

1 **VARIATIONAL BAYESIAN INFERENCE FOR TENSOR ROBUST
2 PRINCIPAL COMPONENT ANALYSIS ***

3 CHAO WANG[†], HUIWEN ZHENG[†], RAYMOND CHAN[‡], AND YOUWEI WEN[§]

4 **Abstract.** Tensor Robust Principal Component Analysis (TRPCA) holds a crucial position
5 in machine learning and computer vision. It aims to recover underlying low-rank structures and
6 to characterize the sparse structures of noise. Current approaches often encounter difficulties in
7 accurately capturing the low-rank properties of tensors and balancing the trade-off between low-
8 rank and sparse components, especially in a mixed-noise scenario. To address these challenges, we
9 introduce a Bayesian framework for TRPCA, which integrates a low-rank tensor nuclear norm prior
10 and a generalized sparsity-inducing prior. By embedding the priors within the Bayesian framework,
11 our method can automatically determine the optimal tensor nuclear norm and achieve a balance
12 between the nuclear norm and sparse components. Furthermore, our method can be efficiently
13 extended to the weighted tensor nuclear norm model. Experiments conducted on synthetic and
14 real-world datasets demonstrate the effectiveness and superiority of our method compared to state-
15 of-the-art approaches.

16 **Key words.** Bayesian inference; tensor recovery; tensor nuclear norm; low rankness

17 **MSC codes.** 68Q25, 68R10, 68U05

18 **1. Introduction.** With data becoming ubiquitous from diverse fields and ap-
19 plications, data structures are becoming increasingly complex with higher dimen-
20 sions. Tensor, a multidimensional array, is an efficient data structure with broad
21 applications, including machine learning [39] and computer vision [40]. Meanwhile,
22 high-dimensional data always lie near a low-dimensional manifold, which can be in-
23 terpreted by their low rank. In matrix processing, the low-rank assumption allows
24 two-dimensional data recovery from incomplete or corrupted data [11]. However,
25 expanding the low-rank concept from matrices to tensors remains an unresolved chal-
26 lenge. A main challenge in tensor analysis is that the tensor rank is not well defined.
27 Various definitions of tensor rank have been proposed. For example, the CANDE-
28 COMP/PARAFAC (CP) rank, as described in [28], is based on the CP decomposition
29 [25] and identifies the smallest number of rank-one tensors needed to represent a ten-
30 sor. The Tucker rank [14], which stems from the Tucker decomposition [45], consists
31 of a vector where each component corresponds to the rank of a matrix obtained by
32 unfolding the original tensor. Furthermore, developments in tensor singular value de-
33 composition (t-SVD) [27] have led to the tensor multi-rank [14] and tubal rank [26],
34 both of which are analogous to the matrix singular value decomposition (SVD).

35 Among all these tensor applications, exploring low-rank features in sparse tensor
36 decomposition has become essential, which is called Tensor Robust Principal Compo-
37 nent Analysis (TRPCA) [33]. It extends the Robust Principal Component Analysis
38 (RPCA) [24] from matrices to tensors. Specifically, TRPCA seeks to extract the low
39 tubal rank component, \mathcal{L} , and eliminate the noise component, \mathcal{S} , derived from noisy

*Corresponding author: Youwei Wen.

Funding: This work was funded by the National Natural Science Foundation of China No. 12361089, 12571564, Guangdong Basic and Applied Research Foundation 2024A1515012347, HKRGC Grants No. LU13300125, LU11309922, ITF Grant No. MHP/054/22, and LU BGR 105824.

[†]Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518005, Guangdong Province, China (wangc6@sustech.edu.cn).

[‡]Lingnan University, Hong Kong SAR, China (raymond.chan@ln.edu.hk).

[§]Key Laboratory of Computing and Stochastic Mathematics (LCSM), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, China. (wenyouwei@gmail.com)

40 observations, \mathcal{X} , expressed as $\mathcal{X} = \mathcal{L} + \mathcal{S}$. This is achieved through the optimization
 41 process [33, 51, 36, 17, 48] described as

42 (1.1)
$$\min_{\mathcal{X}=\mathcal{L}+\mathcal{S}} \|\mathcal{L}\|_* + \lambda \|\mathcal{S}\|_1.$$

43 where $\|\mathcal{L}\|_*$ is the tensor nuclear norm as the convex relaxation to a certain tensor
 44 rank. Note that minimizing the rank is an NP-hard problem. Various approximations
 45 have been proposed to approach different tensor ranks [23, 52, 37]. Here, $\|\mathcal{S}\|_1$ is the
 46 ℓ_1 norm of sparsity, and $\lambda > 0$ is the parameter used to balance low-rankedness and
 47 sparsity.

48 In the TRPCA model, we can further reformulate the equality constraint by a
 49 penalty term and turn the optimization model (1.1) into

50 (1.2)
$$\min_{\mathcal{S}, \mathcal{L}} \frac{\theta_1}{2} \|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2 + \theta_2 \|\mathcal{S}\|_1 + \theta_3 \|\mathcal{L}\|_*,$$

51 where θ_1, θ_2 and θ_3 are tuning parameters. Note that (1.2) has broadened applications
 52 by assuming observation data is constructed not just by low-rank tensor and sparsity
 53 but also with certain bias or Gaussian noise, i.e.,

54 (1.3)
$$\mathcal{X} = \mathcal{L} + \mathcal{S} + \mathcal{E},$$

55 where \mathcal{E} is the corresponding bias and the Gaussian noise. This model is widely used
 56 in mixed noise removal [53, 55] and hyperspectral denoising [41].

57 The selection of the parameters in the model (1.1) and (1.2) is critical. Under
 58 the t-SVD framework, the optimal parameter for λ in (1.1) is suggested in [33] for
 59 the tensor nuclear norm. Nevertheless, it cannot be extended to other forms of tensor
 60 low-rank regularization, such as the weighted tensor nuclear norm. This issue becomes
 61 more serious when dealing with models involving multiple parameters in (1.2). Traditional
 62 parameter selection methods, including the discrepancy principle [35], L -curve
 63 [19], GCV [18], and RWP [1, 6], are often customized to specific regularization
 64 formulations and need iterative minimizations, which makes it inadequate for our tensor
 65 recovery problem in (1.2).

66 In this paper, we address the intricate task of simultaneously estimating tensors
 67 \mathcal{L} and \mathcal{S} and their regularization parameters θ_i for TRPCA. We introduce variational
 68 Bayesian inference (VBI) [13] as a powerful tool to tackle this challenge, reformulating
 69 the optimization problem within a Bayesian framework. By treating regularization
 70 parameters θ_i as hyperparameters, we apply the inherent strengths of Bayesian methods,
 71 popular for their success in inverse problems [46, 9, 22, 21, 16, 54, 30] and
 72 established applications in matrix and tensor problems like matrix completion [50],
 73 tensor completion [5, 44], and low-rank tensor approximation [34].

74 Despite these successes, the adoption of VBI in TRPCA remains limited. To
 75 our best knowledge, only [55] has explored VBI for TRPCA, employing a generalized
 76 sparsity-inducing prior. However, this method directly expresses the low-rank tensor
 77 as a t-product of two smaller factor tensors, presupposing the tubal rank, and models
 78 the sparse component \mathcal{S} with independent Gaussian priors, which may not be optimal
 79 for sparse data. In contrast, we propose an approach that employs a tensor nuclear
 80 norm prior to \mathcal{L} , eliminating the need for predefined tensor ranks. For the sparse
 81 component \mathcal{S} , we adopt a Laplace prior, which better captures sparse structures.
 82 This reformulation enhances model flexibility, offering a more principled and less
 83 restrictive approach to tensor recovery, thereby mitigating limitations posed by prior
 84 assumptions on tensor ranks or sparsity patterns.

85 In comparison, joint maximum a posteriori (MAP) estimation minimizes the neg-
 86 ative log posterior to obtain point estimates for \mathcal{S} , \mathcal{L} , and $\boldsymbol{\theta}$, simultaneously recovering
 87 tensors and parameters. Our VBI framework, however, approximates the full poste-
 88 rior distribution, enabling uncertainty quantification alongside point estimates. For
 89 practical applications such as denoising and background subtraction, we use the ex-
 90 pectation of the variational distribution as the point estimate for \mathcal{S} and \mathcal{L} , offering a
 91 robust and versatile approach to tensor recovery.

92 The primary contributions of this work are succinctly summarized as:

- 93 (1) Innovative Variational Bayesian Tensor Recovery Model: This paper proposes a
 94 novel variational Bayesian inference model for tensor recovery. It characterizes
 95 low-rank tensors using the tensor nuclear norm and sparse tensors via the Lapla-
 96 cian distribution. This approach enables simultaneous inference of both low-rank
 97 and sparse components along with the hyperparameters (regularization parame-
 98 ters), eliminating the need for pre-specifying the tensor rank.
- 99 (2) Efficient Inference via Laplacian Approximation and MM Framework: We intro-
 100 duce a Laplacian approximation methodology to tackle the computational intric-
 101 acies associated with non-Gaussian posteriors arising from Laplace priors imposed
 102 on sparse tensor \mathcal{S} and low-rank tensor \mathcal{L} . This approach directly tackles the ℓ_1
 103 norm minimization and tensor nuclear norm minimization problems in estimating
 104 the expectations of sparse tensor \mathcal{S} and low-rank tensor \mathcal{L} . For covariance matrix
 105 computation, it integrates with the Majorization-Minimization (MM) framework,
 106 deriving a tight lower bound for the non-quadratic distributions encountered in
 107 the ℓ_1 norm and tensor nuclear norm. This facilitates efficient variance computa-
 108 tions, thereby significantly enhancing the efficiency and accuracy of inferring
 109 low-rank, sparse tensors as well as their hyperparameters.

110 The rest of this paper is organized as follows. In Section 2, we introduce the main
 111 preliminaries, including tensors and their decomposition. In Section 3, we describe
 112 the hierarchical Bayesian model, joint density, and hyperprior. In Section 4, we apply
 113 variational Bayesian inference to infer hyperparameters θ_i and solve the tensors \mathcal{L}, \mathcal{S}
 114 at the same time. In Section 5, we provide the experimental results and show the
 115 superiority of our proposed methods. Finally, in Section 6, some conclusions are
 116 drawn.

117 **2. Preliminaries.** This section provides an overview of fundamental notations
 118 and definitions that will be utilized throughout the paper.

