when the type of trading does not match, i.e. ybi 6= ylj. In such a case, the function

g will just output the score of lj being aligned with a missing trade record.

3. For (4c), the i-th trade record bi from paper portfolio is aligned with a missing trade

record. Hence, a score of γm penalizing this alignment is assigned. Recall that we

assumed a trading order can always be executed as only one trading record in paper

portfolio, hence there is no multiple backtesting trade records alignment.
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Stage 2: Breakdown of Implementation Shortfall

Given the alignment results obtained in the first stage, one can break down the implementa-

tion shortfall into its execution cost and opportunity cost. The breakdown is similar to the

implementation shortfall breakdown approach proposed in Perold (1988). Yet our proposed

method first aligns the two sequences with multiple transactions on both live trading and

backtesting while Perold’s approach assumes the trading period lies between two transactions

of the backtesting sequence.

In this section, we present the derivation of the implementation shortfall breakdown.

After the first stage, we obtain sets of aligned trade records where each set of aligned trade

records contains aligned backtesting trade records and live trading records. Note that each

set of aligned trade records can contain multiple live trading records but only one backtesting

trade record. Let P l
i,j and V l

i,j be the price and volume of the j-th trade record of the i-th

aligned set of trade records in live trading respectively, P b
i and V b

i be the price and volume

of the i-th set of aligned trade records in backtesting respectively, N be the total number of

sets of aligned trade records, and Mi be the number of live trading records in the i-th set of

aligned trade records.

The implementation shortfall S can be expressed as the market-to-market profit and loss

difference between real and paper portfolios:

S =
N+1∑
i=1

(

Mi∑
j=1

P l
i,jV

l
i,j − P b

i V
b
i ). (10)

Here, for simplicity, we assume all positions are unwound in one trade record at the end of the

evaluation period for both portfolios, hence we set MN+1 = 1. In particular, P l
N+1,1 and P b

N+1

are both equal to the asset price at the end of the period; and V l
N+1,1 and V b

N+1 are equal to

the trading volumes needed to entirely unwind the positions in the live trading portfolio and

backtesting portfolio respectively at the end of the period, i.e. V l
N+1,1 = −

∑N
i=1

∑Mi

j=1 V
l
i,j

and V b
N+1 = −

∑N
i=1 V

b
i .
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We remark that in (10), the volumes are set to 0 for all missing trade records, and

their price are set to the corresponding price in the aligned trade records. Applying some

rearrangements to R.H.S. of (10), we obtain:

S =
N+1∑
i=1

( Mi∑
j=1

P l
i,jV

l
i,j −

Mi∑
j=1

P b
i V

l
i,j +

Mi∑
j=1

P b
i V

l
i,j − P b

i V
b
i

)

=
N+1∑
i=1

Mi∑
j=1

(
P l
i,j − P b

i

)
V l
i,j +

N+1∑
i=1

P b
i

( Mi∑
j=1

V l
i,j − V b

i

)
. (11)

Putting V l
N+1,1 = −

∑N
i=1

∑Mi

j=1 V
l
i,j, V

b
N+1 = −

∑N
i=1 V

b
i , and P l

N+1,1 = P b
N+1 into R.H.S. of

(11), then applying some simplifications and rearrangements, we have:

S =
N∑
i=1

Mi∑
j=1

(
P l
i,j − P b

i

)
V l
i,j︸ ︷︷ ︸

Execution cost

+
N∑
i=1

(
P b
i − P b

N+1

)( Mi∑
j=1

V l
i,j − V b

i

)
︸ ︷︷ ︸

Opportunity cost

. (12)

The breakdown is interpreted as follows. In the first term, (P l
i,j − P b

i ) is the cost of trading

at the price of P l
i,j instead of P b

i , and V l
i,j is the trading volume in which this cost is involved.

In the second term, (
∑Mi

j=1 V
l
i,j − V b

i ) is the volume of an unexecuted trade and (P b
i − P b

N+1)

is the net return of the unexecuted trade.

The execution cost can be further broken down to delay cost, which is the cost caused by

delayed execution, and market impact. The opportunity cost can be further broken down to

over-trade cost and under-trade cost. The breakdown is given as follows:

S =
N∑
i=1

(
P l
i,1 − P b

i

)
V l
i,1︸ ︷︷ ︸

Delay cost

+
N∑
i=1

Mi∑
j=2

(
P l
i,j − P b

i

)
V l
i,j︸ ︷︷ ︸

Market impact

+
N∑
i=1

(
P b
i − P b

N+1

)( Mi∑
j=1

V l
i,j − V b

i

)
1|

∑
V l
i,j |>|V b

i |︸ ︷︷ ︸
Over-trade cost

+
N∑
i=1

(
P b
i − P b

N+1

)( Mi∑
j=1

V l
i,j − V b

i

)
1|

∑
V l
i,j |<|V b

i |︸ ︷︷ ︸
Under-trade cost

.

