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Abstract. Tensor Robust Principal Component Analysis (TRPCA) holds a crucial position4
in machine learning and computer vision. It aims to recover underlying low-rank structures and5
to characterize the sparse structures of noise. Current approaches often encounter difficulties in6
accurately capturing the low-rank properties of tensors and balancing the trade-off between low-7
rank and sparse components, especially in a mixed-noise scenario. To address these challenges, we8
introduce a Bayesian framework for TRPCA, which integrates a low-rank tensor nuclear norm prior9
and a generalized sparsity-inducing prior. By embedding the priors within the Bayesian framework,10
our method can automatically determine the optimal tensor nuclear norm and achieve a balance11
between the nuclear norm and sparse components. Furthermore, our method can be efficiently12
extended to the weighted tensor nuclear norm model. Experiments conducted on synthetic and13
real-world datasets demonstrate the effectiveness and superiority of our method compared to state-14
of-the-art approaches.15
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1. Introduction. With data becoming ubiquitous from diverse fields and ap-18

plications, data structures are becoming increasingly complex with higher dimen-19

sions. Tensor, a multidimensional array, is an efficient data structure with broad20

applications, including machine learning [39] and computer vision [40]. Meanwhile,21

high-dimensional data always lie near a low-dimensional manifold, which can be in-22

terpreted by their low rank. In matrix processing, the low-rank assumption allows23

two-dimensional data recovery from incomplete or corrupted data [11]. However,24

expanding the low-rank concept from matrices to tensors remains an unresolved chal-25

lenge. A main challenge in tensor analysis is that the tensor rank is not well defined.26

Various definitions of tensor rank have been proposed. For example, the CANDE-27

COMP/PARAFAC (CP) rank, as described in [28], is based on the CP decomposition28

[25] and identifies the smallest number of rank-one tensors needed to represent a ten-29

sor. The Tucker rank [14], which stems from the Tucker decomposition [45], consists30

of a vector where each component corresponds to the rank of a matrix obtained by31

unfolding the original tensor. Furthermore, developments in tensor singular value de-32

composition (t-SVD) [27] have led to the tensor multi-rank [14] and tubal rank [26],33

both of which are analogous to the matrix singular value decomposition (SVD).34

Among all these tensor applications, exploring low-rank features in sparse tensor35

decomposition has become essential, which is called Tensor Robust Principal Compo-36

nent Analysis (TRPCA) [33]. It extends the Robust Principal Component Analysis37

(RPCA) [24] from matrices to tensors. Specifically, TRPCA seeks to extract the low38

tubal rank component, L, and eliminate the noise component, S, derived from noisy39
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observations, X , expressed as X = L+ S. This is achieved through the optimization40

process [33, 51, 36, 17, 48] described as41

(1.1) min
X=L+S

∥L∥∗ + λ ∥S∥1 .42

where ∥L∥∗ is the tensor nuclear norm as the convex relaxation to a certain tensor43

rank. Note that minimizing the rank is an NP-hard problem. Various approximations44

have been proposed to approach different tensor ranks [23, 52, 37]. Here, ∥S∥1 is the45

ℓ1 norm of sparsity, and λ > 0 is the parameter used to balance low-rankedness and46

sparsity.47

In the TRPCA model, we can further reformulate the equality constraint by a48

penalty term and turn the optimization model (1.1) into49

(1.2) min
S,L

θ1
2 ∥X − S − L∥2F + θ2∥S∥1 + θ3∥L∥∗,50

where θ1, θ2 and θ3 are tuning parameters. Note that (1.2) has broadened applications51

by assuming observation data is constructed not just by low-rank tensor and sparsity52

but also with certain bias or Gaussian noise, i.e.,53

(1.3) X = L+ S + E ,54

where E is the corresponding bias and the Gaussian noise. This model is widely used55

in mixed noise removal [53, 55] and hyperspectral denoising [41].56

The selection of the parameters in the model (1.1) and (1.2) is critical. Under57

the t-SVD framework, the optimal parameter for λ in (1.1) is suggested in [33] for58

the tensor nuclear norm. Nevertheless, it cannot be extended to other forms of tensor59

low-rank regularization, such as the weighted tensor nuclear norm. This issue becomes60

more serious when dealing with models involving multiple parameters in (1.2). Tradi-61

tional parameter selection methods, including the discrepancy principle [35], L-curve62

[19], GCV [18], and RWP [1, 6], are often customized to specific regularization for-63

mulations and need iterative minimizations, which makes it inadequate for our tensor64

recovery problem in (1.2).65

In this paper, we address the intricate task of simultaneously estimating tensors66

L and S and their regularization parameters θi for TRPCA. We introduce variational67

Bayesian inference (VBI) [13] as a powerful tool to tackle this challenge, reformulating68

the optimization problem within a Bayesian framework. By treating regularization69

parameters θi as hyperparameters, we apply the inherent strengths of Bayesian meth-70

ods, popular for their success in inverse problems [46, 9, 22, 21, 16, 54, 30] and71

established applications in matrix and tensor problems like matrix completion [50],72

tensor completion [5, 44], and low-rank tensor approximation [34].73

Despite these successes, the adoption of VBI in TRPCA remains limited. To74

our best knowledge, only [55] has explored VBI for TRPCA, employing a generalized75

sparsity-inducing prior. However, this method directly expresses the low-rank tensor76

as a t-product of two smaller factor tensors, presupposing the tubal rank, and models77

the sparse component S with independent Gaussian priors, which may not be optimal78

for sparse data. In contrast, we propose an approach that employs a tensor nuclear79

norm prior to L, eliminating the need for predefined tensor ranks. For the sparse80

component S, we adopt a Laplace prior, which better captures sparse structures.81

This reformulation enhances model flexibility, offering a more principled and less82

restrictive approach to tensor recovery, thereby mitigating limitations posed by prior83

assumptions on tensor ranks or sparsity patterns.84
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In comparison, joint maximum a posteriori (MAP) estimation minimizes the neg-85

ative log posterior to obtain point estimates for S, L, and θ, simultaneously recovering86

tensors and parameters. Our VBI framework, however, approximates the full poste-87

rior distribution, enabling uncertainty quantification alongside point estimates. For88

practical applications such as denoising and background subtraction, we use the ex-89

pectation of the variational distribution as the point estimate for S and L, offering a90

robust and versatile approach to tensor recovery.91

The primary contributions of this work are succinctly summarized as:92

(1) Innovative Variational Bayesian Tensor Recovery Model: This paper proposes a93

novel variational Bayesian inference model for tensor recovery. It characterizes94

low-rank tensors using the tensor nuclear norm and sparse tensors via the Lapla-95

cian distribution. This approach enables simultaneous inference of both low-rank96

and sparse components along with the hyperparameters (regularization parame-97

ters), eliminating the need for pre-specifying the tensor rank.98

(2) Efficient Inference via Laplacian Approximation and MM Framework: We intro-99

duce a Laplacian approximation methodology to tackle the computational intrica-100

cies associated with non-Gaussian posteriors arising from Laplace priors imposed101

on sparse tensor S and low-rank tensor L. This approach directly tackles the ℓ1102

norm minimization and tensor nuclear norm minimization problems in estimating103

the expectations of sparse tensor S and low-rank tensor L. For covariance matrix104

computation, it integrates with the Majorization-Minimization (MM) framework,105

deriving a tight lower bound for the non-quadratic distributions encountered in106

the ℓ1 norm and tensor nuclear norm. This facilitates efficient variance compu-107

tations, thereby significantly enhancing the efficiency and accuracy of inferring108

low-rank, sparse tensors as well as their hyperparameters.109

The rest of this paper is organized as follows. In Section 2, we introduce the main110

preliminaries, including tensors and their decomposition. In Section 3, we describe111

the hierarchical Bayesian model, joint density, and hyperprior. In Section 4, we apply112

variational Bayesian inference to infer hyperparameters θi and solve the tensors L,S113

at the same time. In Section 5, we provide the experimental results and show the114