119 **2.1. Notations.** The set of natural numbers is denoted by \mathbb{N} , the set of real
 120 numbers by \mathbb{R} , and the set of complex numbers by \mathbb{C} . In the context of tensors,
 121 we adopt the convention of using boldface Euler script letters, exemplified by \mathcal{A} , to
 122 represent them. Matrices, on the other hand, are indicated with boldface uppercase
 123 letters, such as \mathbf{A} , with the identity matrix specifically denoted by \mathbf{I} . Vectors follow
 124 the convention of being written in boldface lowercase letters, like \mathbf{a} , whereas single
 125 values or scalars are represented by regular lowercase letters, for instance, a . Regard-
 126 ing indexing, for a vector \mathbf{a} , the i -th element is denoted by \mathbf{a}_i . For a matrix \mathbf{A} , $\mathbf{A}_{i:}$
 127 signifies the i -th row, $\mathbf{A}_{:j}$ denotes the j -th column, and the specific element located
 128 at the intersection of the i -th row and j -th column is represented by either a_{ij} or,
 129 more commonly in matrix notation, \mathbf{A}_{ij} . When dealing with a third-order tensor \mathcal{A} ,
 130 each element positioned at the intersection of the i -th, j -th, and k -th dimensions is
 131 denoted by a_{ijk} or, more conventionally for tensors, \mathcal{A}_{ijk} . This tensor can be dissected
 132 into distinct structural components: column fibers are designated as $\mathcal{A}_{:jk}$, row fibers
 133 as $\mathcal{A}_{i:k}$, and tube fibers as $\mathcal{A}_{ij:}$. Furthermore, the tensor can be analyzed through

134 various slices: horizontal slices are noted as $\mathcal{A}_{i::}$, lateral slices as $\mathcal{A}_{::j::}$, and frontal
 135 slices as $\mathcal{A}_{::k::}$.

136 We define the inner product of matrices \mathbf{A} and \mathbf{B} as $\langle \mathbf{A}, \mathbf{B} \rangle := \text{Tr}(\mathbf{A}^* \mathbf{B})$, where
 137 \mathbf{A}^* is the conjugate transpose of \mathbf{A} , and $\text{Tr}(\cdot)$ represents the trace of a matrix. If \mathbf{A}
 138 consists only of real numbers, \mathbf{A}^T denotes its transpose. The ℓ_2 -norm of a vector \mathbf{v}
 139 in the complex number space \mathbb{C}^n is defined by $\|\mathbf{v}\|_2 = (\sum_i |\mathbf{v}_i|^2)^{1/2}$, measuring the
 140 vector's magnitude in Euclidean space.

141 The inner product between two tensors \mathcal{A} and \mathcal{B} in $\mathbb{C}^{n_1 \times n_2 \times n_3}$ is defined as
 142 $\langle \mathcal{A}, \mathcal{B} \rangle = \sum_{k=1}^{n_3} \langle \mathcal{A}_{::k}, \mathcal{B}_{::k} \rangle$. The complex conjugate of \mathcal{A} , which takes the complex
 143 conjugate of each entry of \mathcal{A} , is denoted as $\text{conj}(\mathcal{A})$. The conjugate transpose of a
 144 tensor $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times n_3}$ is a tensor \mathcal{A}^* obtained by conjugate transposing each of the
 145 frontal slices and then reversing the order of transposed frontal slices 2 through n_3 .
 146 The tensor ℓ_1 -norm of \mathcal{A} is defined as $\|\mathcal{A}\|_1 = \sum_{ijk} |a_{ijk}|$, and the Frobenius norm as
 147 $\|\mathcal{A}\|_F = \sqrt{\sum_{ijl} |a_{ijl}|^2}$.

148 **2.2. T-product and t-SVD.** Before introducing the definitions, we define three
 149 operators:

$$150 \quad (2.1) \quad \text{unfold}(\mathcal{A}) = \begin{bmatrix} \mathcal{A}_{::1} \\ \mathcal{A}_{::2} \\ \vdots \\ \mathcal{A}_{::n_3} \end{bmatrix}, \quad \text{fold}(\text{unfold}(\mathcal{A})) = \mathcal{A},$$

and

$$\text{bcirc}(\mathcal{A}) := \begin{bmatrix} \mathcal{A}_{::1} & \mathcal{A}_{::n_3} & \cdots & \mathcal{A}_{::2} \\ \mathcal{A}_{::2} & \mathcal{A}_{::1} & \cdots & \mathcal{A}_{::3} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{A}_{::n_3} & \mathcal{A}_{::,n_3-1} & \cdots & \mathcal{A}_{::1} \end{bmatrix} \in \mathbb{R}^{n_1 n_3 \times n_2 n_3}.$$

151 Here $\text{unfold}(\cdot)$ maps \mathcal{A} to a matrix of size $n_1 n_3 \times n_2$ and $\text{fold}(\cdot)$ is its inverse operator.
 152 We introduce the notation $\mathbf{A} := \text{bdiag}(\mathcal{A})$ to concisely represent the block diagonal
 153 matrix derived from the tensor \mathcal{A} . Here, $\text{bdiag}(\cdot)$ designates the block diagonalization
 154 operator, with the i -th block corresponding to $\mathcal{A}_{::i}$.

155 Now, we focus on applying the Discrete Fourier Transformation (DFT) to tensors.
 156 We represent the tensor \mathcal{A} transformed by DFT along its third (tubal) dimension as
 157 $\overline{\mathcal{A}}$. This transformation is executed using the MATLAB command `fft`, specifically
 158 performed as $\overline{\mathcal{A}} = \text{fft}(\mathcal{A}, [], 3)$. Conversely, to revert the tensor to its original form
 159 from $\overline{\mathcal{A}}$, we use the inverse operation with $\mathcal{A} = \text{ifft}(\overline{\mathcal{A}}, [], 3)$. We also introduce the
 160 notation $\overline{\mathbf{A}} := \text{bdiag}(\overline{\mathcal{A}})$ to represent the block diagonal matrix constructed from the
 161 tensor $\overline{\mathcal{A}}$. Next, we introduce the definition of t-product.

162 **DEFINITION 2.1.** (t-product [27]). *Let $\mathcal{A} \in \mathbb{R}^{n_1 \times l \times n_3}$ and $\mathcal{B} \in \mathbb{R}^{l \times n_2 \times n_3}$, then the
 163 t-product $\mathcal{A} * \mathcal{B}$ is defined by*

$$164 \quad (2.2) \quad \mathcal{A} * \mathcal{B} = \text{fold}(\text{bcirc}(\mathcal{A}) \cdot \text{unfold}(\mathcal{B})),$$

165 resulting a tensor of size $n_1 \times n_2 \times n_3$. Note that $\mathcal{A} * \mathcal{B} = \mathcal{Z}$ if and only if $\overline{\mathbf{A}} \overline{\mathbf{B}} = \overline{\mathbf{Z}}$.

166 Using the t-product framework, we define the identity tensor $\mathcal{I} \in \mathbb{R}^{n \times n \times n_3}$ as a
 167 tensor with its first frontal slice being the $n \times n$ identity matrix, while all subsequent
 168 frontal slices consist entirely of zeros. It is clear that $\mathcal{A} * \mathcal{I} = \mathcal{A}$ and $\mathcal{I} * \mathcal{A} = \mathcal{A}$ given
 169 the appropriate dimensions. In addition, a tensor $\mathcal{H} \in \mathbb{R}^{n \times n \times n_3}$ is orthogonal if it

170 satisfies $\mathcal{H}^* * \mathcal{H} = \mathcal{H} * \mathcal{H}^* = \mathcal{I}$. Moreover, we call a tensor f -diagonal if each of its frontal
 171 slices is a diagonal matrix. Next, we define the tensor singular value decomposition
 172 as below:

173 **DEFINITION 2.2.** (tensor singular value decomposition: t-SVD [27]). *The t-SVD
 174 of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is given by*

175 (2.3)
$$\mathcal{A} = \mathcal{U} * \mathcal{D} * \mathcal{V}^*,$$

176 where $\mathcal{U} \in \mathbb{R}^{n_1 \times n_1 \times n_3}$, $\mathcal{V} \in \mathbb{R}^{n_2 \times n_2 \times n_3}$ are orthogonal tensors, and $\mathcal{D} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is
 177 an f -diagonal tensor.

178 It follows from Definition 2.1 that $\mathcal{A} = \mathcal{U} * \mathcal{D} * \mathcal{V}^*$ if and only if $\overline{\mathbf{A}} = \overline{\mathbf{U}} \overline{\mathbf{D}} \overline{\mathbf{V}}^*$.
 179 For tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ with tubal rank r , we also have skinny t-SVD similar as
 180 matrix. Let r is the tubal rank of \mathcal{A} , the skinny t-SVD of \mathcal{A} is $\mathcal{A} = \mathcal{U} * \mathcal{D} * \mathcal{V}^*$, where
 181 $\mathcal{U} \in \mathbb{R}^{n_1 \times r \times n_3}$, $\mathcal{D} \in \mathbb{R}^{r \times r \times n_3}$, $\mathcal{V} \in \mathbb{R}^{n_2 \times r \times n_3}$, in which $\mathcal{U}^* * \mathcal{U} = \mathcal{I}$ and $\mathcal{V}^* * \mathcal{V} = \mathcal{I}$.

182 **DEFINITION 2.3.** (tensor average rank and tubal rank [33]) *The tensor average
 183 rank of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, denoted as $\text{rank}_a(\mathcal{A})$, is defined as*

184
$$\text{rank}_a(\mathcal{A}) = \frac{1}{n_3} \text{rank}(\text{bcirc}(\mathcal{A})) = \frac{1}{n_3} \sum_{i=1}^{n_3} \text{rank}(\overline{\mathbf{A}}^{(i)}).$$

The tensor tubal rank, denoted as $\text{rank}_t(\mathcal{A})$, is defined as the number of nonzero
 singular tubes of \mathcal{S} , where \mathcal{S} comes from the t-SVD of \mathcal{A} , i.e. $\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^*$. In
 other words, one has

$$\text{rank}_t(\mathcal{A}) = \#\{i, \mathcal{S}(i, i, :) \neq 0\}.$$

185 For tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ with tubal rank r , we also have skinny t-SVD similar
 186 as matrix. Minimizing the tubal rank is an NP-hard problem; we introduce a tensor
 187 nuclear norm as a convex relaxation.

188 **DEFINITION 2.4.** (tensor nuclear norm [33]). *Let $\mathcal{A} = \mathcal{U} * \mathcal{D} * \mathcal{V}^*$ be the t-SVD of
 189 $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$. Define $\sigma_{jk}(\mathcal{A})$ is the j -th singular value of $\overline{\mathbf{A}}_{:,k}$, or simply σ_{jk} if the
 190 context is clear. The tensor nuclear norm (TNN) of \mathcal{A} is defined as*

191
$$\|\mathcal{A}\|_* = \frac{1}{n_3} \sum_{k=1}^{n_3} \|\overline{\mathbf{A}}_{:,k}\|_* = \frac{1}{n_3} \sum_{k=1}^{n_3} \sum_{j=1}^{\min(n_1, n_2)} \sigma_{jk}.$$

192 **2.3. Probability distribution.** Here, we define three kinds of probability dis-
 193 tribution: the uniform distribution, the Gamma distribution, and the multivariate
 194 Gaussian distribution.