(13)
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Here 1|∑V l
i,j |>|V b

i | denotes an indicator function, i.e. 1|∑V l
i,j |>|V b

i | = 1 if |
∑
V l
i,j| > |V b

i | and

1|
∑

V l
i,j |>|V b

i | = 0 if |
∑
V l
i,j| ≤ |V b

i |. The cost caused by the first trade record of each aligned

set of trade record in live trading will be considered as delay cost. This is in the same spirit

as in Hendershott, Jones, and Menkveld (2013), i.e. the first trade record is not affected by

market impact, thus any cost is attributed to time delay. After the first trade is executed,

the subsequent trades will be affected by the market impact caused by the first trade. Hence,

the trades after the first trade are attributed to market impact.

It is also possible to compute the implementation shortfall breakdown for each set of

aligned trade records. It is done by simply extracting the i-th term in (13). Let Si be the

implementation shortfall for the i-th set of aligned trade records. Thus Si can be expressed

as:

Si =

(
P l
i,1 − P b

i

)
V l
i,1︸ ︷︷ ︸

Delay cost

+

Mi∑
j=2

(
P l
i,j − P b

i

)
V l
i,j︸ ︷︷ ︸

Market impact

+

(
P b
i − P b

N+1

)( Mi∑
j=1

V l
i,j − V b

i

)
1|

∑
V l
i,j |>|V b

i |︸ ︷︷ ︸
Over-trade cost

+

(
P b
i − P b

N+1

)( Mi∑
j=1

V l
i,j − V b

i

)
1|

∑
V l
i,j |<|V b

i |︸ ︷︷ ︸
Under-trade cost

.

(14)

Diagnosis of Algorithmic Trading Implementation

One purpose of computing the implementation shortfall is to improve the existing algorithmic

trading systems. Large delay cost reflects inefficiency in software or hardware throughout the

whole algorithmic trading implementation from market data feed to order execution. Market

impact cost can be reduced by employing optimal execution strategies, see for example

Bertsimas and Lo (1998).

If the opportunity cost is large, it is likely due to incorrect implementation of the trading

system in a live trading environment. High under-trade cost could be due to using wrong type

of trades (e.g., fill-or-kill, fill-and-cancel, etc.) during order execution. Over-trade should be
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rare in algorithmic trading implementation. High over-trade cost should give attention to

potential human intervention during live trading. Our framework provides a valuable tool

for continuous monitoring of algorithmic trading strategies. For more detailed discussions on

diagnosis of algorithmic trading implementation, see Harris (2008, Chapter 6), Chan (2009,

Chapter 3) and Pardo (2008, Chapter 6).

Experimental Results

In this section, we apply our alignment algorithm on illustrative live trading and backtesting

data and show how one can calculate the implementation shortfall based on the results of our

alignment algorithm. Exhibit 4 shows the trading sequences generated by backtesting and

live trading respectively. Exhibit 5 shows an alignment result generated by our algorithm,

where the end of evaluation period price is set to be 28390, i.e., P l
N+1,1 = P b

N+1 = 28390,

and parameters λt = 1, λp = 2, λv = 1, γt = 1, γp = 2, γv = 1 and γm = 1. Exhibit 6 shows

another alignment result, where the parameters are the same as in Exhibit 5 but γt = 3,

i.e. we put more penalty on the time difference between trade records for multiple trade

records alignment. With more penalty on the time difference, we obtain different alignment

results (marked by bold-face fonts) and hence produce a different implementation shortfall

breakdown. Each row of Exhibit 5 and Exhibit 6 contains one set of aligned trade records.

Conclusion

We blend an efficient algorithm in bioinformatics and a classic implementation shortfall to

create a useful tool for evaluating algorithmic trading implementation. The framework is

applicable to high frequency trading since the complexity only grows linearly with respect to

the number of trades in each trading sequence. Moreover, it is simple to implement and it

provides an objective way to analyze implementation shortfall on algorithmic trading. The

breakdown of costs resulted from the framework also gives astute insights on the algorithmic
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Exhibit 4: Live trading and backtesting results

Backtesting Live trading
Time Stamp Price Volume Type Time Stamp Price Volume Type
10:00:00.122 28387 1 Buy 10:00:03.008 28387.5 2 Buy
10:00:02.811 28387 2 Buy 10:00:04.154 28389 −2 Sell
10:00:04.115 28389 −4 Sell 10:00:04.417 28387 −2 Sell
10:00:11.899 28394 5 Buy 10:00:08.593 28390 −1 Sell
10:00:13.563 28396 −1 Sell 10:00:12.018 28394 2 Buy
10:00:15.552 28400 7 Buy 10:00:12.080 28395 2 Buy
10:00:16.237 28398 4 Buy 10:00:14.026 28393 −1 Sell

10:00:15.833 28402 5 Buy
10:00:16.005 28405 3 Buy
10:00:16.737 28400 2 Buy

trading implementation.
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Exhibit 5: Alignment and implementation shortfall breakdown on the paper trading and
real trading data with µt = 1.
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Exhibit 6: Alignment and implementation shortfall breakdown on the paper trading and
real trading data with µt = 3.
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