superiority of our proposed methods. Finally, in Section 6, some conclusions are115

drawn.116

2. Preliminaries. This section provides an overview of fundamental notations117

and definitions that will be utilized throughout the paper.118

2.1. Notations. The set of natural numbers is denoted by N, the set of real119

numbers by R, and the set of complex numbers by C. In the context of tensors,120

we adopt the convention of using boldface Euler script letters, exemplified by A, to121

represent them. Matrices, on the other hand, are indicated with boldface uppercase122

letters, such as A, with the identity matrix specifically denoted by I. Vectors follow123

the convention of being written in boldface lowercase letters, like a, whereas single124

values or scalars are represented by regular lowercase letters, for instance, a. Regard-125

ing indexing, for a vector a, the i-th element is denoted by ai. For a matrix A, Ai:126

signifies the i-th row, A:j denotes the j-th column, and the specific element located127

at the intersection of the i-th row and j-th column is represented by either aij or,128

more commonly in matrix notation, Aij . When dealing with a third-order tensor A,129

each element positioned at the intersection of the i-th, j-th, and k-th dimensions is130

denoted by aijk or, more conventionally for tensors, Aijk. This tensor can be dissected131

into distinct structural components: column fibers are designated as A:jk, row fibers132

as Ai:k, and tube fibers as Aij:. Furthermore, the tensor can be analyzed through133
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various slices: horizontal slices are noted as Ai::, lateral slices as A:j:, and frontal134

slices as A::k.135

We define the inner product of matrices A and B as ⟨A,B⟩ := Tr(A∗B), where136

A∗ is the conjugate transpose of A, and Tr(·) represents the trace of a matrix. If A137

consists only of real numbers, AT denotes its transpose. The ℓ2-norm of a vector v138

in the complex number space Cn is defined by ∥v∥2 = (
∑

i |vi|2)1/2, measuring the139

vector’s magnitude in Euclidean space.140

The inner product between two tensors A and B in Cn1×n2×n3 is defined as141

⟨A,B⟩ =
∑n3

k=1 ⟨A::k,B::k⟩. The complex conjugate of A, which takes the complex142

conjugate of each entry of A, is denoted as conj(A). The conjugate transpose of a143

tensor A ∈ Cn1×n2×n3 is a tensor A∗ obtained by conjugate transposing each of the144

frontal slices and then reversing the order of transposed frontal slices 2 through n3.145

The tensor ℓ1-norm of A is defined as ∥A∥1 =
∑

ijk |aijk|, and the Frobenius norm as146

∥A∥F =
√∑

ijl |aijk|
2
.147

2.2. T-product and t-SVD. Before introducing the definitions, we define three148

operators:149

(2.1) unfold(A) =


A::1

A::2

...
A::n3

 , fold (unfold(A)) = A,150

and

bcirc(A) :=


A::1 A::n3

· · · A::2

A::2 A::1 · · · A::3

...
...

. . .
...

A::n3 A::,n3−1 · · · A::1

 ∈ Rn1n3×n2n3 .

Here unfold(·) maps A to a matrix of size n1n3 × n2 and fold(·) is its inverse operator.151

We introduce the notation A := bdiag(A) to concisely represent the block diagonal152

matrix derived from the tensor A. Here, bdiag(·) designates the block diagonalization153

operator, with the i-th block corresponding to A::i.154

Now, we focus on applying the Discrete Fourier Transformation (DFT) to tensors.155

We represent the tensor A transformed by DFT along its third (tubal) dimension as156

A. This transformation is executed using the MATLAB command fft, specifically157

performed as A = fft(A, [], 3). Conversely, to revert the tensor to its original form158

from A, we use the inverse operation with A = ifft(A, [], 3). We also introduce the159

notation A := bdiag(A) to represent the block diagonal matrix constructed from the160

tensor A. Next, we introduce the definition of t-product.161

Definition 2.1. (t-product [27]). Let A ∈ Rn1×l×n3 and B ∈ Rl×n2×n3 , then the162

t-product A ∗ B is defined by163

(2.2) A ∗ B = fold(bcirc(A) · unfold(B)),164

resulting a tensor of size n1 × n2 × n3. Note that A ∗ B = Z if and only if AB = Z.165

Using the t-product framework, we define the identity tensor I ∈ Rn×n×n3 as a166

tensor with its first frontal slice being the n× n identity matrix, while all subsequent167

frontal slices consist entirely of zeros. It is clear that A ∗ I = A and I ∗ A = A given168

the appropriate dimensions. In addition, a tensor H ∈ Rn×n×n3 is orthogonal if it169
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satisfiesH∗∗H = H∗H∗ = I.Moreover, we call a tensor f -diagonal if each of its frontal170

slices is a diagonal matrix. Next, we define the tensor singular value decomposition171

as below:172

Definition 2.2. (tensor singular value decomposition: t-SVD [27]). The t-SVD173

of A ∈ Rn1×n2×n3 is given by174

(2.3) A = U ∗ D ∗ V∗,175

where U ∈ Rn1×n1×n3 ,V ∈ Rn2×n2×n3 are orthogonal tensors, and D ∈ Rn1×n2×n3 is176

an f -diagonal tensor.177

It follows from Definition 2.1 that A = U ∗ D ∗ V∗ if and only if A = UDV
∗
.178

For tensor A ∈ Rn1×n2×n3 with tubal rank r, we also have skinny t-SVD similar as179

matrix. Let r is the tubal rank of A, the skinny t-SVD of A is A = U ∗D ∗V∗, where180

U ∈ Rn1×r×n3 ,D ∈ Rr×r×n3 ,V ∈ Rn2×r×n3 , in which U∗ ∗ U = I and V∗ ∗ V = I.181

Definition 2.3. (tensor average rank and tubal rank [33]) The tensor average182

rank of A ∈ Rn1×n2×n3 , denoted as ranka(A), is defined as183

ranka(A) =
1

n3
rank(bcirc(A)) =

1

n3

n3∑
i=1

rank(A
(i)
).184

The tensor tubal rank, denoted as rankt(A), is defined as the number of nonzero
singular tubes of S, where S comes from the t-SVD of A, i.e. A = U ∗ S ∗ V∗. In
other words, one has

rankt(A) = #{i,S(i, i, :) ̸= 0}.
For tensor A ∈ Rn1×n2×n3 with tubal rank r, we also have skinny t-SVD similar185

as matrix. Minimizing the tubal rank is an NP-hard problem; we introduce a tensor186

nuclear norm as a convex relaxation.187

Definition 2.4. (tensor nuclear norm [33]). Let A = U ∗D ∗ V∗ be the t-SVD of188

A ∈ Rn1×n2×n3 . Define σjk(A) is the j-th singular value of A::k, or simply σjk if the189

context is clear. The tensor nuclear norm (TNN) of A is defined as190

∥A∥∗ =
1

n3

n3∑
k=1

∥∥A::k

∥∥
∗ =

1

n3

n3∑
k=1

min(n1,n2)∑
j=1

σjk.191

2.3. Probability distribution. Here, we define three kinds of probability dis-192

tribution: the uniform distribution, the Gamma distribution, and the multivariate193