195 The uniform distribution is a distribution that assigns equal probability mass to a
 196 region. For $a, b \in R$ and $a < b$, the uniform distribution for a random variable $x \in R$
 197 is defined as

198
$$p(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b, \\ 0, & \text{otherwise.} \end{cases}$$

199 The Gamma density function is given as

200 (2.4)
$$p(x) = \mathcal{G}(x|a, b) \propto x^{a-1} \exp(-bx),$$

201 where $a > 0$ and $b > 0$ represent shape and scale parameters respectively. We have
 202 its mean and variance of these Gamma distributions:

203 (2.5)
$$\mathbb{E}(x) = \frac{a}{b}, \quad \text{Var}(x) = \frac{a}{b^2}.$$

204 The multivariate Gaussian distribution is fully characterized by a mean vector μ
 205 and a covariance matrix Σ and is defined as

$$206 \quad p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mu, \Sigma) = (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \|\mathbf{x} - \mu\|_{\Sigma^{-1}}^2\right),$$

207 where $\mathbf{x} \in \mathbb{R}^n$ is a random variable.

208 **3. Bayesian model.**

209 **3.1. The likelihood.** In (1.3), we assume the observed data \mathcal{X} can be decom-
 210 posed into three parts: $\mathcal{E}, \mathcal{S}, \mathcal{L}$. Note that \mathcal{E} 's elements are independent and identically
 211 distributed (i.i.d.) from a zero-mean normal distribution with precision θ_1 . Then
 212 we obtain the likelihood function $p(\mathcal{X}|\mathcal{S}, \mathcal{L}, \theta_1)$ characterizes the probability of ob-
 213 serving \mathcal{X} conditioned on \mathcal{S}, \mathcal{L} , and θ_1 . By exploiting the properties of the normal
 214 distribution, the likelihood function is expressed as:

$$215 \quad (3.1) \quad p(\mathcal{X}|\mathcal{S}, \mathcal{L}, \theta_1) \propto \theta_1^{\frac{n}{2}} \exp\left(-\frac{\theta_1}{2} \|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2\right),$$

216 where \propto denotes “proportional to” and $n = n_1 n_2 n_3$ denotes the total flattened dimen-
 217 sionality of \mathcal{X} . This formulation captures the probabilistic nature of the constraint
 218 violation, enhancing the robustness and applicability of the Bayesian inference process.

219 To facilitate further analysis and optimization, we consider the log-likelihood
 220 function

$$221 \quad \log p(\mathcal{X}|\mathcal{S}, \mathcal{L}, \theta_1) = -\frac{\theta_1}{2} \|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2 + \frac{n}{2} \log \theta_1 + C_1,$$

222 where C_1 is a constant term that does not depend on \mathcal{S}, \mathcal{L} , or θ_1 and can be ignored
 223 in inference procedure.

224 **3.2. The prior distributions.** In Bayesian inference, the selection of prior dis-
 225 tributions is a fundamental step that shapes the posterior beliefs about the unknown
 226 parameters. These priors encode our prior knowledge or assumptions about the vari-
 227 ables of interest. Here, we choose appropriate prior distributions for \mathcal{S} and \mathcal{L} , which
 228 represent distinct latent variables with unique characteristics. We remark that the
 229 choice of these priors is informed by regularization terms.

230 **3.2.1. Prior distribution for \mathcal{S} .** For the sparse component \mathcal{S} , we employ a
 231 Laplace prior distribution that induces ℓ_1 -norm regularization. This choice is moti-
 232 vated by the well-established connection between Laplace priors and sparsity promo-
 233 tion in the Bayesian framework [42]. Specifically, the prior density takes the form:

$$235 \quad (3.2) \quad p(\mathcal{S}|\theta_2) \propto \theta_2^n \exp(-\theta_2 \|\mathcal{S}\|_1),$$

236 where $\theta_2 > 0$ is a scale parameter. The ℓ_1 -norm arises naturally as the convex envelope
 237 of the ℓ_0 pseudo-norm, making it the tightest convex relaxation for sparse recovery
 238 problems. From a probabilistic perspective, this corresponds to assuming independent
 239 exponentially distributed entries in \mathcal{S} , which favors exact zeros in the MAP estimate
 240 while maintaining computational tractability through convex optimization.

241 Taking the logarithm of the prior distribution, we obtain:

$$242 \quad (3.3) \quad \log p(\mathcal{S}|\theta_2) = -\theta_2 \|\mathcal{S}\|_1 + n \log \theta_2 + C_2,$$

243 where C_2 represents a constant term that does not depend on \mathcal{S} or θ_2 .

3.2.2. Prior distribution for \mathcal{L} . For the variable \mathcal{L} , we employ a particular Gibbs prior [29] to promote a low-rank structure in \mathcal{L} . This prior takes the form of an exponential distribution with a tensor nuclear norm penalty, acting as a convex surrogate for the tensor average rank. It encourages \mathcal{L} to have a low-rank representation, which is often suitable for capturing the underlying low-dimensionality in the data. The prior distribution is given by:

$$250 \quad (3.4) \quad p(\mathcal{L}|\theta_3) \propto \theta_3^n \exp(-\theta_3 \|\mathcal{L}\|_*) .$$

251 This characteristic encourages the low rank property in \mathcal{L} and is coherent with the
 252 regularization term $\|\mathcal{L}\|_*$ in (1.2). Taking the logarithm of the prior distribution, we
 253 have:

$$\log p(\mathcal{L}|\theta_3) = -\theta_3 \|\mathcal{L}\|_* + n \log \theta_3 + C_3,$$

255 where C_3 is a constant term that does not depend on \mathcal{L} or θ_3 .

3.3. The hyper-prior distribution. In the field of statistical modeling, the Gamma distribution has obtained significant attention as a versatile prior distribution for hyperparameters, particularly in Bayesian frameworks [2, 3, 4, 38, 43]. The choice of a Gamma distribution as the prior for the hyperparameter θ_i is driven by two key reasons. First, it serves as a conjugate prior for precision parameters in exponential family distributions. For instance, when θ_i controls the precision of a Gaussian likelihood $p(x|\theta_i) \sim \mathcal{N}(0, \theta_i^{-1})$, the Gamma prior ensures the posterior distribution remains a Gamma distribution. This conjugacy simplifies posterior calculations in Bayesian inference, enabling efficient automatic updates of hyperparameters. Second, θ_i typically represents positive physical quantities like precision or rate. The Gamma distribution's support on $(0, +\infty)$ naturally aligns with this positivity constraint, eliminating the need for artificial non-negativity restrictions.

268 We assign independent Gamma priors to the hyperparameters θ_i , which corre-
 269 spond to the mutually independent components \mathcal{E} , \mathcal{S} , and \mathcal{L} in the model. This
 270 hierarchical structure preserves model consistency while enabling efficient computa-
 271 tion. The independence assumption further facilitates automatic feature selection by
 272 factorizing the posterior distribution into marginal products over each θ_i . Hence, we
 273 have

$$p(\theta_i) = \mathcal{G}(\theta_i | a_{\theta_i}, b_{\theta_i}), i = 1, 2, 3,$$

275 where a_{θ_i} and b_{θ_i} are the shape and scale parameters for each hyperparameter θ_i .
 276 However, a key challenge in adopting the Gamma prior lies in the determination of
 277 optimal values for a_{θ_i} and b_{θ_i} . In the absence of strong prior knowledge, researchers
 278 often resort to weakly informative or non-informative priors, where the influence of
 279 the prior is minimized [4, 2, 38, 3, 43]. This can be achieved by setting extremely
 280 small values for a_{θ_i} and b_{θ_i} (e.g., $a_{\theta_i} = b_{\theta_i} = 10^{-4}$), thereby adopting an improper
 281 prior [43].

3.4. Joint distribution. The estimation of the unknown tensors \mathcal{L} and \mathcal{S} , given the parameters $\theta_i (i = 1, 2, 3)$, can be tackled within the Maximum A Posteriori (MAP) estimation framework. This approach aims to maximize the posterior density $p(\mathcal{S}, \mathcal{L} | \mathcal{X}, \boldsymbol{\theta})$ with respect to \mathcal{L} and \mathcal{S} , which is formulated as:

$$(\mathcal{S}^\dagger, \mathcal{L}^\dagger) = \arg \max_{\mathcal{S}, \mathcal{L}} p(\mathcal{S}, \mathcal{L} | \mathcal{X}, \theta).$$

287 Applying Bayes' theorem, the maximization problem can be rewritten in terms of the
 288 likelihood function $p(\mathcal{X}|\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})$ and the prior densities $p(\mathcal{L}|\boldsymbol{\theta})$ and $p(\mathcal{S}|\boldsymbol{\theta})$:

$$289 \quad \arg \max_{\mathcal{S}, \mathcal{L}} p(\mathcal{X}|\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) p(\mathcal{L}|\boldsymbol{\theta}) p(\mathcal{S}|\boldsymbol{\theta}).$$

290 We remark that, in the MAP framework, the hyperparameters $\boldsymbol{\theta}$ must be either
 291 pre-specified or estimated prior to the estimation of \mathcal{L} and \mathcal{S} . For a more comprehen-
 292 sive estimation that includes the hyperparameters, the joint maximum a posteriori
 293 (JMAP) estimation is employed:

$$294 \quad (3.5) \quad (\mathcal{S}^\dagger, \mathcal{L}^\dagger, \boldsymbol{\theta}^\dagger) = \arg \max_{\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}} p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}|\mathcal{X}) = \operatorname{argmax}_{\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}} \frac{p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{p(\mathcal{X})}.$$

295 For simplicity, we assume independence among the hyperparameters, allowing us
 296 to express the joint density function of the variables \mathcal{X} , \mathcal{S} , \mathcal{L} , and $\boldsymbol{\theta}$ as:

$$297 \quad p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) = p(\mathcal{X}|\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) p(\mathcal{L}|\boldsymbol{\theta}_3) p(\mathcal{S}|\boldsymbol{\theta}_2) p(\boldsymbol{\theta}_1) p(\boldsymbol{\theta}_2) p(\boldsymbol{\theta}_3).$$

298 In the literature [4, 2, 38, 3, 43], the Gamma distribution is commonly adopted as
 299 a prior for the hyperparameters θ_i ($i = 1, 2, 3$) due to its conjugacy with certain
 300 likelihood functions, which facilitates analytical tractability in Bayesian inference.
 301 However, prior knowledge about the shape and scale parameters (a_{θ_i} and b_{θ_i}) of the
 302 Gamma distribution is often lacking. To address this, a non-informative prior can be
 303 implemented by adopting an improper uniform prior distribution, defined as $p(x) \propto 1$
 304 for $x \in \{\theta_i \mid i = 1, 2, 3\}$ over the positive real line [43, 15]. Hence we have

$$305 \quad (3.6) \quad p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \propto \theta_1^{n/2} \theta_2^n \theta_3^n \exp \left(-\frac{\theta_1}{2} \|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2 - \theta_2 \|\mathcal{S}\|_1 - \theta_3 \|\mathcal{L}\|_* \right).$$

306 **4. Variational Bayesian inference.** In Bayesian modeling, inference involves
 307 conditioning on observed data \mathcal{X} and estimating the posterior density $p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}|\mathcal{X})$.
 308 This task can be tackled via Markov Chain Monte Carlo (MCMC) sampling or op-
 309 timization approaches. However, in this paper, we adopt variational inference as the
 310 methodological framework to approximate the latent variables \mathcal{L} and \mathcal{S} , along with
 311 the parameter vector $\boldsymbol{\theta}$.

