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Abstract

We consider the problem of segmenting an image into superpixels in the con-
text of k-means clustering, in which we wish to decompose an image into
local, homogeneous regions corresponding to the underlying objects. Our
novel approach builds upon the widely used Simple Linear Iterative Clus-
tering (SLIC), and incorporate a measure of objects’ structure based on the
spectral residual of an image. Based on this combination, we propose a
modified initialisation scheme and search metric, which keeps fine-details.
This combination leads to better adherence to object boundaries, while pre-
venting unnecessary segmentation of large, uniform areas, while remaining
computationally tractable in comparison to other methods. We demonstrate
through numerical and visual experiments that our approach outperforms
the state-of-the-art techniques.
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1. Introduction

Image segmentation has been a widely explored task in computer vision
yet a still open problem. In particular, superpixels segmentation has become
a pre-processing tool for several applications including classification [1, 2],
optical flow [3, 4], colour transfer [5], depth estimation [6, 7] and tracking [8,5

?Equal Contribution.
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Figure 1: Input-Output examples of our proposed approach for three images with different
characteristics such as diverse structure and colours. Our approach seeks to adhere better
to the boundaries through a structure measurement whilst connecting meaningful regions,
for example see the eyes and mouth at the three outputs.

9]. The central idea of superpixels is to split a given image in multiple
clusters, which reflect semantically meaningful regions.

There are several advantages of using superpixel representation instead of
working at pixel-wise level. Firstly, an application becomes computationally
and representationally efficient as the number of primitives are significantly10

reduced. Secondly, the natural redundancy in an image is exploited, and
therefore, features can be extracted on representative regions whilst reducing
noise and increasing discriminative information [10, 11, 12].

Since the pioneering work of Ren and Malik [10], the community has
devoted to develop different algorithmic approaches to improve over [10].15

These approaches can be roughly divided in: graph-based methods e.g. [10,
13], path-based approaches e.g. [14], density-based models e.g. [15], contour
models e.g. [16] and clustering methods e.g. [11, 17].

Out of all of the approaches reported in the literature, the Simple Lin-
ear Iterative Clustering (SLIC) [11] is perhaps the most popular method20

that offers a good performance whilst demanding low computational cost, by
building on Lloyd’s algorithm [18] for k-means. The central idea of SLIC is
to perform the superpixels partition based on an iterative scheme that search
for similarities between points ensuring at each step that we assign points to
the nearest cluster from the previous step.25

The ability of SLIC to obtain a good segmentation with low computa-
tional cost comes from the observation that, by using a similarity metric, one
can greatly reduce the number of distance calculations required. However,
SLIC is also limited by its own construction, and in particular, by its search
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range, and one can thus observe two major limitations. Firstly, SLIC tends30

to segment large uniform regions in an image with more superpixels than are
intuitively necessary, which limits resolution in other parts of the image. Sec-
ondly, in structure-rich parts of the image, the final superpixel size is much
smaller than the search radius of SLIC, which leads to many unnecessary
distance computation. Finally, since we expect structure-rich parts of the35

image to have a higher density of superpixels, it may be efficient to perform
the initial seeding of cluster centres in anticipation of this inhomogeneity.

In this work, we propose a new algorithmic approach, exhibited in Fig. 1,
that improves upon the SLIC approach, motivated by the drawbacks dis-
cussed above. We show that our approach outperforms SLIC and several40

works on the body of literature. Our main contributions are as follows.

• We propose a new superpixel approach, which incorporates the saliency
function S(x) of Hou et al. [19] as a proxy for object density. This
leads to the following advantages.

– By incorporating the saliency S(x) into the distance computation,45

we can prevent unnecessary over-segmentation of large, uniform
regions, such as the sky in the first example of Fig. 2, and allowing
greater focus on structure-rich parts of the image.

– We propose a new seeding strategy, based on the inhomogenity
described by S. This allows for greater resolution changes at fewer50

iterations by focusing on relevant structures, and hence keeping
fine-details of the structures in the final segmentation.

• We extensively evaluate our approach with a large range of numerical
and visual experiments.

• We demonstrate that our two major contributions mitigates the major55

drawbacks of the state-of-the-art techniques, by reporting the lowest
undersegmentation error and highest boundary recall.

2. Related Work

In this section, we review the body of literature in turn. We then highlight
the advantages of clustering based methods, and their current drawbacks that60

motivate our new algorithmic approach.