Gaussian distribution.194

The uniform distribution is a distribution that assigns equal probability mass to a195

region. For a, b ∈ R and a < b, the uniform distribution for a random variable x ∈ R196

is defined as197

p(x) =

{
1

b−a , a ≤ x ≤ b,

0, otherwise.
198

The Gamma density function is given as199

(2.4) p(x) = G(x|a, b) ∝ xa−1 exp(−bx),200

where a > 0 and b > 0 represent shape and scale parameters respectively. We have201

its mean and variance of these Gamma distributions:202

(2.5) E(x) =
a

b
, Var(x) =

a

b2
.203
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The multivariate Gaussian distribution is fully characterized by a mean vector µ204

and a covariance matrix Σ and is defined as205

p(x) = N (x|µ,Σ) = (2π)−
n
2 |Σ|−

1
2 exp

(
− 1

2 ∥x− µ∥2Σ−1

)
,206

where x ∈ Rn is a random variable.207

3. Bayesian model.208

3.1. The likelihood. In (1.3), we assume the observed data X can be decom-209

posed into three parts: E ,S,L. Note that E ’s elements as independent and identically210

distributed (i.i.d.) from a zero-mean normal distribution with precision θ1. Then211

we obtain the likelihood function p(X|S,L, θ1) characterizes the probability of ob-212

serving X conditioned on S, L, and θ1. By exploiting the properties of the normal213

distribution, the likelihood function is expressed as:214

(3.1) p(X|S,L, θ1) ∝ θ
n
2
1 exp

(
−θ1

2
∥X − S − L∥2F

)
,215

where ∝ denotes “proportional to” and n = n1n2n3 denotes the total flattened dimen-216

sionality of X . This formulation captures the probabilistic nature of the constraint217

violation, enhancing the robustness and applicability of the Bayesian inference process.218

To facilitate further analysis and optimization, we consider the log-likelihood219

function220

log p(X|S,L, θ1) = −θ1
2
∥X − S − L∥2F +

n

2
log θ1 + C1,221

where C1 is a constant term that does not depend on S, L, or θ1 and can be ignored222

in inference procedure.223

3.2. The prior distributions. In Bayesian inference, the selection of prior dis-224

tributions is a fundamental step that shapes the posterior beliefs about the unknown225

parameters. These priors encode our prior knowledge or assumptions about the vari-226

ables of interest. Here, we choose appropriate prior distributions for S and L, which227

represent distinct latent variables with unique characteristics. We remark that the228

choice of these priors is informed by regularization terms.229

3.2.1. Prior distribution for S. For the sparse component S, we employ a230

Laplace prior distribution that induces ℓ1-norm regularization. This choice is moti-231

vated by the well-established connection between Laplace priors and sparsity promo-232

tion in the Bayesian framework [42]. Specifically, the prior density takes the form:233

234

(3.2) p(S|θ2) ∝ θn2 exp (−θ2∥S∥1) ,235

where θ2 > 0 is a scale parameter. The ℓ1-norm arises naturally as the convex envelope236

of the ℓ0 pseudo-norm, making it the tightest convex relaxation for sparse recovery237

problems. From a probabilistic perspective, this corresponds to assuming independent238

exponentially distributed entries in S, which favors exact zeros in the MAP estimate239

while maintaining computational tractability through convex optimization.240

Taking the logarithm of the prior distribution, we obtain:241

(3.3) log p(S|θ2) = −θ2∥S∥1 + n log θ2 + C2,242

where C2 represents a constant term that does not depend on S or θ2.243
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3.2.2. Prior distribution for L. For the variable L, we employ a particular244

Gibbs prior [29] to promote a low-rank structure in L. This prior takes the form of245

an exponential distribution with a tensor nuclear norm penalty, acting as a convex246

surrogate for the tensor average rank. It encourages L to have a low-rank represen-247

tation, which is often suitable for capturing the underlying low-dimensionality in the248

data. The prior distribution is given by:249

(3.4) p(L|θ3) ∝ θn3 exp (−θ3 ∥L∥∗) .250

This characteristic encourages the low rank property in L and is coherent with the251

regularization term ∥L∥∗ in (1.2). Taking the logarithm of the prior distribution, we252

have:253

log p(L|θ3) = −θ3∥L∥∗ + n log θ3 + C3,254

where C3 is a constant term that does not depend on L or θ3.255

3.3. The hyper-prior distribution. In the field of statistical modeling, the256

Gamma distribution has obtained significant attention as a versatile prior distribu-257

tion for hyperparameters, particularly in Bayesian frameworks [2, 3, 4, 38, 43]. The258

choice of a Gamma distribution as the prior for the hyperparameter θi is driven by259

two key reasons. First, it serves as a conjugate prior for precision parameters in expo-260

nential family distributions. For instance, when θi controls the precision of a Gaussian261

likelihood p(x|θi) ∼ N (0, θ−1
i ), the Gamma prior ensures the posterior distribution262

remains a Gamma distribution. This conjugacy simplifies posterior calculations in263

Bayesian inference, enabling efficient automatic updates of hyperparameters. Sec-264

ond, θi typically represents positive physical quantities like precision or rate. The265

Gamma distribution’s support on (0,+∞) naturally aligns with this positivity con-266

straint, eliminating the need for artificial non-negativity restrictions.267

We assign independent Gamma priors to the hyperparameters θi, which corre-268

spond to the mutually independent components E , S, and L in the model. This269

hierarchical structure preserves model consistency while enabling efficient computa-270

tion. The independence assumption further facilitates automatic feature selection by271

factorizing the posterior distribution into marginal products over each θi. Hence, we272

have273

p(θi) = G(θi|aθi , bθi), i = 1, 2, 3,274

where aθi and bθi are the shape and scale parameters for each hyperparameter θi.275

However, a key challenge in adopting the Gamma prior lies in the determination of276

optimal values for aθi and bθi . In the absence of strong prior knowledge, researchers277

often resort to weakly informative or non-informative priors, where the influence of278

the prior is minimized [4, 2, 38, 3, 43]. This can be achieved by setting extremely279

small values for aθi and bθi (e.g., aθi = bθi = 10−4), thereby adopting an improper280

prior [43].281

3.4. Joint distribution. The estimation of the unknown tensors L and S,282

given the parameters θi(i = 1, 2, 3), can be tackled within the Maximum A Poste-283

riori (MAP) estimation framework. This approach aims to maximize the posterior284

density p(S,L|X ,θ) with respect to L and S, which is formulated as:285

(S†,L†) = argmax
S,L

p(S,L|X ,θ).286
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Applying Bayes’ theorem, the maximization problem can be rewritten in terms of the287

likelihood function p(X|S,L,θ) and the prior densities p(L|θ) and p(S|θ):288

argmax
S,L

p(X|S,L,θ)p(L|θ)p(S|θ).289

We remark that, in the MAP framework, the hyperparameters θ must be either290

pre-specified or estimated prior to the estimation of L and S. For a more comprehen-291

sive estimation that includes the hyperparameters, the joint maximum a posteriori292

(JMAP) estimation is employed:293

(3.5) (S†,L†,θ†) = arg max
S,L,θ

p(S,L,θ|X ) = argmax
S,L,θ

p(X ,S,L,θ)
p(X )

.294

For simplicity, we assume independence among the hyperparameters, allowing us295

to express the joint density function of the variables X , S, L, and θ as:296

p(X ,S,L,θ) = p(X|S,L,θ)p(L|θ3)p(S|θ2)p(θ1)p(θ2)p(θ3).297

In the literature [4, 2, 38, 3, 43], the Gamma distribution is commonly adopted as298

a prior for the hyperparameters θi (i = 1, 2, 3) due to its conjugacy with certain299

likelihood functions, which facilitates analytical tractability in Bayesian inference.300

However, prior knowledge about the shape and scale parameters (aθi and bθi) of the301

Gamma distribution is often lacking. To address this, a non-informative prior can be302

implemented by adopting an improper uniform prior distribution, defined as p(x) ∝ 1303

for x ∈ {θi | i = 1, 2, 3} over the positive real line [43, 15]. Hence we have304

(3.6) p(X ,S,L,θ) ∝ θ
n/2
1 θn2 θ

n
3 exp

(
−θ1

2
∥X − S − L∥2F − θ2 ∥S∥1 − θ3 ∥L∥∗

)
.305

4. Variational Bayesian inference. In Bayesian modeling, inference involves306

conditioning on observed data X and estimating the posterior density p(S,L,θ|X ).307

This task can be tackled via Markov Chain Monte Carlo (MCMC) sampling or op-308

timization approaches. However, in this paper, we adopt variational inference as the309

methodological framework to approximate the latent variables L and S, along with310

the parameter vector θ.311

4.1. Kullback-Leibler divergence and evidence lower bound. The central312

goal of variational inference is to identify an optimal variational density q(S,L,θ) that313

closely approximates the posterior density p(S,L,θ|X ), thereby facilitating efficient314

inference on the latent variables and parameters [8].315

Within this framework, we define a family of densities Q over the latent variables316

and parameters. Each candidate q(S,L,θ) ∈ Q represents an approximation to the317

true posterior. The optimal candidate is chosen by minimizing the Kullback-Leibler318

(KL) divergence from the true posterior:319

(4.1)

KL(q(S,L,θ)∥p(S,L,θ|X )) =

∫
S,L,θ

q(S,L,θ) log
(

q(S,L,θ)
p(S,L,θ|X )

)
dL dS dθ

= Eq(S,L,θ)

[
log

(
q(S,L,θ)

p(S,L,θ|X )

)]
.