312 **4.1. Kullback-Leibler divergence and evidence lower bound.** The central
 313 goal of variational inference is to identify an optimal variational density $q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})$ that
 314 closely approximates the posterior density $p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}|\mathcal{X})$, thereby facilitating efficient
 315 inference on the latent variables and parameters [8].

316 Within this framework, we define a family of densities \mathcal{Q} over the latent variables
 317 and parameters. Each candidate $q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \in \mathcal{Q}$ represents an approximation to the
 318 true posterior. The optimal candidate is chosen by minimizing the Kullback-Leibler
 319 (KL) divergence from the true posterior:

$$320 \quad (4.1) \quad \begin{aligned} \text{KL}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \| p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}|\mathcal{X})) &= \int_{\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}} q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \log \left(\frac{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}|\mathcal{X})} \right) d\mathcal{L} d\mathcal{S} d\boldsymbol{\theta} \\ &= \mathbb{E}_{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})} \left[\log \left(\frac{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}|\mathcal{X})} \right) \right]. \end{aligned}$$

321 The variational inference task simplifies to finding the variational density $q^\dagger(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})$
 322 that minimizes the Kullback-Leibler (KL) divergence from the variational density to

323 the true posterior:

324
$$q^\dagger(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) = \operatorname{argmin}_{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \in \mathcal{Q}} \text{KL}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \parallel p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta} | \mathcal{X})).$$

325 According to (3.5), the posterior density $p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta} | \mathcal{X})$ is the ratio between $p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})$
 326 and $p(\mathcal{X})$. The density $p(\mathcal{X})$ involves integrating out the latent variables from the
 327 joint density. Unfortunately, this integration is often intractable, rendering direct
 328 computation of the posterior challenging. Expand the condition density, we have

329
$$\text{KL}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \parallel p(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta} | \mathcal{X})) = -\mathbb{E}_{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})} \left[\log \left(\frac{p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})} \right) \right] + \log p(\mathcal{X}).$$

330 The second term is independent of latent variables and hyperparameters; therefore,
 331 it's just a constant in the minimization problem, and we can ignore this term. To
 332 circumvent the intractability, we optimize an alternative objective that is equivalent
 333 to the KL divergence up to an additive constant. Specifically, we minimize the first
 334 term on the right-hand side of the equation, which constitutes the evidence lower
 335 bound (ELBO), denoted $\mathcal{J}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}))$

336 (4.2)
$$\mathcal{J}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})) \equiv \mathbb{E}_{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})} \left[\log \left(\frac{p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})} \right) \right].$$

337 This is

338 (4.3)
$$q^\dagger(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) = \operatorname{argmax}_{q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) \in \mathcal{Q}} \mathcal{J}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta})).$$

339 **4.2. Mean-field variational family.** To fully specify the optimization prob-
 340 lem, we now consider the variational family. The complexity of this family directly
 341 impacts the difficulty of the optimization, with more intricate families posing greater
 342 challenges.

343 In this paper, we concentrate on the mean-field variational family, which assumes
 344 mutual independence among the latent variables, with each variable being governed
 345 by its individual variational factor [8]. This assumption simplifies the variational
 346 density into a factorized form:

347
$$q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) = q(\mathcal{L})q(\mathcal{S}) \prod_{i=1}^3 q(\theta_i).$$

348 The selection of variational densities $q(\mathcal{L})$, $q(\mathcal{S})$, and $q(\theta_i)$ is importance. For
 349 $q(\mathcal{L})$ and $q(\mathcal{S})$, we adopt normal distributions due to their versatility and analytical
 350 convenience. The choice of the variational density $q(\theta_i)$ as a Gamma distribution is
 351 motivated by the conjugacy properties derived from the likelihood function (Eq. 3.1)
 352 and the prior distributions specified in Eqs. (3.2) and (3.4). These indicate that the
 353 posterior distribution of θ_1 and the conditional posteriors of θ_i for $i = 2, 3$ follow
 354 Gamma distributions. Since the Gamma distribution is conjugate to itself, selecting
 355 $q(\theta_i)$ as a Gamma density ensures compatibility with the posterior, facilitating efficient
 356 variational inference.

357 Let \mathcal{Q}_G denote the set of Gamma densities for the hyperparameters θ_i ($i =$
 358 $1, 2, 3$), and \mathcal{Q}_N denote the set of multivariate normal densities over the tensor space
 359 $\mathbb{R}^{n_1 \times n_2 \times n_3}$. The overall variational family \mathcal{Q} can be expressed as the Cartesian prod-
 360 uct of these sets: $\mathcal{Q} = \mathcal{Q}_N \times \mathcal{Q}_N \times \mathcal{Q}_G$.

361 **4.3. Laplacian approximation.** In (3.6), the non-quadratic properties inher-
 362 ent in both the ℓ_1 norm of \mathcal{S} , which represents the sum of the absolute values of all
 363 elements, and the tensor nuclear norm of \mathcal{L} , which is the weighted sum of its singu-
 364 lar values, pose significant obstacles for direct optimization within standard density
 365 families. These non-quadraticities complicate direct inference procedures, rendering
 366 them computationally intractable. To address this, we utilize the Laplace approxima-
 367 tion method, involving mean calculation, variance estimation, and density function
 368 construction, to approximate the density with a Gaussian distribution form.

369 Here, we consider a general density function $q(x)$ with a single random variable
 370 x and simplify (4.3) as

$$371 \quad q^\dagger(x) = \operatorname{argmax}_{q(x) \in \mathcal{Q}_N} \int_{\Omega} q(x) \log \frac{p(x)}{q(x)} dx.$$

372 where \mathcal{Q}_N is the set of all the density functions for the Gaussian distribution. Ac-
 373 cording to Gibbs' inequality, for any two probability distributions $q(x)$ and $p(x)$ over
 374 a domain Ω , the following holds:

$$375 \quad \int_{\Omega} q(x) \log \frac{p(x)}{q(x)} dx \leq 0,$$

376 with equality achieved if and only if $q(x) = p(x)$, implying identical means and vari-
 377 ances. However, the non-quadratic nature of the $\log p(x)$ term complicates the direct
 378 estimation of $q(x)$ in practice. To address this, we employ the Laplacian approxima-
 379 tion method to estimate $q(x)$. Since $q(x)$ is Gaussian, we have the following
 380 properties:

381 (1) First-Order Condition for the Mean (\mathbf{E}_x): The gradient of $\log q(x)$ evaluated at
 382 \mathbf{E}_x is zero, implying \mathbf{E}_x is a maximum of $\log p(x)$.
 383 (2) Second-Order Condition for the Variance (σ_x^2): The negative of the Hessian
 384 (second-order derivative) of $\log q(x)$ evaluated at \mathbf{E}_x equals the reciprocal of the
 385 variance. However, since we directly approximate $p(x)$, we use the Hessian of
 386 $\log p(x)$ evaluated at \mathbf{E}_x to estimate σ_x^2 :

$$387 \quad \nabla^2 \log p(x)|_{x=\mathbf{E}_x} = -\frac{1}{\sigma_x^2}.$$

388 We now detail the estimation of \mathbf{E}_x and σ_x^2 based on these conditions for some specific
 389 density function $p(x)$.

390 **4.3.1. Absolute value function.** The ℓ_1 norm of \mathcal{S} , as the sum of absolute
 391 element values, necessitates approximating the distribution of absolute values to en-
 392 able effective optimization within Gaussian density families. Given the log-probability
 393 density function $\log p(x) \propto -\frac{1}{2}(x-b)^2 - \beta|x|$, the first step of Laplace approxima-
 394 tion involves computing the mean \mathbf{E}_x of $q(x)$, which corresponds to the maximum of
 395 $\log p(x)$:

$$396 \quad \mathbf{E}_x = \operatorname{argmax}_x \log p(x) = \operatorname{argmin}_x \frac{1}{2}(x-b)^2 + \beta|x|.$$

397 In the paper, we utilize the sans serif font \mathbf{E} accompanied by a subscripted variable x
 398 to denote the expectation of a random variable x . The solution is given by:

$$399 \quad \mathbf{E}_x = \begin{cases} b - \beta \operatorname{sign}(b), & \text{if } |b| > \beta \\ 0, & \text{otherwise.} \end{cases}$$

400 Proceeding to the second stage, we estimate the variance, σ^2 . When $\mathbf{E}_x = 0$, we
 401 directly set $\sigma_x^2 = 0$. For non-zero \mathbf{E}_x , we leverage the inequality $|x| \leq \frac{x^2}{2|y|} + \frac{|y|}{2}$ with
 402 equality at $x = y \neq 0$. By setting $y = |\mathbf{E}_x|$, this facilitates a lower bound on $\log p(x)$:

403
$$\log p(x) \geq -\frac{1}{2}(x - b)^2 - \frac{\beta}{2|\mathbf{E}_x|}x^2 + \text{const.}$$

404 To simplify the variance estimation process, we exclude the constant term and mean
 405 shift from consideration, as they do not impact the variance calculation. Approximat-
 406 ing the second-order derivatives of this lower bound around \mathbf{E}_x , we derive the variance
 407 estimate:

408
$$\sigma_x^2 \approx \left(1 + \frac{\beta}{|\mathbf{E}_x|}\right)^{-1} = \frac{|\mathbf{E}_x|}{|\mathbf{E}_x| + \beta}.$$

409 Ultimately, utilizing the estimated mean \mathbf{E}_x and variance σ_x^2 , we construct the optimal
 410 Gaussian density approximation:

411 (4.4)
$$q(x) = \mathcal{N}\left(\mathbf{E}_x, \frac{|\mathbf{E}_x|}{|\mathbf{E}_x| + \beta}\right).$$

412 Given the approximation $|x| \approx \frac{1}{2|\mathbf{E}_x|}x^2 + \frac{|\mathbf{E}_x|}{2}$ at $x = \mathbf{E}_x$, we derive the expectation of
 413 the absolute value of x :

414 (4.5)
$$\mathbf{E}|x| = |\mathbf{E}_x| + \frac{1}{2(|\mathbf{E}_x| + \beta)}.$$

415 **4.3.2. Nuclear norm.** The Laplace approximation approach does not directly
 416 extend the Gaussian density approximation of absolute functions to the nuclear norm
 417 of matrices, given its intrinsic nature as a sum of singular values rather than element-
 418 wise absolute values. When considering a density function incorporating the weighted
 419 nuclear norm of a matrix $\mathbf{X} \in \mathbb{R}^{n_1 \times n_2}$, we assume $n_1 \leq n_2$ for generality. The targeted
 420 density is formulated as:

421
$$p(\mathbf{X}) \propto \exp\left(-\frac{\alpha}{2}\|\mathbf{X} - \mathbf{A}\|_F^2 - \beta\|\mathbf{X}\|_*\right),$$

422 where \mathbf{A} is a given matrix, β is a regularization parameter, and $\mathbf{w} \in \mathbb{R}^{n_2}$ represents
 423 the vector of weights. We find the density $q(\mathbf{X})$ that maximizes:

424
$$q(\mathbf{X}) = \arg \max_{q(\mathbf{X}) \in \mathcal{Q}_N} \int q(\mathbf{X}) \log \frac{p(\mathbf{X})}{q(\mathbf{X})} d\mathbf{X}.$$

425 Applying the Laplacian approximation method, the mean $\mathbf{E}_\mathbf{X}$ of $q(\mathbf{X})$ is obtained by
 426 solving:

427
$$\mathbf{E}_\mathbf{X} = \arg \min_{\mathbf{X}} \left(\frac{\alpha}{2} \|\mathbf{X} - \mathbf{A}\|_F^2 + \beta \|\mathbf{X}\|_* \right).$$

428 Given the SVD of \mathbf{A} as $\mathbf{A} = \mathbf{U}_\mathbf{A} \mathbf{D}_\mathbf{A} \mathbf{V}_\mathbf{A}^T$, the minimizer $\mathbf{E}_\mathbf{X}$ for the aforementioned
 429 problem can be formulated as [10]:

430
$$\mathbf{E}_\mathbf{X} = \mathbf{U}_\mathbf{A} \max\{\mathbf{D}_\mathbf{A} - \frac{\beta}{\alpha} \mathbf{I}, 0\} \mathbf{V}_\mathbf{A}^T,$$

431 where $\max\{\cdot, 0\}$ denotes an element-wise maximum operation applied to the diagonal
 432 matrix. To compute the covariance of \mathbf{X} , we introduce an inequality derived from
 433 [31]:

434
$$\|\mathbf{X}\|_* \leq \frac{1}{2} \text{Tr}(\omega(\mathbf{Y}) \mathbf{X} \mathbf{X}^T) + \frac{1}{2} \|\mathbf{Y}\|_*,$$

435 where $\omega(\mathbf{Y}) = (\mathbf{Y}\mathbf{Y}^T)^{-1/2}$, and equality holds when $\mathbf{X} = \mathbf{Y}$. Hence we obtain

436 (4.6)
$$\|\mathbf{X}\|_* \approx \frac{1}{2} \text{Tr}(\omega(\mathbf{E}_\mathbf{X}) \mathbf{X} \mathbf{X}^T) + \frac{1}{2} \|\mathbf{E}_\mathbf{X}\|_*.$$

437 Considering the j -th columns of \mathbf{X} and \mathbf{A} denoted by $\mathbf{X}_{:j}$ and $\mathbf{A}_{:j}$ respectively, we
438 bound the log-likelihood $\log p(\mathbf{X})$ as follows:

439
$$\log p(\mathbf{X}) \geq - \sum_j \left(\frac{\alpha}{2} \|\mathbf{X}_{:j} - \mathbf{A}_{:j}\|_2^2 + \frac{\beta}{2} \mathbf{X}_{:j}^T \omega(\mathbf{E}_\mathbf{X}) \mathbf{X}_{:j} \right) + \text{const.}$$

440 Evaluating the second-order derivatives of the lower bound with respect to $\mathbf{X}_{:j}$ yields
441 the inverse covariance matrix $\Sigma_{\mathbf{X}_{:j}}^{-1} = \alpha \mathbf{I} + \beta \omega(\mathbf{E}_\mathbf{X})$. Let $\mathbf{E}_\mathbf{X} = \mathbf{U} \mathbf{D} \mathbf{V}^T$ be the skinny
442 SVD of $\mathbf{E}_\mathbf{X}$, we have $\omega(\mathbf{E}_\mathbf{X}) = \mathbf{U} \mathbf{D}^{-1} \mathbf{U}^T$. Hence we have

443 (4.7)
$$\Sigma_{\mathbf{X}_{:j}} = \mathbf{U} \mathbf{D} (\alpha \mathbf{D} + \beta \mathbf{I})^{-1} \mathbf{U}^T.$$

444 Finally, the optimal density approximation $q(\mathbf{X})$ is expressed as:

445 (4.8)
$$q(\mathbf{X}) = \prod_j \mathcal{N}(\mathbf{X}_{:j} | \mathbf{E}_{\mathbf{X}_{:j}}, \mathbf{U} \mathbf{D} (\alpha \mathbf{D} + \beta \mathbf{I})^{-1} \mathbf{U}^T).$$

446 We have

447 (4.9)
$$\mathbb{E} \|\mathbf{X}\|_F^2 = \|\mathbf{E}_\mathbf{X}\|_F^2 + \sum_j \text{Tr}(\Sigma_{\mathbf{X}_{:j}}) = \|\mathbf{E}_\mathbf{X}\|_F^2 + n_2 \sum_i \frac{\mathbf{D}_i}{\alpha \mathbf{D}_i + \beta}.$$

448 According to the approximation of the nuclear norm in (4.6), we have

449 (4.10)
$$\mathbb{E} \|\mathbf{X}\|_* = \frac{1}{2} \sum_j \mathbb{E} [\mathbf{X}_{:j}^T \omega(\mathbf{E}_\mathbf{X}) \mathbf{X}_{:j}] + \frac{1}{2} \|\mathbf{E}_\mathbf{X}\|_*.$$

450 Let \mathbf{D}_i be the i -th singular values of $\mathbf{E}_\mathbf{X}$. Then we have

451 (4.11)
$$\mathbb{E} \|\mathbf{X}\|_* = \|\mathbf{E}_\mathbf{X}\|_* + \frac{n_2}{2} \text{Tr}((\alpha \mathbf{D} + \beta \mathbf{I})^{-1}) = \|\mathbf{E}_\mathbf{X}\|_* + \frac{n_2}{2} \sum_i \frac{1}{\alpha \mathbf{D}_i + \beta}.$$

452 **4.4. Coordinate ascent variational inference.** In order to maximize the
453 ELBO $\mathcal{J}(q(\mathcal{S}, \mathcal{L}, \boldsymbol{\theta}))$, we apply coordinate ascent variational inference (CAVI) [8, 47].
454 Starting from an initial density $(q_0(\boldsymbol{\theta}), q_0(\mathcal{L}), q_0(\mathcal{S}))$, the densities of \mathcal{S} , \mathcal{L} and $\boldsymbol{\theta}$ are
455 updated as follows:

456 (4.12)
$$q_\ell(\mathcal{S}) = \underset{q(\mathcal{S}) \in \mathcal{Q}_{\mathcal{N}}}{\text{argmax}} \mathcal{J}(q(\mathcal{S}) q_{\ell-1}(\mathcal{L}) q_{\ell-1}(\boldsymbol{\theta})),$$

457 (4.13)
$$q_\ell(\mathcal{L}) = \underset{q(\mathcal{L}) \in \mathcal{Q}_{\mathcal{N}}}{\text{argmax}} \mathcal{J}(q_\ell(\mathcal{S}) q(\mathcal{L}) q_{\ell-1}(\boldsymbol{\theta})),$$

458 (4.14)
$$q_\ell(\boldsymbol{\theta}) = \underset{q(\boldsymbol{\theta}) \in \mathcal{Q}_{\mathcal{G}}}{\text{argmax}} \mathcal{J}(q_\ell(\mathcal{S}) q_\ell(\mathcal{L}) q(\boldsymbol{\theta})),$$

459 where $q_\ell(\boldsymbol{\theta})$, $q_\ell(\mathcal{L})$, $q_\ell(\mathcal{S})$ refer to the variational densities obtained in the ℓ -th iteration.

460 **4.4.1. The density $q_\ell(\mathcal{S})$.** In accordance with (4.2), we formulate the optimization
 461 problem as maximizing the evidence lower bound (ELBO) with respect to the
 462 variational distribution $q(\mathcal{S})$:

$$463 \quad (4.15) \quad \underset{q(\mathcal{S}) \in \mathcal{Q}_{\mathcal{N}}}{\operatorname{argmax}} \mathcal{J}(q(\mathcal{S}), q_{\ell-1}(\mathcal{L}, \boldsymbol{\theta})) = \underset{q(\mathcal{S}) \in \mathcal{Q}_{\mathcal{N}}}{\operatorname{argmax}} \int q(\mathcal{S}) \mathbb{E}_{q_{\ell-1}(\mathcal{L}, \boldsymbol{\theta})} \log \frac{p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{q(\mathcal{S})} d\mathcal{S}.$$

464 Given the joint density distribution as defined in (3.6), we can express the expectation
 465 term within the ELBO as:

$$466 \quad \mathbb{E}_{q_{\ell-1}(\mathcal{L}, \boldsymbol{\theta})} [\log p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})] \\ 467 \quad = - \sum_{ijk} \left(\frac{\mathbb{E}_{\theta_1}^{\ell-1}}{2} \left(\mathcal{X}_{ijk} - \mathbb{E}_{\mathcal{L}_{ijk}}^{\ell-1} - \mathcal{S}_{ijk} \right)^2 + \mathbb{E}_{\theta_2}^{\ell-1} |\mathcal{S}_{ijk}| \right) + \text{const},$$

468 where const is a constant independent of \mathcal{S} . According to the discussion in Section
 469 4.3.1, the mean of \mathcal{S}_{ijk} is given by

$$470 \quad \mathbb{E}_{\mathcal{S}}^{\ell} = \underset{\mathcal{S}}{\operatorname{argmin}} \frac{\mathbb{E}_{\theta_1}^{\ell-1}}{2} \|\mathcal{X} - \mathbb{E}_{\mathcal{L}}^{\ell-1} - \mathcal{S}\|_F^2 + \mathbb{E}_{\theta_2}^{\ell-1} \|\mathcal{S}\|_1.$$