3



There have been different attempts in the literature to improve super-
pixels segmentation. A set of approaches tackle the problem using graph
representation of the image and the partition is based on the similarity of
the nodes, e.g. colour, including [10, 20, 21, 22, 23, 24]. However, although65

promising results are reported, the computational time is often very high.
Another perspective has been followed by local mode-seeking algorithms in-
cluding the well-known Quick Shift, which partition is based on an approx-
imation of kernelised mean-shift [15]. However, there is not control on the
number of superpixels or compactness.70

Another set of approaches addressed the superpixel partition problem
as the task of finding the shortest path between seeds, for instance using
the the well-known Dijkstra algorithm, as reported in [14, 25]. However,
this type of approach is usually unable to control the compactness. We
briefly mention other methods for superpixels segmentation. A body of work75

has proposed algorithms for image segmentation based on gradient ascent
and other geometric methods [26, 27, 16]. For an extensive review of the
literature, we refer the reader to [12].

In particular, in this work we focus on, probably, the most popular su-
perpixel category, which is clustering based approaches. The basis of this80

perspective builds on Lloyd’s algorithm [18] for k-means clustering. The
main idea of this algorithm is to partition a set of observations into k clus-
ters, in which each observation is assigned to the cluster with the nearest
mean, and produces excellent results at the cost of high computational in-
tensity. Within this category, one can find a top reference approach called85

Simple Linear Iterative Clustering (SLIC). SLIC was proposed by Achanta
et al. [11], in which authors propose a local version of the Lloyd’s algorithm,
which is computationally much simpler while keeping excellent segmentation
quality.

Following this philosophy, different algorithmic approaches have been pro-90

posed including [28, 29, 30, 31]. Most recently, in [32] authors proposed an
improved version of SLIC, in which they proposed to compute a polygonal
partition to adapt better to the geometry of the objects in the image. Maier-
hofer et al [17] propose a dynamic refinement of this method, called dSLIC,
which seeds the initial cluster points inhomogenously and allows the search95

radius to vary across clusters, both according to a measure of local object
density. This allows better capturing of fine details in structure-rich regions,
and further reduces computational complexity by eliminating unnecessary
searches.
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Let us also mention the closely related problem of salient object detection.100

In this problem, one has the simpler goal of identifying which regions in an
image contain salient or novel information, and which contain only patterns
and structures repeated throughout the image. This problem shares some
similarities with the problem of image segmentation; for instance, one might
hope that the salient objects are identified as superpixel regions. A hugely105

successful method in this problem, based on Fourier analysis, was proposed
by Hou et al. [19], which inspires our current approach. More recent works
include techniques based on graphs [24] or machine-learning [33, 34].

3. Proposed Approach

In this section, we describe in detail our superpixel approach. Firstly, we110

formalise the definition of superpixels in terms of a clustering task. We then
introduce the details of both our new measure of structure function and our
initialisation strategy.

We view an input image, of width A and height B, as a map I : X → Ω,
where X = [A]× [B] is a rectangular domain, and Ω ⊂ R3 appropriate colour115

domain. We also define a metric d on X × Ω, representing the similarity of
points in space and with different colour values, and a feature map F , which
takes a subset S ⊂ X and returns a pair in X × Ω. k-means clustering now
seeks a partition of X into path-connected sets {Si}ni=1 such that, for each
i, Si is exactly the set of points where the infimum infj d((x, I(x)),F(Sj)) is120

attained at j = i.

We first give a very brief explanation on SLIC as our approach builds
upon it. SLIC uses Lab colour space as this is a representation of the visible
colours which simulates human vision.

Definition 1 (Lab color space). The Lab color space Lab describes math-125

ematically all perceivable colors in the three dimensions l for lightness and a
and b for the color opponents green–red and blue–yellow. The range of coor-
dinates for l are 0 to 100 and bounded intervals for a and b respectively, the
bounds on which depend on the convention used.