320

The variational inference task simplifies to finding the variational density q†(S,L,θ)321

that minimizes the Kullback-Leibler (KL) divergence from the variational density to322
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the true posterior:323

q†(S,L,θ) = argmin
q(S,L,θ)∈Q

KL(q(S,L,θ) ∥ p(S,L,θ|X )).324

According to (3.5), the posterior density p(S,L,θ|X ) is the ratio between p(X ,S,L,θ)325

and p(X ). The density p(X ) involves integrating out the latent variables from the326

joint density. Unfortunately, this integration is often intractable, rendering direct327

computation of the posterior challenging. Expand the condition density, we have328

KL(q(S,L,θ) ∥ p(S,L,θ|X )) = −Eq(S,L,θ)

[
log

(
p(X ,S,L,θ)
q(S,L,θ)

)]
+ log p(X ).329

The second term is independent of latent variables and hyperparameters; therefore,330

it’s just a constant in the minimization problem, and we can ignore this term. To331

circumvent the intractability, we optimize an alternative objective that is equivalent332

to the KL divergence up to an additive constant. Specifically, we minimize the first333

term on the right-hand side of the equation, which constitutes the evidence lower334

bound (ELBO), denoted J (q(S,L,θ))335

(4.2) J (q(S,L,θ)) ≡ Eq(S,L,θ)

[
log

(
p(X ,S,L,θ)
q(S,L,θ)

)]
.336

This is337

(4.3) q†(S,L,θ) = argmax
q(S,L,θ)∈Q

J (q(S,L,θ)).338

4.2. Mean-field variational family. To fully specify the optimization prob-339

lem, we now consider the variational family. The complexity of this family directly340

impacts the difficulty of the optimization, with more intricate families posing greater341

challenges.342

In this paper, we concentrate on the mean-field variational family, which assumes343

mutual independence among the latent variables, with each variable being governed344

by its individual variational factor [8]. This assumption simplifies the variational345

density into a factorized form:346

q(S,L,θ) = q(L)q(S)
3∏

i=1

q(θi).347

The selection of variational densities q(L), q(S), and q(θi) is importance. For348

q(L) and q(S), we adopt normal distributions due to their versatility and analytical349

convenience. The choice of the variational density q(θi) as a Gamma distribution is350

motivated by the conjugacy properties derived from the likelihood function (Eq. 3.1)351

and the prior distributions specified in Eqs. (3.2) and (3.4). These indicate that the352

posterior distribution of θ1 and the conditional posteriors of θi for i = 2, 3 follow353

Gamma distributions. Since the Gamma distribution is conjugate to itself, selecting354

q(θi) as a Gamma density ensures compatibility with the posterior, facilitating efficient355

variational inference.356

Let QG denote the set of Gamma densities for the hyperparameters θi (i =357

1, 2, 3), and QN denote the set of multivariate normal densities over the tensor space358

Rn1×n2×n3 . The overall variational family Q can be expressed as the Cartesian prod-359

uct of these sets: Q = QN ×QN ×QG .360
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4.3. Laplacian approximation. In (3.6), the non-quadratic properties inher-361

ent in both the ℓ1 norm of S, which represents the sum of the absolute values of all362

elements, and the tensor nuclear norm of L, which is the weighted sum of its singu-363

lar values, pose significant obstacles for direct optimization within standard density364

families. These non-quadraticities complicate direct inference procedures, rendering365

them computationally intractable. To address this, we utilize the Laplace approxima-366

tion method, involving mean calculation, variance estimation, and density function367

construction, to approximate the density with a Gaussian distribution form.368

Here, we consider a general density function q(x) with a single random variable369

x and simplify (4.3) as370

q†(x) = argmax
q(x)∈QN

∫
Ω

q(x) log
p(x)

q(x)
dx.371

where QN is the set of all the density functions for the Gaussian distribution. Ac-372

cording to Gibbs’ inequality, for any two probability distributions q(x) and p(x) over373

a domain Ω, the following holds:374 ∫
Ω

q(x) log
p(x)

q(x)
dx ≤ 0,375

with equality achieved if and only if q(x) = p(x), implying identical means and vari-376

ances. However, the non-quadratic nature of the log p(x) term complicates the direct377

estimation of q(x) in practice. To address this, we employ the Laplacian approx-378

imation method to estimate q(x). Since q(x) is Gaussian, we have the following379

properties:380

(1) First-Order Condition for the Mean (Ex): The gradient of log q(x) evaluated at381

Ex is zero, implying Ex is a maximum of log p(x).382

(2) Second-Order Condition for the Variance (σ2
x): The negative of the Hessian383

(second-order derivative) of log q(x) evaluated at Ex equals the reciprocal of the384

variance. However, since we directly approximate p(x), we use the Hessian of385

log p(x) evaluated at Ex to estimate σ2
x:386

∇2 log p(x)|x=Ex
= − 1

σ2
x

.387

We now detail the estimation of Ex and σ2
x based on these conditions for some specific388

density function p(x).389

4.3.1. Absolute value function. The ℓ1 norm of S, as the sum of absolute390

element values, necessitates approximating the distribution of absolute values to en-391

able effective optimization within Gaussian density families. Given the log-probability392

density function log p(x) ∝ − 1
2 (x − b)2 − β|x|, the first step of Laplace approxima-393

tion involves computing the mean Ex of q(x), which corresponds to the maximum of394

log p(x):395

Ex = argmax
x

log p(x) = argmin
x

1

2
(x− b)2 + β|x|.396

In the paper, we utilize the sans serif font E accompanied by a subscripted variable x397

to denote the expectation of a random variable x. The solution is given by:398

Ex =

{
b− βsign(b), if |b| > β

0, otherwise.
399
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Proceeding to the second stage, we estimate the variance, σ2. When Ex = 0, we400

directly set σ2
x = 0. For non-zero Ex, we leverage the inequality |x| ≤ x2

2|y| +
|y|
2 with401

equality at x = y ̸= 0. By setting y = |Ex|, this facilitates a lower bound on log p(x):402

log p(x) ≥ −1

2
(x− b)2 − β

2|Ex|
x2 + const.403

To simplify the variance estimation process, we exclude the constant term and mean404

shift from consideration, as they do not impact the variance calculation. Approximat-405

ing the second-order derivatives of this lower bound around Ex, we derive the variance406

estimate:407

σ2
x ≈

(
1 +

β

|Ex|

)−1

=
|Ex|

|Ex|+ β
.408

Ultimately, utilizing the estimated mean Ex and variance σ2
x, we construct the optimal409