471 It is known that the minimizer is the well-known soft threshold:

$$472 \quad (4.16) \quad \mathbb{E}_{\mathcal{S}_{ijk}}^{\ell} = \begin{cases} \mathcal{X}_{ijk} - \mathbb{E}_{\mathcal{L}_{ijk}}^{\ell-1} - \frac{\mathbb{E}_{\theta_2}^{\ell-1}}{\mathbb{E}_{\theta_1}^{\ell-1}}, & \text{if } \mathcal{X}_{ijk} - \mathbb{E}_{\mathcal{L}_{ijk}}^{\ell-1} \geq \frac{\mathbb{E}_{\theta_2}^{\ell-1}}{\mathbb{E}_{\theta_1}^{\ell-1}}, \\ \mathcal{X}_{ijk} - \mathbb{E}_{\mathcal{L}_{ijk}}^{\ell-1} + \frac{\mathbb{E}_{\theta_2}^{\ell-1}}{\mathbb{E}_{\theta_1}^{\ell-1}}, & \text{if } \mathcal{X}_{ijk} - \mathbb{E}_{\mathcal{L}_{ijk}}^{\ell-1} \leq -\frac{\mathbb{E}_{\theta_2}^{\ell-1}}{\mathbb{E}_{\theta_1}^{\ell-1}}, \\ 0, & \text{others.} \end{cases}$$

473 Applying (4.4), the variance of \mathcal{S}_{ijk} is given by

$$474 \quad \Sigma_{\mathcal{S}_{ijk}}^{\ell} = \frac{\mathbb{E}_{\theta_1}^{\ell-1} |\mathbb{E}_{\mathcal{S}_{ijk}}^{\ell}|}{\mathbb{E}_{\theta_1}^{\ell-1} |\mathbb{E}_{\mathcal{S}_{ijk}}^{\ell}| + \mathbb{E}_{\theta_2}^{\ell-1}}.$$

475 Then the density function of $q(\mathcal{S})$ is given:

$$476 \quad (4.17) \quad q_{\ell}(\mathcal{S}_{ijk}) = \mathcal{N}(\mathcal{S} | \mathbb{E}_{\mathcal{S}_{ijk}}^{\ell}, \Sigma_{\mathcal{S}_{ijk}}^{\ell}).$$

477 **4.4.2. The density $q_\ell(\mathcal{L})$.** In accordance with (4.2), we formulate the optimization
 478 problem as maximizing the evidence lower bound (ELBO) with respect to the
 479 variational distribution $q(\mathcal{L})$:

$$480 \quad (4.18) \quad \underset{q(\mathcal{L}) \in \mathcal{Q}_{\mathcal{N}}}{\operatorname{argmax}} \mathcal{J}(q_{\ell}(\mathcal{S}), q(\mathcal{L}), q_{\ell-1}(\boldsymbol{\theta})) = \underset{q(\mathcal{L}) \in \mathcal{Q}_{\mathcal{N}}}{\operatorname{argmax}} \int q(\mathcal{L}) \mathbb{E}_{q_{\ell}(\mathcal{S}) q_{\ell-1}(\boldsymbol{\theta})} \log \frac{p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{q(\mathcal{L})} d\mathcal{L}.$$

481 Given the joint density distribution as defined in (3.6), we can express the expectation
 482 term within the ELBO as:

$$483 \quad \mathbb{E}_{q_{\ell}(\mathcal{S}) q_{\ell-1}(\boldsymbol{\theta})} [\log p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})] = - \left(\frac{\mathbb{E}_{\theta_1}^{\ell-1}}{2} \|\mathcal{L} - (\mathcal{X} - \mathbb{E}_{\mathcal{S}}^{\ell})\|_F^2 + \mathbb{E}_{\theta_3}^{\ell-1} \|\mathcal{L}\|_* \right) + \text{const} \\ = - \left(\frac{\mathbb{E}_{\theta_1}^{\ell-1}}{2n_3} \|\bar{\mathcal{L}} - (\bar{\mathcal{X}} - \bar{\mathbb{E}}_{\mathcal{S}}^{\ell})\|_F^2 + \frac{\mathbb{E}_{\theta_3}^{\ell-1}}{n_3} \|\bar{\mathcal{L}}\|_* \right) + \text{const}$$

484 According to the discussion in Section 4.3.2, the mean of \mathcal{L} is given by

485
$$\mathbf{E}_{\mathcal{L}}^{\ell} = \operatorname{argmin}_{\mathcal{L}} \frac{\mathbf{E}_{\theta_1}^{\ell-1}}{2} \|\mathcal{X} - \mathcal{L} - \mathbf{E}_{\mathcal{S}}^{\ell}\|_F^2 + \mathbf{E}_{\theta_3}^{\ell-1} \|\mathcal{L}\|_*.$$

486 This subproblem is to solve a proximal operator of the tensor nuclear norm, which
487 has a closed-form solution as tensor singular value thresholding (t-SVT) [33]. Let the
488 SVD of $\mathcal{X} - \mathbf{E}_{\mathcal{S}}^{\ell}$ is given by $\mathcal{X} - \mathbf{E}_{\mathcal{S}}^{\ell} = \mathcal{U}^{\ell} * \mathcal{D}^{\ell} * \mathcal{V}^{\ell T}$. The update of $\mathbf{E}_{\mathcal{L}}^{\ell}$ is

489 (4.19)
$$\mathbf{E}_{\mathcal{L}}^{\ell} = \mathcal{U}^{\ell} * \mathcal{D}_{\tau}^{\ell} * \mathcal{V}^{\ell T},$$

490 where $\mathcal{D}_{\tau}^{\ell}$ is an $n_1 \times n_2 \times n_3$ tensor that satisfies $\overline{\mathcal{D}}_{\tau}^{\ell} = \max\{\overline{\mathcal{D}}^{\ell} - \tau, 0\}$ with $\tau =$
491 $\mathbf{E}_{\theta_1}^{\ell-1} / \mathbf{E}_{\theta_3}^{\ell-1}$. Recall that we adopt the notation of an overline $\overline{\mathcal{A}}$ to signify the applica-
492 tion of the DFT to the tensor \mathcal{A} specifically along its third dimension.

493 We apply (4.7) and then obtain the covariance matrix of the vector $\overline{\mathcal{L}}_{:jk}$

494
$$\Sigma_{\overline{\mathcal{L}}_{:jk}}^{\ell} = n_3 \overline{\mathcal{U}}_{::k}^{\ell} \overline{\mathcal{D}}_{\tau::k}^{\ell} \left(\mathbf{E}_{\theta_1}^{\ell-1} \overline{\mathcal{D}}_{\tau::k}^{\ell} + \mathbf{E}_{\theta_3}^{\ell-1} \mathbf{I} \right)^{-1} \overline{\mathcal{U}}_{::k}^{\ell T}.$$

495 Thus, we construct the density function and parameterize a normal density $q(\overline{\mathcal{L}})$ as:

496 (4.20)
$$q_{\ell}(\overline{\mathcal{L}}) = \prod_{jk} \mathcal{N} \left(\overline{\mathcal{L}}_{:jk} | \mathbf{E}_{\overline{\mathcal{L}}_{:jk}}^{\ell}, \Sigma_{\overline{\mathcal{L}}_{:jk}}^{\ell} \right).$$

497 **4.4.3. The density $q_{\ell}(\boldsymbol{\theta})$.** In accordance with (4.2), we frame the optimiza-
498 tion problem as maximizing the evidence lower bound (ELBO) with respect to the
499 variational distribution $q(\boldsymbol{\theta})$,

500 (4.21)
$$\operatorname{argmax}_{q(\boldsymbol{\theta}) \in \mathcal{Q}_{\mathcal{G}}} \mathcal{J}(q_{\ell}(\mathcal{S}), q_{\ell}(\mathcal{L}), q(\boldsymbol{\theta})) = \operatorname{argmax}_{q(\boldsymbol{\theta}) \in \mathcal{Q}_{\mathcal{G}}} \int q(\boldsymbol{\theta}) \mathbb{E}_{q_{\ell}(\mathcal{S}, \mathcal{L})} \log \frac{p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta},$$

501 where $\mathcal{Q}_{\mathcal{G}}$ is the set of all the density functions for the Gamma distribution. By
502 taking the partial derivative of the objective function in (4.21) with respect to $q(\boldsymbol{\theta})$,
503 and letting it be equal to 0, we obtain that the optimal $q(\boldsymbol{\theta})$ is proportional to

504
$$q(\boldsymbol{\theta}) \propto \exp \mathbb{E}_{q_{\ell}(\mathcal{S}, \mathcal{L})} \log p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})$$

505 with

506
$$\mathbb{E}_{q_{\ell}(\mathcal{S}, \mathcal{L})} \log p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta}) = -\frac{\theta_1}{2} \mathbb{E}_{q_{\ell}(\mathcal{S}, \mathcal{L})} \|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2 - \theta_2 \mathbb{E}_{q_{\ell}(\mathcal{S})} \|\mathcal{S}\|_1$$

507
$$- \theta_3 \mathbb{E}_{q_{\ell}(\mathcal{L})} \|\mathcal{L}\|_* + \frac{n}{2} \log \theta_1 + n \log \theta_2 + n \log \theta_3 + \text{const.}$$

508 Since $q(\boldsymbol{\theta}) = \prod_{i=1}^3 q(\theta_i)$ is assumed to factorize due to the independence of the model
509 components, we derive the form of each $q(\theta_i)$ by comparing the coefficients of θ_i and
510 $\log \theta_i$ with the log-density of a Gamma distribution

511
$$\log q(\boldsymbol{\theta}) = \sum_{i=1}^3 ((a_{\theta_i}^{\ell} - 1) \log \theta_i - b_{\theta_i}^{\ell} \theta_i) + \text{const},$$

512 where $a_{\theta_i}^{\ell}$ and $b_{\theta_i}^{\ell}$ are the shape and rate parameters, respectively. By comparing the
513 coefficients in $\mathbb{E}_{q_{\ell}(\mathcal{S}, \mathcal{L})} \log p(\mathcal{X}, \mathcal{S}, \mathcal{L}, \boldsymbol{\theta})$ with those of a Gamma density $(\mathcal{G}(x|a, b) \propto$

514 $x^{a-1} \exp(-bx)$), we can infer the shape $a_{\theta_i}^\ell$ and scale $b_{\theta_i}^\ell$ parameters for each θ_i .
 515 Consequently, the shape parameters are given by:

516
$$a_{\theta_1}^\ell = \frac{n}{2} + 1, \quad a_{\theta_2}^\ell = n + 1, \quad a_{\theta_3}^\ell = n + 1.$$

517 While the scale parameters are expressed as expectations over the variational distri-
 518 butions $q_\ell(\mathcal{S})$ and $q_\ell(\mathcal{L})$, as defined in the following system of equations:

519 (4.22)
$$\begin{cases} b_{\theta_1}^\ell = \frac{1}{2} \mathbb{E}_{q_\ell(\mathcal{L})q_\ell(\mathcal{S})} \left[\|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2 \right], \\ b_{\theta_2}^\ell = \mathbb{E}_{q_\ell(\mathcal{S})} \|\mathcal{S}\|_1, \\ b_{\theta_3}^\ell = \mathbb{E}_{q_\ell(\mathcal{L})} \|\mathcal{L}\|_*. \end{cases}$$

520 The computation for $b_{\theta_1}^\ell$ involves the expectations of both $\|\mathcal{S}\|_F^2$ and $\|\mathcal{L}\|_F^2$. It is
 521 obvious that

522
$$\mathbb{E}_{q_\ell(\mathcal{S})} \|\mathcal{S}\|_F^2 = \sum_{ijk} \mathbb{E}_{q_\ell} |\mathcal{S}_{ijk}|^2 = \sum_{ijk} \left(\left| \mathbb{E}_{\mathcal{S}_{ijk}}^\ell \right|^2 + \Sigma_{\mathcal{S}_{ijk}}^\ell \right).$$

523 According to (4.9), we have

524
$$\mathbb{E}_{q_\ell(\mathcal{L})} \|\mathcal{L}\|_F^2 = \frac{1}{n_3} \sum_{j,k} \mathbb{E}_{q_\ell(\bar{\mathcal{L}})} \|\bar{\mathcal{L}}_{:jk}\|_F^2 = \frac{1}{n_3} \sum_{j,k} \left(\left\| \mathbb{E}_{\bar{\mathcal{L}}_{:jk}}^\ell \right\|_F^2 + \text{Tr} \left(\Sigma_{\bar{\mathcal{L}}_{:jk}}^\ell \right) \right).$$

525 Hence we have

526
$$\mathbb{E}_{q_\ell(\mathcal{L})q_\ell(\mathcal{S})} (\|\mathcal{X} - \mathcal{S} - \mathcal{L}\|_F^2) = \|\mathcal{X} - \mathbb{E}_{\mathcal{L}}^\ell - \mathbb{E}_{\mathcal{S}}^\ell\|_F^2 + \frac{1}{n_3} \sum_{j,k} \text{Tr} \left(\Sigma_{\bar{\mathcal{L}}_{:jk}}^\ell \right) + \sum_{ijk} \Sigma_{\mathcal{S}_{ijk}}^\ell.$$

527 For the expectation of $\|\mathcal{S}\|_1$, according to (4.5), we have

528
$$\mathbb{E}_{q_\ell(\mathcal{S})} \|\mathcal{S}\|_1 = \sum_{ijk} \mathbb{E}_{q_\ell(\mathcal{S})} |\mathcal{S}_{ijk}| = \|\mathbb{E}_{\mathcal{S}}^\ell\|_1 + \frac{1}{2} \sum_{ijk} \left(\mathbb{E}_{\theta_1}^\ell |\mathbb{E}_{\mathcal{S}_{ijk}}^\ell| + \mathbb{E}_{\theta_2}^\ell \right)^{-1}.$$

529 For the expectation of the nuclear norm $\|\mathcal{L}\|_*$, it is the arithmetic mean of each slice
 530 $\bar{\mathcal{L}}_{::k}$ of the tensor \mathcal{L} . Hence we need to evaluate $\mathbb{E}_{q_\ell(\bar{\mathcal{L}}_{::k})} \|\bar{\mathcal{L}}_{::k}\|_*$. According to (4.11),
 531 we have

532
$$\mathbb{E}_{q_\ell(\bar{\mathcal{L}}_{::k})} \|\bar{\mathcal{L}}_{::k}\|_* = \left\| \mathbb{E}_{\bar{\mathcal{L}}_{::k}}^\ell \right\|_* + \frac{n_2 n_3}{2} \text{Tr} \left(\left(\mathbb{E}_{\theta_1}^{\ell-1} \bar{\mathcal{D}}_{\tau::k}^\ell + \mathbb{E}_{\theta_3}^{\ell-1} \mathbf{I} \right)^{-1} \right).$$

533 Hence

534
$$\mathbb{E}_{q_\ell(\mathcal{L})} \|\mathcal{L}\|_* = \|\mathbb{E}_{\mathcal{L}}^\ell\|_* + \frac{n_2}{2} \sum_k \text{Tr} \left(\left(\mathbb{E}_{\theta_1}^{\ell-1} \bar{\mathcal{D}}_{\tau::k}^\ell + \mathbb{E}_{\theta_3}^{\ell-1} \mathbf{I} \right)^{-1} \right).$$

535 Now, we focus on the expectation of the nuclear norm $\|\mathcal{L}\|_*$, which requires evaluating
 536 $\mathbb{E}_{q_\ell(\bar{\mathcal{L}}_{::k})} \|\bar{\mathcal{L}}_{::k}\|_*$ for each slice $\bar{\mathcal{L}}_{::k}$ of the tensor \mathcal{L} .

537 We summarize the proposed adaptive method in Algorithm 4.1. For simplicity, we
 538 refer to our proposed algorithm for solving the tensor nuclear norm model as VBI-TNN.

539 *Remark 4.1.* According to [7], a general theoretical treatment of analyzing the
 540 convergence of CAVI is missing in the literature. This is due to the lack of tractability
 541 of the updating formula involving unwieldy normalization constants and the technical
 542 challenge of dealing with optimization over infinite-dimensional distributions. Here,
 543 we will empirically show the convergence in Section 5.

Algorithm 4.1 VBI_{TNN} :Variational Bayesian inference for the TNN-based TRPCA.

1: **Initialization:** $\mathbf{E}_{\theta_1}, \mathbf{E}_{\theta_2}, \mathbf{E}_{\theta_3}, \mathbf{E}_{\mathcal{L}}^0, \mathbf{E}_{\mathcal{S}}^0, \boldsymbol{\Sigma}_{\mathcal{L}}^0, \boldsymbol{\Sigma}_{\mathcal{X}}^0$
2: Let $a_{\theta_1} = \frac{n}{2} + 1$, $a_{\theta_2} = n + 1$, $a_{\theta_3} = n + 1$.
3: **while** $\ell \leq \ell_{\text{Max}}$ or not converged **do**
4: $\mathbf{E}_{\mathcal{S}_{ijk}}^\ell = \begin{cases} \mathcal{X}_{ijk} - \mathbf{E}_{\mathcal{L}_{ijk}}^{\ell-1} - \frac{\mathbf{E}_{\theta_2}^{\ell-1}}{\mathbf{E}_{\theta_1}^{\ell-1}}, & \text{if } \mathcal{X}_{ijk} - \mathbf{E}_{\mathcal{L}_{ijk}}^{\ell-1} \geq \frac{\mathbf{E}_{\theta_2}^{\ell-1}}{\mathbf{E}_{\theta_1}^{\ell-1}} \\ \mathcal{X}_{ijk} - \mathbf{E}_{\mathcal{L}_{ijk}}^{\ell-1} + \frac{\mathbf{E}_{\theta_2}^{\ell-1}}{\mathbf{E}_{\theta_1}^{\ell-1}}, & \text{if } \mathcal{X}_{ijk} - \mathbf{E}_{\mathcal{L}_{ijk}}^{\ell-1} \leq -\frac{\mathbf{E}_{\theta_2}^{\ell-1}}{\mathbf{E}_{\theta_1}^{\ell-1}} \\ 0, & \text{others} \end{cases}$
5: Take the SVD of $\mathcal{X} - \mathbf{E}_{\mathcal{S}}^\ell$ as $\mathcal{X} - \mathbf{E}_{\mathcal{S}}^\ell = \mathcal{U}^\ell * \mathcal{D}^\ell * \mathcal{V}^{\ell T}$
6: $\mathbf{E}_{\mathcal{L}}^\ell = \mathcal{U}^\ell * \mathcal{D}_{\tau}^\ell * \mathcal{V}^{\ell T}$
7: $\boldsymbol{\Sigma}_{\mathcal{S}_{ijk}}^\ell = \frac{\mathbf{E}_{\theta_1}^{\ell-1} |\mathbf{E}_{\mathcal{S}_{ijk}}^\ell|}{\mathbf{E}_{\theta_1}^{\ell-1} |\mathbf{E}_{\mathcal{S}_{ijk}}^\ell| + \mathbf{E}_{\theta_2}^{\ell-1}}$, and $\boldsymbol{\Sigma}_{\mathcal{L}_{::k}}^\ell = n_3 \bar{\mathcal{U}}_{::k}^\ell \bar{\mathcal{D}}_{\tau::k}^\ell \left(\mathbf{E}_{\theta_1}^{\ell-1} \bar{\mathcal{D}}_{\tau::k}^\ell + \mathbf{E}_{\theta_3}^{\ell-1} \mathbf{I} \right)^{-1} \bar{\mathcal{U}}_{::k}^{\ell T}$
8: $q(\mathcal{S}_{ijk}) = \mathcal{N}(\mathcal{S} | \mathbf{E}_{\mathcal{S}_{ijk}}^\ell, \boldsymbol{\Sigma}_{\mathcal{S}_{ijk}}^\ell)$ and $q(\bar{\mathcal{L}}) = \prod_{jk} \mathcal{N}(\bar{\mathcal{L}}_{::k} | \mathbf{E}_{\mathcal{L}_{::k}}^\ell, \boldsymbol{\Sigma}_{\mathcal{L}_{::k}}^\ell)$.
9: $b_{\theta_1}^\ell = \|\mathcal{X} - \mathbf{E}_{\mathcal{L}}^\ell - \mathbf{E}_{\mathcal{S}}^\ell\|_F^2 / 2 + \frac{1}{2n_3} \sum_{j,k} \text{Tr}(\boldsymbol{\Sigma}_{\mathcal{L}_{::k}}^\ell) + \sum_{ijk} \boldsymbol{\Sigma}_{\mathcal{S}_{ijk}}^\ell / 2$
10: $b_{\theta_2}^\ell = \|\mathbf{E}_{\mathcal{S}}^\ell\|_1 + \frac{1}{2} \sum_{ijk} \left(\mathbf{E}_{\theta_1}^\ell |\mathbf{E}_{\mathcal{S}_{ijk}}^\ell| + \mathbf{E}_{\theta_2}^\ell \right)^{-1}$
11: $b_{\theta_3}^\ell = \|\mathbf{E}_{\mathcal{L}}^\ell\|_* + \frac{n_2}{2} \sum_k \text{Tr} \left(\left(\mathbf{E}_{\theta_1}^{\ell-1} \bar{\mathcal{D}}_{\tau::k}^\ell + \mathbf{E}_{\theta_3}^{\ell-1} \mathbf{I} \right)^{-1} \right)$
12: $q(\theta_i) = \mathcal{G}(\theta_i | a_{\theta_i}, b_{\theta_i}^\ell)$, and $\mathbf{E}_{\theta_i}^\ell = a_{\theta_i} / b_{\theta_i}^\ell$ $i = 1, 2, 3$
13: **end while**
14: **return** $\mathcal{L} = \mathbf{E}_{\mathcal{L}}^\ell, \mathcal{S} = \mathbf{E}_{\mathcal{S}}^\ell$