Given this particular choice of coordinates for our colour space, SLIC130

chooses the following distance measure: For p1,p2 ∈ X×D,pi = [xi, li]
T ,xi ∈

X , li ∈ D define:

5



(I
N
P
U
T
)

(S
L
IC
.O
U
T
P
U
T
)

(O
U
R
S
.O
U
T
P
U
T
)

Figure 2: Illustration output of our approach against SLIC. SLIC tends to over-segment
uniform areas with more superpixels than necessary, such as the sky in the first image,
and fails to preserve fine-structures, such as the owl’s eyes and the roller coaster at the
zoom-in views.

d(p1,p2) =

√
d2s +

(
dc
S

)2

m2 where

ds(p1,p2) = ‖x1 − x2‖2 and dc(p1,p2) = ‖l1 − l2‖2,

and m is a parameter which tunes the importance of spatial as compared
to Lab-distance. At the practical level, the value of m strongly impacts the
shape of the superpixels found.135

3.1. Object Density Measure via Spectral Residual

The key strength of dSLIC [17] over SLIC is the recognition that objects
in an image are not distributed uniformly, and that image segmentation can
exploit this to improve segmentation results and computational efficiency.
Our approach is to exploit this same principle further, and use the strength140

of the Spectral Residual approach proposed by [19] as a better measure of
object detection.

We briefly review the Fourier analysis leading to the definition of the spec-
tral residual in [19]. For an image I, we write FI for the Fourier transform,
which is a matrix of the same dimensions as I, and whose arguments we will

6



write as two-dimensional frequencies f . The log-spectrum of an image I is
then given by

L(f) = log(R(FI)(f)) (1)

where R denotes the real part; we also write P(f) = I(FI)(f) for the imag-
inary part, or phase spectrum. The key insight of [19] is that much of the
information contained within L is redundant, because L is, to a good ap-145

proximation, locally linear. These features are then encapsulated in the local
average A(f) = (hn ?L)(f), where hn is the matrix consisting entirely of 1

|X | ,
and the residual log-spectrum, corresponding to the salient features, is given
by the following expression:

R(f) = L(f)−A(f) = L(f)− (hn ? L)(f). (2)

The final saliency map, which we take as our measure of object density,
is then given by recombining with the phase spectrum, inverting the Fourier
transform and adjusting the resulting function. Therefore, our proposed
function reads:

SR(x) = gσ ?
(
F−1

{
eR(f)+P(f)})2 (x), (3)

where the squaring ensures that the quantity considered is nonnegative, and150

the convolution with a Gaussian kernel gσ ensures that the final result is
smooth. For our purposes, we found that in practice σ = 20 is an excellent
value. We then set a rescaling step for the search radius using (3) as G(x) :=
exp(SR(x) − SR), where SR denotes the mean of the structure function
on the image grid. We then propose to have the distance computations155

depending on our function, which reads:

1 #pseudocode for computing distances

2 input m (compactness), number of superpixels

3 while er ≤ outset

4 for x ∈ X , 1 ≤ i ≤ k:
5 if |x− (F(S

(t)
i ))1| ≤ 2SG(F(S

(t)
i )):

6 #distance computation

7 Compute: d((x, I(x)),F(S
(t)
i ))

8 else:

9 d((x, I(x)),F(S
(t)
i )) =∞

10 St+1
i = min1≤j≤n d((x, I(x)),F(S

(t)
j ))

11 Compute Residual Error er
12 Increase t=t+1
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Figure 3: Illustration of our initialisation strategy, which incorporates the object density
measure G, for two initial seeds. From left to right, first seed and second one.

By incorporating our proposed function, which we use as a measure of
object density, into the distance computation one obtains have two major
advantages. Firstly, by doing a dynamic adjustment of the search range based
on our function G, one can connect uniform regions, and so avoid segmenting160

the images into unnecessary small superpixels. This effect is illustrated in
Fig. 2, for example, at the second column where the our approach was able
to keep the sky in a same region, and the yellow car. Secondly, our approach
focuses on segmenting fine details by capturing relevant structures; this is
visible in the owl’s eyes and head in Fig. 2.165

We now turn to explain our second major modification, which concerns
the seeding initialisation.

3.2. Seeding Initialisation: A New Strategy

In this section, we describe our new seeding initialisation. Our main
motivation is that we can use the object density measure G defined above170

to help seed clusters in object-rich parts of the image, which we expect to
contain more distinct regions. In this way, we obtain greater resolution at
fewer iterations, and improve the focus on relevant and interesting regions.

We remark to the reader that SLIC initialisation is based on sampling
pixels at the image grid. For comparison purposes, we start by defining the175

SLIC initilisation, which reads as follows.
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Figure 4: Visual comparison of the seeding initialisation of SLIC vs ours.(a) One can see
that we seek to focus on relevant areas (i.e. other than background). (b) The effect of τ
in our seeding strategy.