Gaussian density approximation:410

(4.4) q(x) = N
(
Ex,

|Ex|
|Ex|+ β

)
.411

Given the approximation |x| ≈ 1
2|Ex|x

2 + |Ex|
2 at x = Ex, we derive the expectation of412

the absolute value of x:413

(4.5) E|x| = |Ex|+
1

2(|Ex|+ β)
.414

4.3.2. Nuclear norm. The Laplace approximation approach does not directly415

extend the Gaussian density approximation of absolute functions to the nuclear norm416

of matrices, given its intrinsic nature as a sum of singular values rather than element-417

wise absolute values. When considering a density function incorporating the weighted418

nuclear norm of a matrixX ∈ Rn1×n2 , we assume n1 ≤ n2 for generality. The targeted419

density is formulated as:420

p(X) ∝ exp
(
−α

2
∥X−A∥2F − β∥X∥∗

)
,421

where A is a given matrix, β is a regularization parameter, and w ∈ Rn2 represents422

the vector of weights. We find the density q(X) that maximizes:423

q(X) = arg max
q(X)∈QN

∫
q(X) log

p(X)

q(X)
dX.424

Applying the Laplacian approximation method, the mean EX of q(X) is obtained by425

solving:426

EX = argmin
X

(α
2
∥X−A∥2F + β ∥X∥∗

)
.427

Given the SVD of A as A = UADAVT
A, the minimizer EX for the aforementioned428

problem can be formulated as [10]:429

EX = UA max{DA − β
αI, 0}V

T
A,430

where max{·, 0} denotes an element-wise maximum operation applied to the diagonal431

matrix. To compute the covariance of X, we introduce an inequality derived from432

[31]:433

∥X∥∗ ≤ 1

2
Tr(ω(Y)XXT ) +

1

2
∥Y∥∗ ,434
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where ω(Y) = (YYT )−1/2, and equality holds when X = Y. Hence we obtain435

(4.6) ∥X∥∗ ≈ 1

2
Tr(ω(EX)XXT ) +

1

2
∥EX∥∗.436

Considering the j-th columns of X and A denoted by X:j and A:j respectively, we437

bound the log-likelihood log p(X) as follows:438

log p(X) ≥ −
∑
j

(
α

2
∥X:j −A:j∥22 +

β

2
XT

:jω(EX)X:j

)
+ const.439

Evaluating the second-order derivatives of the lower bound with respect to X:j yields440

the inverse covariance matrix Σ−1
X:j

= αI+ βω(EX). Let EX = UDVT be the skinny441

SVD of EX, we have ω(EX) = UD−1UT . Hence we have442

(4.7) ΣX:j
= UD (αD+ βI)

−1
UT .443

Finally, the optimal density approximation q(X) is expressed as:444

(4.8) q(X) =
∏
j

N (X:j |EX:j
,UD (αD+ βI)

−1
UT ).445

We have446

(4.9) E ∥X∥2F = ∥EX∥2F +
∑
j

Tr
(
ΣX:j

)
= ∥EX∥2F + n2

∑
i

Di

αDi + β
.447

According to the approximation of the nuclear norm in (4.6), we have448

(4.10) E ∥X∥∗ =
1

2

∑
j

E
[
XT

:jω(EX)X:j

]
+

1

2
∥EX∥∗.449

Let Di be the i-th singular values of EX. Then we have450

(4.11) E ∥X∥∗ = ∥EX∥∗ +
n2

2
Tr
(
(αD+ βI)

−1
)
= ∥EX∥∗ +

n2

2

∑
i

1

αDi + β
.451

4.4. Coordinate ascent variational inference. In order to maximize the452

ELBO J (q(S,L,θ)), we apply coordinate ascent variational inference (CAVI) [8, 47].453

Starting from an initial density (q0(θ), q0(L), q0(S)), the densities of S, L and θ are454

updated as follows:455

qℓ(S) = argmax
q(S)∈QN

J (q(S)qℓ−1(L)qℓ−1(θ)) ,(4.12)456

qℓ(L) = argmax
q(L)∈QN

J (qℓ(S)q(L)qℓ−1(θ)) ,(4.13)457

qℓ(θ) = argmax
q(θ)∈QG

J (qℓ(S)qℓ(L)q(θ)) ,(4.14)458

where qℓ(θ), qℓ(L), qℓ(S) refer to the variational densities obtained in the ℓ-th iteration.459
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4.4.1. The density qℓ(S). In accordance with (4.2), we formulate the optimiza-460

tion problem as maximizing the evidence lower bound (ELBO) with respect to the461

variational distribution q(S):462

(4.15) argmax
q(S)∈QN

J (q(S), qℓ−1(L,θ)) = argmax
q(S)∈QN

∫
q(S)Eqℓ−1(L,θ) log

p(X ,S,L,θ)
q(S)

dS.463

Given the joint density distribution as defined in (3.6), we can express the expectation464

term within the ELBO as:465

Eqℓ−1(L,θ) [log p(X ,S,L,θ)]466

= −
∑
ijk

(
Eℓ−1
θ1

2

(
Xijk − Eℓ−1

Lijk
− Sijk

)2
+ Eℓ−1

θ2
|Sijk|

)
+ const,467

where const is a constant independent of S. According to the discussion in Section468

4.3.1, the mean of Sijk is given by469

Eℓ
S = argmin

S

Eℓ−1
θ1

2

∥∥X − Eℓ−1
L − S

∥∥2
F
+ Eℓ−1

θ2
∥S∥1 .470

It is known that the minimizer is the well-known soft threshold:471

(4.16) Eℓ
Sijk

=


Xijk − Eℓ−1

Lijk
−

Eℓ−1
θ2

Eℓ−1
θ1

, if Xijk − Eℓ−1
Lijk

≥
Eℓ−1
θ2

Eℓ−1
θ1

,

Xijk − Eℓ−1
Lijk

+
Eℓ−1
θ2

Eℓ−1
θ1

, if Xijk − Eℓ−1
Lijk

≤ −
Eℓ−1
θ2

Eℓ−1
θ1

,

0, others.

472

Applying (4.4), the variance of Sijk is given by473

Σℓ
Sijk

=
Eℓ−1
θ1

|Eℓ
Sijk

|
Eℓ−1
θ1

|Eℓ
Sijk

|+ Eℓ−1
θ2

.474

Then the density function of q(S) is given:475

(4.17) qℓ(Sijk) = N (S|Eℓ
Sijk

,Σℓ
Sijk

).476

4.4.2. The density qℓ(L). In accordance with (4.2), we formulate the optimiza-477

tion problem as maximizing the evidence lower bound (ELBO) with respect to the478

variational distribution q(L):479

(4.18)

argmax
q(L)∈QN

J (qℓ(S), q(L), qℓ−1(θ)) = argmax
q(L)∈QN

∫
q(L)Eqℓ(S)qℓ−1(θ) log

p(X ,S,L,θ)
q(L) dL.480

Given the joint density distribution as defined in (3.6), we can express the expectation481

term within the ELBO as:482

Eqℓ(S)qℓ−1(θ) [log p(X ,S,L,θ)] = −

(
Eℓ−1
θ1

2

∥∥L − (X − Eℓ
S)
∥∥2
F
+ Eℓ−1

θ3
∥L∥∗

)
+ const

= −

(
Eℓ−1
θ1

2n3

∥∥∥L − (X − Eℓ
S)
∥∥∥2
F
+

Eℓ−1
θ3

n3

∥∥L∥∥∗
)

+ const

483
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According to the discussion in Section 4.3.2, the mean of L is given by484

Eℓ
L = argmin

L

Eℓ−1
θ1

2

∥∥X − L− Eℓ
S
∥∥2
F
+ Eℓ−1

θ3
∥L∥∗ .485

This subproblem is to solve a proximal operator of the tensor nuclear norm, which486

has a closed-form solution as tensor singular value thresholding (t-SVT) [33]. Let the487

SVD of X − Eℓ
S is given by X − Eℓ

S = Uℓ ∗ Dℓ ∗ VℓT . The update of Eℓ
L is488

(4.19) Eℓ
L = Uℓ ∗ Dℓ

τ ∗ VℓT ,489

where Dℓ
τ is an n1 × n2 × n3 tensor that satisfies Dℓ

τ = max{Dℓ − τ, 0} with τ =490

Eℓ−1
θ1

/Eℓ−1
θ3

. Recall that we adopt the notation of an overline A to signify the applica-491

tion of the DFT to the tensor A specifically along its third dimension.492

We apply (4.7) and then obtain the covariance matrix of the vector L:jk493

Σℓ
L:jk

= n3U
ℓ

::kD
ℓ

τ ::k

(
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

I
)−1

Uℓ

::k

T

.494

Thus, we construct the density function and parameterize a normal density q(L) as:495

(4.20) qℓ(L) =
∏
jk

N
(
L:jk|Eℓ

L:jk
,Σℓ

L:jk

)
.496

4.4.3. The density qℓ(θ). In accordance with (4.2), we frame the optimiza-497

tion problem as maximizing the evidence lower bound (ELBO) with respect to the498

variational distribution q(θ),499

(4.21) argmax
q(θ)∈QG

J (qℓ(S), qℓ(L), q(θ)) = argmax
q(θ)∈QG

∫
q(θ)Eqℓ(S,L) log

p(X ,S,L,θ)
q(θ) dθ,500

where QG is the set of all the density functions for the Gamma distribution. By501

taking the partial derivative of the objective function in (4.21) with respect to q(θ),502

and letting it be equal to 0, we obtain that the optimal q(θ) is proportional to503

q(θ) ∝ expEqℓ(S,L) log p(X ,S,L,θ)504

with505

Eqℓ(S,L) log p(X ,S,L,θ) = − θ1
2 Eqℓ(S,L) ∥X − S − L∥2F − θ2Eqℓ(S) ∥S∥1506

−θ3Eqℓ(L) ∥L∥∗ +
n
2 log θ1 + n log θ2 + n log θ3 + const.507

Since q(θ) =
∏3

i=1 q(θi) is assumed to factorize due to the independence of the model508

components, we derive the form of each q(θi) by comparing the coefficients of θi and509

log θi with the log-density of a Gamma distribution510

log q(θ) =

3∑
i=1

(
(aℓθi − 1) log θi − bℓθiθi

)
+ const,511

where aℓθi and bℓθi are the shape and rate parameters, respectively. By comparing the512

coefficients in Eqℓ(S,L) log p(X ,S,L,θ) with those of a Gamma density (G(x|a, b) ∝513
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xa−1 exp(−bx)), we can infer the shape aℓθi and scale bℓθi parameters for each θi.514

Consequently, the shape parameters are given by:515

aℓθ1 = n
2 + 1, aℓθ2 = n+ 1, aℓθ3 = n+ 1.516

While the scale parameters are expressed as expectations over the variational distri-517

butions qℓ(S) and qℓ(L), as defined in the following system of equations:518

(4.22)


bℓθ1 = 1

2Eqℓ(L)qℓ(S)

[
∥X − S − L∥2F

]
,

bℓθ2 = Eqℓ(S) ∥S∥1 ,
bℓθ3 = Eqℓ(L) ∥L∥∗ .

519

The computation for bℓθ1 involves the expectations of both ∥S∥2F and ∥L∥2F . It is520

obvious that521

Eqℓ(S) ∥S∥
2
F =

∑
ijk

Eqℓ |Sijk|2 =
∑
ijk

(∣∣∣Eℓ
Sijk

∣∣∣2 +Σℓ
Sijk

)
.522

According to (4.9), we have523

Eqℓ(L) ∥L∥
2
F =

1

n3

∑
j,k

Eqℓ(L)

∥∥L:jk

∥∥2
F
=

1

n3

∑
j,k

(∥∥∥Eℓ
L:jk

∥∥∥2
F
+Tr

(
Σℓ

L:jk

))
.524

Hence we have525

Eqℓ(L)qℓ(S)(∥X − S − L∥2F ) =
∥∥X − Eℓ

L − Eℓ
S
∥∥2
F
+

1

n3

∑
j,k

Tr
(
ΣL:jk

)
+
∑
ijk

Σℓ
Sijk

.526

For the expectation of ∥S∥1, according to (4.5), we have527

Eqℓ(S)∥S∥1 =
∑
ijk

Eqℓ(S)|Sijk| = ∥Eℓ
S∥1 +

1

2

∑
ijk

(
Eℓ
θ1 |E

ℓ
Sijk

|+ Eℓ
θ2

)−1

.528

For the expectation of the nuclear norm ∥L∥∗, it is the arithmetic mean of each slice529

L::k of the tensor L. Hence we need to evaluate Eqℓ(L::k)
∥L::k∥∗. According to (4.11),530

we have531

Eqℓ(L::k)
∥L::k∥∗ =

∥∥∥Eℓ
L::k

∥∥∥
∗
+

n2n3

2
Tr

((
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

I
)−1

)
.532

Hence533

Eqℓ(L) ∥L∥∗ =
∥∥Eℓ

L
∥∥
∗ +

n2

2

∑
k

Tr

((
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

I
)−1

)
.534

Now, we focus on the expectation of the nuclear norm ∥L∥∗, which requires evaluating535

Eqℓ(L::k)
∥L::k∥∗ for each slice L::k of the tensor L.536

We summarize the proposed adaptive method in Algorithm 4.1. For simplicity, we537

refer to our proposed algorithm for solving the tensor nuclear norm model as VBITNN.538

Remark 4.1. According to [7], a general theoretical treatment of analyzing the539

convergence of CAVI is missing in the literature. This is due to the lack of tractability540

of the updating formula involving unwieldy normalization constants and the technical541

challenge of dealing with optimization over infinite-dimensional distributions. Here,542

we will empirically show the convergence in Section 5.543
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Algorithm 4.1 VBITNN :Variational Bayesian inference for the TNN-based TRPCA.

1: Initialization: Eθ1 ,Eθ2 ,Eθ3 , E
0
L,E

0
S , Σ

0
L,Σ

0
X

2: Let aθ1 = n
2 + 1, aθ2 = n+ 1, aθ3 = n+ 1.

3: while ℓ ≤ ℓMax or not converged do

4: Eℓ
Sijk

=


Xijk − Eℓ−1

Lijk
−

Eℓ−1
θ2

Eℓ−1
θ1

, if Xijk − Eℓ−1
Lijk

≥
Eℓ−1
θ2

Eℓ−1
θ1

Xijk − Eℓ−1
Lijk

+
Eℓ−1
θ2

Eℓ−1
θ1

, if Xijk − Eℓ−1
Lijk

≤ −
Eℓ−1
θ2

Eℓ−1
θ1

0, others

5: Take the SVD of X − Eℓ
S as X − Eℓ

S = Uℓ ∗ Dℓ ∗ VℓT

6: Eℓ
L = Uℓ ∗ Dℓ

τ ∗ VℓT

7: Σℓ
Sijk

=
Eℓ−1
θ1

|Eℓ
Sijk

|

Eℓ−1
θ1

|Eℓ
Sijk

|+Eℓ−1
θ2

, and Σℓ
L:jk

= n3U
ℓ

::kD
ℓ

τ ::k

(
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

I
)−1

Uℓ

::k

T

8: q(Sijk) = N (S|Eℓ
Sijk

,Σℓ
Sijk

) and q(L) =
∏

jk N
(
L:jk|Eℓ

L:jk
,Σℓ

L:jk

)
.