1 #pseudocode for seeding initialisation SLIC

2 Set: Initialise cluster centers as

3 Ci = [xi, yi, li, ai, bi] by sampling at regular grid

4 step: S =
√
N/k

5 #where N is the size of the image

6 Move cluster centers to the lowest gradient

7 position in a 3× 3 neighborhood

Our proposed approach, which incorporates G into this seeding, can be de-
scribed informally as follows. We first set as an initial point the pixel with
the lowest value in G, and then we increase the values near to the initial
point such that its neighbours are unlikely to be selected as another initial180

point. In this way, we guarantee that the distance between seed points is
comparable to the search range, which will help reduce redundant searches.
This process is illustrated in Fig. 3 for two initial seeds.

The hedging described above is carried out in two stages as follows.

• Points adjacent to the initial point are made unselectable, by setting185

the value of G at these points excessively large.

• Points in the proximity of the initial point are made less likely, but not
impossible, to select, again by altering G. The influence range and to
what extent are under consideration.
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Figure 5: From left to right. Quantitative comparison of our approach vs SLIC using
three metrics: UE, BR and BP. Our approach reported the best scores metric-wise. Four
visual outputs comparisons of SLIC vs our approach. In a closer look, one can see that
our approach achieves better connection of structures and keeps fine-details. For example,
see (A), (C) and (D) the faces and (B) the hand.

The advantage of these changes is that the density of area is limited twice190

compared with original method. The overall procedure of our method, which
suitably sets the initialisation points according to our structure measure G,
is described formally as follows.

1 #pseudocode for seeding initialisation OURS

2 Set r = max(G)/min(G)
3 While Enough Seeds:

4 Set range=sqrt(NumOfPixels/NumOfSuperpixels)

5 for each Superpixel center Cj:
6 Initialise Si with the lowest value

7 in G
8 Set the adjacent neighbours of Si
9 G =∞

10 for all points Sj with d(Si, Sj) < range
11 G(Sj) = G(Sj) ∗ sqrt(r)
12 Smooth region with gτ , τ = 13/2

An output example is displayed in Fig. 4. Subfigure (a) shows a initial-
isation comparison between our approach and SLIC, and we see that our195

approach gives more importance to the ostrich than the background. In
subfigure (b), we evaluate possible choices for τ , and display outputs for
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τ = 4, 6, 8. In practise, we found that the τ = 13/2 works for a range of
images.

4. Experimental Results200

In this section, we describe in detail the experiments that we ran to
evaluate our approach.

4.1. Evaluation Protocol

Dataset Description. We evaluate our proposed approach on a publicly
available dataset, the Berkeley Segmentation Dataset [35], which provides205

ground truth of the images for quantitative analysis.

Comparison Methodology. We compare our approach to the SOTA
methods on superpixels. For this, we design a two-part evaluation scheme.
For the first part, we compared our approach against SLIC [11]; this compar-
ison therefore demonstrate that our carefully design solution achieves better210

performance than the top reference in clustering-based methods. For the
second part, we compared to state-of-the-art techniques: QS [15], TP [16]
,TPS [14], LRW [20], SNIC [32] and dSLIC [17]. We compare our approach
qualitatively by visual comparisons and quantitatively by computing three
metrics: Under-segmentation Error (UE), Boundary Recall (BR) and Bound-215

ary Precision (BP), which definitions are described next.

We assume that we are given an image, along with a ground truth Γ =
{gi}Mi=1, representing the true regions of the image.

Boundary Recall measures the proportion of the boundary of the true
regions in the ground truth which are close to a boundary in the segmen-220

tation. To quantify the notion of being close to a boundary, we recall the
following definition.

Given a subset E of the edge set, we define the distance d(e, E) = inf{|e−
f | : f ∈ E}, where |.| denotes the l2 norm of the difference, measured in
pixels. We then define225

Definition 2 (Boundary Recall). Given a ground truth Γ = {gi}Mi=1 and
a segmentation S = {sj}kj=1, we write ∂Γ for the union of the edge boundaries
∂gi, and similarly write ∂S for {sj}kj=1. We define the boundary recall by

∂(Γ,S) =
#{e ∈ ∂Γ : d(e, ∂S) ≤ 2}

#∂Γ
.
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In words, the boundary recall is the proportion of true edges which are close
to a superpixel edge.

Undersegmentation Error. Intuitively, this measures the size of all
superpixels which spill across boundaries of the ground-truth.

Definition 3. For a ground truth Γ = {gi}Mi=1, we fix thresholds Bi, i =
1, ..,M. Given segmentation S = {si}ki=1 of the image, the under-segmentation
error is given by

U =
1

N

 M∑
i=1

 ∑
#sj∩gi≥Bi

#sj

−N


Observe that, since S is a partition of the image, we can rewrite

U =
1

N

M∑
i=1

 ∑
#sj∩gi≥Bi

#sj

−#gi


Hence, the undersegmentation error U measures how wasteful the coverings230

of the true regions gi by the superpixel regions sj are. We usually take Bi to
be a fixed proportion of #gi

Parameter Selection. For all compared approaches QS [15], TP [16],
TPS [14], SLIC [11], LRW [20], SNIC [32] and dSLIC [17], we set the parame-
ters as suggested in the corresponding work. We also used the codes realease235

from each corresponding author. For our approach, we set the m = 10 since
it offers a good trade-off between shape uniformity and boundary adherence
(see Supplementary Material Section 2 for further description on m). We
performed the evaluation using up to a range of number of superpixels up to
600.240

The experiments reported in this section were under the same conditions
in a CPU-based implementation. We used an Intel Core i7 with 16GB RAM.

4.2. Results and Discussion

We divide this section in two parts, following the comparison methodology
scheme presented in previous section.245

. Is our Approach better than SLIC? As SLIC approach remains
a top reference, and is the basis of our approach, we start by evaluating
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our approach against it. Results are displayed in Fig. 5. In a closer look,
at the right side, of this figure, one can see that our approach yields to a
better segmentation of the structures, keeping fine details of the objects.250

Moreover, it avoids unnecessary oversegmentation on uniform areas. These
positive properties of our approach can be seen, for example, in (B) the proper
recovery of the hand; in (C) the hair, eyebrows and the lines patterns in the
jumper that are correctly clustered; in (D) where our approach successfully
capture the eyes and moustache, and in (A) with better preservation of the255

face structure including the nose and lips.
To further support of our visual results, we ran a quantitative analysis

based on three metrics UE, BR and BP. The results are displayed at the
left side of Fig. 5. The top part shows a comparison in terms of UE, where
the results reflect conformity to the true boundaries. We can observe that260

our approach achieves the lowest UE for all superpixels counts. The same
positive effect was found in terms of precision-versus recall, in which our
approach displayed the best performance. This improvement is translated to
our approach to be the best in terms of producing superpixels that respect
the object boundaries.265

. Is our approach better than Other Superpixel approaches? As
the second part of our evaluation, we compare our approach against SOTA
models: QS [15], TP [16], TPS [14], LRW [20], SNIC [32] and dSLIC [17]. We
selected for our comparison approaches coming from different perspectives:
graph-based, path-based, density-based and clustering-based approaches. Re-270

sults are displayed in Figs. 6, 7 and 8.
We first present a visual comparison of a selection of images from the

Berkeley dataset in Figs. 6 and 7. By visual inspection, one can see that QS
and TPS are the ones that perform more poorly than the other compared
approaches. They fail to provide good boundaries of the structures and they275

do not preserve relevant details. Examples can be seen in (A),(B), (E) and
(G) the eyes; (C), (E) and (F) preservation of fine details. LRW offer a better
edge adherence to the objects than QS and TPS but also fails to preserve
relevant objects, for example (G) the eyes and moustache.

In contrast to those approaches, SLIC and dSLIC performs better than280

QS, TPS and LRW. One can observe that SLIC and dSLIC readily compete
in terms of having better boundary adherence to the structures and grouping
correctly majority of the objects. However, in particular, SLIC still produces
outputs with more superpixels than necessary in homogeneous parts of the
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(A)
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(E)

Figure 6: Superpixel outputs comparisons of our approach vs different methods from
the body of literature: QS [15], SLIC [11] TP [16], TPS [14], LRW [20], SNIC [32] and
dSLIC [17]. A closer inspection, one can see that our approach offers better superpixels
segmentation. For example, (A), (B), and (C) the eyes; (D) the ostrich’s boundary and
(E) the eyes and basket.

structures; see, for instance, in (A) the fish eye, (B) the nose and (J) the285

hand. Although dSLIC performs slightly better than SLIC, it still fails to
capture fine details.