9: bℓθ1 =
∥∥X − Eℓ

L − Eℓ
S
∥∥2
F
/2 + 1

2n3

∑
j,k Tr

(
ΣL:jk

)
+
∑

ijk Σ
ℓ
Sijk

/2

10: bℓθ2 = ∥Eℓ
S∥1 + 1

2

∑
ijk

(
Eℓ
θ1
|Eℓ

Sijk
|+ Eℓ

θ2

)−1

11: bℓθ3 =
∥∥Eℓ

L
∥∥
∗ +

n2

2

∑
k Tr

((
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

I
)−1

)
12: q(θi) = G(θi|aθi , bℓθi), and Eℓ

θi
= aθi/b

ℓ
θi
i = 1, 2, 3

13: end while
14: return L = Eℓ

L, S = Eℓ
S

4.5. Variational Bayesian inference for weighted tensor nuclear norm.544

In this subsection, we consider a variant of the tensor nuclear norm by reweighting the545

singular values [23, 12]. Note that the standard tensor nuclear norm can be regarded546

as a special version of the weighted tensor nuclear norm, where the weighting matrix547

consists of elements that are all equal to one. Formally, for a non-negative matrix548

W ∈ Rmin(n1,n2)×n3 with column vectors W:k, the weighted tensor nuclear norm549

∥A∥W∗ is defined as:550

∥A∥W∗ =
1

n3

n3∑
k=1

min(n1,n2)∑
j=1

Wjkσjk,551

where σjk denotes the j-th singular value of the k-th frontal slice A::k of tensor A.552

To incorporate this weighted norm, we modify the robust principal component model553

(1.2) as follows:554

(4.23) min
S,L

{
θ1
2
∥X − L − S∥2F + θ2∥S∥1 + θ3∥L∥W∗

}
.555

During the inference of L, we update the expectation of L::k in (4.20) to:556

(4.24) Eℓ
L = Uℓ ∗ Dℓ

W ∗ VℓT ,557

where Dℓ
W is an n1 × n2 × n3 tensor that satisfies

Dℓ

W::k = max

{
Dℓ

::k −
Eℓ−1
θ1

Eℓ−1
θ3

diag(W:k), 0

}
.
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Concurrently, the covariance matrix of L::k is adjusted to:558

Σℓ
L:jk

= n3U
ℓ

::kD
ℓ
::k(τ

ℓ)
(
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

diag(W:k)
)−1

Uℓ

::k

T
.559

Given these updates, the computation of bℓθ3 = Eqℓ(L) ∥L∥W∗ necessitates a corre-560

sponding adjustment:561

Eqℓ(L) ∥L∥W∗ =
∥∥Eℓ

L
∥∥
W∗ +

n2

2

n3∑
k=1

Tr

((
Eℓ−1
θ1

Dℓ

τ ::k + Eℓ−1
θ3

diag(W:k)
−1
)−1

)
.562

Note the subtle yet crucial change in the trace term, ensuring consistency with the563

weighted norm definition.564

5. Experiments. In this section, we give experimental results to illustrate the565

performance of the proposed method. All the experiments are implemented using566

MATLAB (R2022b) on the Windows 10 platform with Intel Core i5-1135G7 2.40567

GHz and 16 GB of RAM.568

5.1. Validation on synthetic data. Here, we generate each observation X in569

Rn1×n2×n3 by combining a low-rank tensor L0 and a sparse tensor S0 with a Gaussian570

noise E0 in the the same dimensions. The low-rank tensor L0 is derived from the t-571

product of two smaller tensors, namely P in Rn1×r×n3 and H in Rr×n2×n3 , where572

r is significantly smaller than n2. The tubal rank of L0 does not exceed r. The573

entries of P are independently and identically distributed according to a Gaussian574

distribution N (0, 1/n1), and those of H follow N (0, 1/n2). The sparse tensor S0 has575

entries determined by a Bernoulli process, where each element is either +1 or −1 with576

a probability ρ, and 0 with a probability 1 − 2ρ. The entries in Gaussian noise S0577

follow N (0, σ2).578

We initiate our analysis by examining the convergence properties using a third-579

order tensor with dimensions 40× 40× 30. The rank parameter r is set to 3, with the580

parameter ρ at 0.1 and the noise level σ at 10−2. The algorithm is allowed a maximum581

of 100 iterations, starting with initial guesses for L and S as X and O, respectively.582

The convergence of the algorithm is monitored using the relative mean square error583

(RMSE) for L and S, defined as
∥Eℓ

L−Eℓ−1
L ∥F

∥Eℓ
L∥F

and
∥Eℓ

S−Eℓ−1
S ∥F

∥Eℓ
S∥F

, respectively. The pro-584

gression of the objective values, RMSE, and parameters (θ1, θ2, θ3) is plotted across585

iterations in Figure 1. Due to the nonlinear and nonconvex nature of simultaneously586

optimizing three tensors and their associated parameters, initial fluctuations in the587

objective values are observed. However, after approximately ten iterations, the objec-588

tive values begin to decrease steadily and achieve convergence by the 30th iteration.589

The parameter values similarly stabilize within these iterations. Both RMSE metrics590

show a sharp decline, reaching as low as 10−4 by the 30th iteration. Given these591

observations, we establish a stopping criterion where the algorithm terminates when592

RMSE falls below 10−4 or when 50 iterations are reached, whichever occurs first. This593

criterion ensures efficient and effective convergence to an optimal solution within a594

reasonable number of iterations.595

Here, we further evaluate the uncertainty quantification performance of our Vari-596

ational Bayesian Inference (VBI) algorithm using the same simulated tensor as previ-597

ously described. Figure 2. presents the mean estimates and 99.73% credible intervals598

for the recovery of tensor filter L:ij with i = 20, j = 5, 15, 20. The mean values599

consistently align with the ground truth across all fibers, while remarkably narrow600

This manuscript is for review purposes only.



18 C. WANG, H. ZHENG, R. CHAN, AND Y. WEN

credible intervals (indicated by minimal shading) demonstrate the high precision of601

our method. This precision is further corroborated by the low parameter standard602

deviations.603

As part of a proof-of-concept study, we employ a partial sum of the tubal nuclear604

norm [23] as a representative example for a weighted TNN in our numerical experi-605

ments. We aim to compare our proposed algorithms, VBITNN and VBIPSTNN, against606

two established methods in tensor rank approximation: TNN [33] and PSTNN [23].607

For this comparative analysis, we set the noise levels σ at 10−3, 10−2, and 10−1, the608

rank r at 3 and 5, and the parameter ρ at 0.01 and 0.1. We assess the performance of609

these methods by calculating the relative square error between the recovered tensors,610

L̂ and Ŝ, and the ground-truth tensors, LGT and SGT. These errors are quantified as611

follows: errorL = ∥L̂−LGT∥F

∥LGT∥F
for the low-rank component and errorS = ∥Ŝ−SGT∥F

∥SGT∥F
for612

the sparse component.613

As shown in Table 1, VBITNN generally outperforms TNN across most tested614

scenarios, while VBIPSTNN is better than PSTNN. Moreover, VBIPSTNN consistently615

delivers the best performance, indicating its superior ability to recover both the low-616

rank and sparse components of tensors under various noise and rank conditions. This617

comparative analysis underscores the effectiveness of our proposed methods, particu-618

larly VBIPSTNN, in handling complex tensor decomposition with higher accuracy and619

robustness against noise.620
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Fig. 1. Empirical evidence on convergence. Left: objective function, middle: RMSE, right:
parameters: θ1, θ2, and θ3, generated by Algorithm 4.1 across iterations.
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Fig. 2. Uncertainty quantification: recovery of L:ij with 99.73% credible interval (shaded area)
where i = 20, j = 5, 10, 25.

5.2. Image denoising. In this section, we evaluate the performance of the pro-621

posed method on image denoising. The peak signal-to-noise ratio (PSNR) [33] and the622

structural similarity index (SSIM) [49] are used to evaluate the recovery performance623

quantitatively.624

5.2.1. Image with sparse noise. We conduct experiments on four images:625

“house”, “moto”, “face”, and “hat”. In this study, we model the clean images as626
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Table 1
Recovery results on the synthetic datasets with different settings.

Method TNN VBITNN PSTNN VBIPSTNN

σ r ρ errorL errorS errorL errorS errorL errorS errorL errorS

10−3
3

0.01 0.0029 0.0075 0.0025 0.0056 0.0028 0.0064 0.0023 0.0052
0.1 0.0034 0.0027 0.0032 0.0025 0.0033 0.0024 0.0029 0.0023

5
0.01 0.0026 0.0083 0.0025 0.0063 0.0024 0.0070 0.0022 0.0058
0.1 0.0033 0.0033 0.0036 0.0032 0.0030 0.0028 0.0031 0.0029

10−2
3

0.01 0.0286 0.0738 0.0248 0.0556 0.0276 0.0638 0.0230 0.0523
0.1 0.0344 0.0274 0.0302 0.0238 0.0325 0.0240 0.0275 0.0223

5
0.01 0.0257 0.0820 0.0242 0.0620 0.0240 0.0700 0.0219 0.0576
0.1 0.0331 0.0329 0.0322 0.0294 0.0298 0.0281 0.0281 0.0267

10−1
3

0.01 0.2744 0.7227 0.2317 0.5435 0.2769 0.6398 0.2255 0.5195
0.1 0.3222 0.2623 0.2730 0.2262 0.3264 0.2410 0.2661 0.2187

5
0.01 0.2392 0.7841 0.2201 0.5921 0.2346 0.6896 0.2077 0.5620
0.1 0.2903 0.2961 0.2692 0.2589 0.2864 0.2705 0.2543 0.2484

the low-rank component and random corruptions as sparse outliers. Each image is627

corrupted by setting 10 percent of the pixels to random values ranging from 0 to628

255, with the locations of these distortions unspecified. We compare our proposed629

method with several existing techniques, including LRTV [20], Swp(0.9) [51], BTRTF630

[55], TNN [33], and PSTNN [23], using the original implementations provided by the631

respective authors. Given the absence of Gaussian noise in this task, the parameter632

θ1 is set to a high value of 100 to accommodate this condition, while θ2 and θ3 are633

set to 1. The truncation parameter K for VBIPSTNN is consistently set at 50 across634

all cases.635

Quantitative evaluations based on PSNR and SSIM are presented in Table 2, and636

the corresponding restored images are displayed in Figure 3. Our observations indi-637

cate that VBIPSTNN consistently outperforms the other methods in terms of PSNR,638

achieving at least a 0.5 improvement and matching the best-performing methods in639

SSIM values. Additionally, the restoration of the “hat” image by VBIPSTNN and640

BTRTF shows significantly clearer text compared to other methods. However, some641

artifacts are noted in the “moto” image restored by BTRTF. In contrast, our method642

exhibits fewer artifacts across all cases.643

Table 2
Quantitative comparisons of sparse noise removal results obtained by different methods

Data Index LRTV Swp(0.9) BTRTF TNN PSTNN VBITNN VBIPSTNN

house
PSNR 26.167 28.028 25.930 27.030 27.522 26.878 28.565
SSIM 0.9517 0.9717 0.9374 0.9655 0.9691 0.9596 0.9741

moto
PSNR 27.617 28.003 24.871 26.373 27.724 25.945 28.781
SSIM 0.9590 0.9702 0.9130 0.9554 0.9672 0.9440 0.9719

face
PSNR 32.524 34.061 32.500 30.770 31.543 30.704 34.150
SSIM 0.9529 0.9759 0.9405 0.9509 0.9557 0.9475 0.9694

hat
PSNR 32.626 32.787 32.558 29.453 30.895 29.755 33.478
SSIM 0.9435 0.9750 0.9581 0.9473 0.9558 0.9516 0.9735

mean
PSNR 29.733 30.720 28.965 28.407 29.421 28.321 31.244
SSIM 0.9518 0.9732 0.9375 0.9548 0.9620 0.9507 0.9722

5.2.2. Image with mixed noise. In this subsection, we perform experiments644

on four distinct images: “kid”, “house”, “river”, and “hat”. Initially, each image645

is corrupted with sparse noise, following the procedure of our previous experiment.646

Subsequently, we introduce Gaussian noise to each pixel, modeled by the distribution647
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Table 3
Quantitative comparisons of mixed noise removal results obtained by different methods

Data Index 3DTNN Swp(0.9) BTRTF TNN PSTNN VBITNN VBIPSTNN

kid
PSNR 26.670 31.806 32.071 28.691 29.542 29.446 32.802
SSIM 0.9364 0.9752 0.9593 0.9487 0.9558 0.9521 0.9720

house
PSNR 27.448 32.302 30.791 29.765 30.459 29.862 32.496
SSIM 0.9292 0.9708 0.9370 0.9474 0.9532 0.9414 0.9659

river
PSNR 24.606 26.388 23.818 25.985 26.439 25.367 26.968
SSIM 0.9319 0.9471 0.8606 0.9466 0.9515 0.9291 0.9504

hat
PSNR 28.017 32.771 32.553 29.449 30.891 29.753 33.463
SSIM 0.9359 0.9747 0.9581 0.9471 0.9555 0.9514 0.9733

mean
PSNR 26.685 30.817 29.808 28.473 29.333 28.607 31.432
SSIM 0.9334 0.9670 0.9288 0.9475 0.9540 0.9436 0.9654

N (0, 10−3). The resultant observation, represented mathematically by X = L+S+E ,648

consists of the real image L, augmented by sparse noise S and Gaussian noise E . To649

verify that our method’s effectiveness is robust to initial conditions, we set the initial650

values of θ1 to 100, and θ2 and θ3 to 1, as the same as the ones used in the sparse651

noise-only scenario.652

We benchmark our proposed algorithm against several state-of-the-art methods,653

including 3DTNN [53], Swp(0.9) [51], BTRTF [55], TNN [33], and PSTNN [23]. Per-654

formance metrics such as PSNR and SSIM are detailed in Table 3, with visual re-655

sults presented in Figure 4. Notably, our algorithm outperforms both TNN and656

PSTNN—methods that utilize similar regularization techniques—across all test cases657

in terms of PSNR, achieving an average improvement of 0.6 dB over the best-reported658

results. Qualitatively, the images restored by VBIPSTNN exhibit notably sharper659

boundaries compared to those produced by the other methods, which tend to exhibit660

some degree of blurring.661

Clean LRTV Swp(0.9) BTRTF TNN PSTNN VBITNN VBIPSTNN

Fig. 3. Comparison of color image Gaussian noise removal performance on four examples.

5.3. Background modeling. The background modeling problem focuses on662

distinguishing foreground objects from the background in video sequences. This is663

commonly achieved by modeling the background as a low-rank tensor, which rep-664

resents the relatively static scenes across different frames, and treating the moving665

foreground objects as sparse components. In the context of Tensor Robust Principal666
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Clean 3DTNN Swp(0.9) BTRTF TNN PSTNN VBITNN VBIPSTNN

Fig. 4. Comparison of color image mixed noise removal performance on four examples.

Component Analysis (TRPCA), these are represented by the low-rank tensor L0 and667

the sparse tensor S0, respectively.668

We evaluated our models on sequences from the 12R dataset [32], specifically the669

“bootstrap” (120×160×400), and “sidewalk” (220×352×400) videos, all character-670

ized by slow-moving objects against varying backgrounds. Our models were compared671

with several others, including 3DTNN, TNN, BTRTF, PSTNN, and t-Sw,p(0.9). For672

VBIPSTNN, the truncated parameter K is set as 5, while the initial values of θ1, θ2, θ3673

are set as 1, 1, 100, respectively. The results of these comparisons are visually pre-674

sented in Figure 5. Each video’s analysis starts with a frame from the sequence as675

shown in column (a) of Figure 5, followed by background images generated by the676

respective methods, from 3DTNN to our approach VBIPSTNN. Additionally, the mo-677

tion in each scene is depicted in the second row for each video. In the “bootstrap”678

video, except for 3DTNN, all the methods achieved superior background separation679

with fewer ghost silhouettes. In the “sidewalk” videos, all the approaches perform680

similarly, while 3DTNN has slightly better results.681

Orignal 3DTNN Swp(0.9) BTRTF TNN PSTNN VBITNN VBIPSTNN

Fig. 5. Background modeling results of two surveillance video sequences.

6. Conclusions. In this paper, we presented a method for recovering low-rank682

tensors from observations contaminated by sparse outliers and Gaussian noise. Uti-683

lizing variational Bayesian inference, we effectively resolved the tensors while simulta-684

neously selecting model parameters. Numerical evaluations highlight the advantages685

and superior performance of our approach compared to existing methods. Currently686
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limited to linear and convex relaxations, our future work will explore extending this687

parameter selection technique to nonconvex approximations within tensor recovery688

models.689
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