Among those approaches, SNIC approach display more robustness in
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(F)

(G)

(H)

(I)

(J)

Figure 7: Superpixel segmentation outputs of our approach vs QS [15], SLIC [11] TP [16],
TPS [14], LRW [20], SNIC [32] and dSLIC [17]. Visual assessment shows that the proposed
algorithm performs better than the compared approaches. Examples are: (F) the leaves;
(G) and (I) the face; (H) the house boundaries and (J) the hand.

terms of grouping structures correctly than the previous approaches. How-
ever, like SLIC it also tends to generate more superpixels than needed in290

uniform regions so that the final outputs do not capture fine details. Ex-
amples are (G), (E) and (C) face details; (I) the eyes and head and (F) the
leaves.
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LRW

# Superpixels # Superpixels

Figure 8: Metric-wise comparison of our approach vs SOTA techniques using UE, BR and
BP. In a closer look, we can see that our approach, overall, offers the lowest UE and the
highest BR. Finally, the good boundary adherence to the true edges is reflected in the last
plot, in which our approach overall gets the best trade-off between those metrics.

These major drawbacks are mitigated by our model. Our algorithmic
approach shows the best boundary adherence and regularity. This is visible295

in the leaves in image (F), in which our approach is able to better capture
the structure, in (I) on the lips where our approach is able to capture the
correct geometry, and (A) the fish eyes, where our approach is the only
one that correctly segments the inner part. These positive properties of our
approach are prevalent in all images. More examples include preservation of300

the geometry such as in (J) the hand and (G) face, in which our model is the
only one able to correctly segment these fine details.

To further support our visual evaluation, we show a metric-wise com-
parison in Fig. 8. We start by evaluating the approaches in terms of UE,
which is displayed at the left side of this figure. Close observation shows305

that QS, TPS and TP perform poorly, and in particular, LRW that reported
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the highest Undersegmentation Error. dSLIC and SLIC show quite low UE,
and SNIC ranks the second best. Overall, our approach shows substantial
improvement over the compared approaches reporting the lowest UE for all
superpixels counts. A similar effect is exhibited in terms of Boundary Recall.310

TP and TPS perform poorly while the other compared approaches reported
better BR. Our approach readily competes with the other compared schemes
and the overall BR of our approach was reported to be the best. The same
effect is observed in terms of BP-vs-BR, which reflects that our approach
overall adheres better to the truth boundaries.315

CPU Time

QS

TP

SLIC

TPS

LRW

SNIC

dSLIC

OURS

0 2 4 6

Figure 9: CPU time averaged comparison
of our approach vs the body of literature.
One can see that our approach improvement
comes at a negligible cost in runtime in com-
parison with the fastest approaches SLIC and
SNIC.

. How is the Computational
Performance? Finally, we eval-
uate our approach vs the SOTA
models in terms of CPU perfor-
mance in seconds. Results are dis-320

played at Figure 9, using the av-
erage time across all images and
over the range of [80, 2500] super-
pixels. From this plot, we observe
that TP, TPS and LRW require325

high computational time whilst QS
and dSLIC sightly improve in this
regard. Finally, SLIC, SNIC and
OURS provide more feasible run-
times that are appropriate for a pre-330

processing task. We remark that our
slightly higher computational load
is justified by the substantially im-
proved results over SLIC, SNIC with
the same number of superpixels335

5. Conclusion

In this work, we proposed a new superpixel approach that builds upon
SLIC technique. Our approach incorporates the notion of spectral residual
as a proxy for object density and a novel seeding strategy. We demonstrated
that our approach seeds clusters advantageously and modify the local search340

radius. This leads to better segmentation, with a comparable computational
load, to other state-of-the-art algorithms. These modifications leads to major
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advantages - in terms of avoiding over-segmenting uniform areas into more
superpixels than necessary and preserving fine-details in the image, with a
comparable computational load to other state-of-the-art algorithms.345

Future work includes to reduce the sightly increment in computational
time. Since our technique has slightly higher run-time than other approaches,
we offer the following two remarks on how this may be mitigated. First,
we observe that our slightly higher computational load is justified by the
substantially improved results over SLIC, SNIC with the same number of350

superpixels. This suggests that, by reducing the number of superpixels in
our approach, we could achieve better segmentation than SLIC, SNIC while
also reducing computational load. Secondly, we remark that the full saliency
measure SR(x) contains more information that is strictly necessary for our
technique, since it is only used as a rough measure of object density, while355

adding to the computational load. We therefore suggest that, if the den-
sity measure G were constructed instead from a downsampled version of the
image, that the computational load could be significantly reduced, while
maintaining excellent segmentations.
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