544 **4.5. Variational Bayesian inference for weighted tensor nuclear norm.**
545 In this subsection, we consider a variant of the tensor nuclear norm by reweighting the
546 singular values [23, 12]. Note that the standard tensor nuclear norm can be regarded
547 as a special version of the weighted tensor nuclear norm, where the weighting matrix
548 consists of elements that are all equal to one. Formally, for a non-negative matrix
549 $\mathbf{W} \in \mathbb{R}^{\min(n_1, n_2) \times n_3}$ with column vectors $\mathbf{W}_{::k}$, the weighted tensor nuclear norm
550 $\|\mathcal{A}\|_{\mathbf{W}*}$ is defined as:

551
$$\|\mathcal{A}\|_{\mathbf{W}*} = \frac{1}{n_3} \sum_{k=1}^{n_3} \sum_{j=1}^{\min(n_1, n_2)} \mathbf{W}_{jk} \sigma_{jk},$$

552 where σ_{jk} denotes the j -th singular value of the k -th frontal slice $\mathcal{A}_{::k}$ of tensor \mathcal{A} .
553 To incorporate this weighted norm, we modify the robust principal component model
554 (1.2) as follows:

555 (4.23)
$$\min_{\mathcal{S}, \mathcal{L}} \left\{ \frac{\theta_1}{2} \|\mathcal{X} - \mathcal{L} - \mathcal{S}\|_F^2 + \theta_2 \|\mathcal{S}\|_1 + \theta_3 \|\mathcal{L}\|_{\mathbf{W}*} \right\}.$$

556 During the inference of \mathcal{L} , we update the expectation of $\bar{\mathcal{L}}_{::k}$ in (4.20) to:

557 (4.24)
$$\mathbf{E}_{\mathcal{L}}^\ell = \mathcal{U}^\ell * \mathcal{D}_{\mathbf{W}}^\ell * \mathcal{V}^{\ell T},$$

where $\mathcal{D}_{\mathbf{W}}^\ell$ is an $n_1 \times n_2 \times n_3$ tensor that satisfies

$$\mathcal{D}_{\mathbf{W}}^\ell_{::k} = \max \left\{ \bar{\mathcal{D}}_{::k}^\ell - \frac{\mathbf{E}_{\theta_1}^{\ell-1}}{\mathbf{E}_{\theta_3}^{\ell-1}} \text{diag}(\mathbf{W}_{::k}), 0 \right\}.$$

558 Concurrently, the covariance matrix of $\bar{\mathcal{L}}_{::k}$ is adjusted to:

$$559 \quad \Sigma_{\bar{\mathcal{L}}_{::k}}^{\ell} = n_3 \bar{\mathcal{U}}_{::k}^{\ell} \bar{\mathcal{D}}_{::k}^{\ell} (\tau^{\ell}) \left(\mathbf{E}_{\theta_1}^{\ell-1} \bar{\mathcal{D}}_{\tau::k}^{\ell} + \mathbf{E}_{\theta_3}^{\ell-1} \text{diag}(\mathbf{W}_{::k}) \right)^{-1} \bar{\mathcal{U}}_{::k}^{\ell T}.$$

560 Given these updates, the computation of $b_{\theta_3}^{\ell} = \mathbb{E}_{q_{\ell}(\mathcal{L})} \|\mathcal{L}\|_{\mathbf{W}_*}$ necessitates a corre-
561 sponding adjustment:

$$562 \quad \mathbb{E}_{q_{\ell}(\mathcal{L})} \|\mathcal{L}\|_{\mathbf{W}_*} = \|\mathbf{E}_{\mathcal{L}}^{\ell}\|_{\mathbf{W}_*} + \frac{n_2}{2} \sum_{k=1}^{n_3} \text{Tr} \left(\left(\mathbf{E}_{\theta_1}^{\ell-1} \bar{\mathcal{D}}_{\tau::k}^{\ell} + \mathbf{E}_{\theta_3}^{\ell-1} \text{diag}(\mathbf{W}_{::k})^{-1} \right)^{-1} \right).$$

563 Note the subtle yet crucial change in the trace term, ensuring consistency with the
564 weighted norm definition.

565 **5. Experiments.** In this section, we give experimental results to illustrate the
566 performance of the proposed method. All the experiments are implemented using
567 MATLAB (R2022b) on the Windows 10 platform with Intel Core i5-1135G7 2.40
568 GHz and 16 GB of RAM.

569 **5.1. Validation on synthetic data.** Here, we generate each observation \mathcal{X} in
570 $\mathbb{R}^{n_1 \times n_2 \times n_3}$ by combining a low-rank tensor \mathcal{L}_0 and a sparse tensor \mathcal{S}_0 with a Gaussian
571 noise \mathcal{E}_0 in the the same dimensions. The low-rank tensor \mathcal{L}_0 is derived from the t-
572 product of two smaller tensors, namely \mathcal{P} in $\mathbb{R}^{n_1 \times r \times n_3}$ and \mathcal{H} in $\mathbb{R}^{r \times n_2 \times n_3}$, where
573 r is significantly smaller than n_2 . The tubal rank of \mathcal{L}_0 does not exceed r . The
574 entries of \mathcal{P} are independently and identically distributed according to a Gaussian
575 distribution $\mathcal{N}(0, 1/n_1)$, and those of \mathcal{H} follow $\mathcal{N}(0, 1/n_2)$. The sparse tensor \mathcal{S}_0 has
576 entries determined by a Bernoulli process, where each element is either $+1$ or -1 with
577 a probability ρ , and 0 with a probability $1 - 2\rho$. The entries in Gaussian noise \mathcal{E}_0
578 follow $\mathcal{N}(0, \sigma^2)$.

579 We initiate our analysis by examining the convergence properties using a third-
580 order tensor with dimensions $40 \times 40 \times 30$. The rank parameter r is set to 3, with the
581 parameter ρ at 0.1 and the noise level σ at 10^{-2} . The algorithm is allowed a maximum
582 of 100 iterations, starting with initial guesses for \mathcal{L} and \mathcal{S} as \mathcal{X} and \mathcal{O} , respectively.
583 The convergence of the algorithm is monitored using the relative mean square error
584 (RMSE) for \mathcal{L} and \mathcal{S} , defined as $\frac{\|\mathbf{E}_{\mathcal{L}}^{\ell} - \mathbf{E}_{\mathcal{L}}^{\ell-1}\|_F}{\|\mathbf{E}_{\mathcal{L}}^{\ell}\|_F}$ and $\frac{\|\mathbf{E}_{\mathcal{S}}^{\ell} - \mathbf{E}_{\mathcal{S}}^{\ell-1}\|_F}{\|\mathbf{E}_{\mathcal{S}}^{\ell}\|_F}$, respectively. The pro-
585 gression of the objective values, RMSE, and parameters $(\theta_1, \theta_2, \theta_3)$ is plotted across
586 iterations in Figure 1. Due to the nonlinear and nonconvex nature of simultaneously
587 optimizing three tensors and their associated parameters, initial fluctuations in the
588 objective values are observed. However, after approximately ten iterations, the objec-
589 tive values begin to decrease steadily and achieve convergence by the 30th iteration.
590 The parameter values similarly stabilize within these iterations. Both RMSE metrics
591 show a sharp decline, reaching as low as 10^{-4} by the 30th iteration. Given these
592 observations, we establish a stopping criterion where the algorithm terminates when
593 RMSE falls below 10^{-4} or when 50 iterations are reached, whichever occurs first. This
594 criterion ensures efficient and effective convergence to an optimal solution within a
595 reasonable number of iterations.

596 Here, we further evaluate the uncertainty quantification performance of our Vari-
597 ational Bayesian Inference (VBI) algorithm using the same simulated tensor as previ-
598 ously described. Figure 2. presents the mean estimates and 99.73% credible intervals
599 for the recovery of tensor filter $\bar{\mathcal{L}}_{:ij}$ with $i = 20, j = 5, 15, 20$. The mean values
600 consistently align with the ground truth across all fibers, while remarkably narrow

credible intervals (indicated by minimal shading) demonstrate the high precision of our method. This precision is further corroborated by the low parameter standard deviations.

As part of a proof-of-concept study, we employ a partial sum of the tubal nuclear norm [23] as a representative example for a weighted TNN in our numerical experiments. We aim to compare our proposed algorithms, VBI_{TNN} and $\text{VBI}_{\text{PSTNN}}$, against two established methods in tensor rank approximation: TNN [33] and PSTNN [23]. For this comparative analysis, we set the noise levels σ at 10^{-3} , 10^{-2} , and 10^{-1} , the rank r at 3 and 5, and the parameter ρ at 0.01 and 0.1. We assess the performance of these methods by calculating the relative square error between the recovered tensors, $\hat{\mathcal{L}}$ and $\hat{\mathcal{S}}$, and the ground-truth tensors, \mathcal{L}_{GT} and \mathcal{S}_{GT} . These errors are quantified as follows: $\text{error}_{\mathcal{L}} = \frac{\|\hat{\mathcal{L}} - \mathcal{L}_{\text{GT}}\|_F}{\|\mathcal{L}_{\text{GT}}\|_F}$ for the low-rank component and $\text{error}_{\mathcal{S}} = \frac{\|\hat{\mathcal{S}} - \mathcal{S}_{\text{GT}}\|_F}{\|\mathcal{S}_{\text{GT}}\|_F}$ for the sparse component.

As shown in Table 1, VBI_{TNN} generally outperforms TNN across most tested scenarios, while $\text{VBI}_{\text{PSTNN}}$ is better than PSTNN. Moreover, $\text{VBI}_{\text{PSTNN}}$ consistently delivers the best performance, indicating its superior ability to recover both the low-rank and sparse components of tensors under various noise and rank conditions. This comparative analysis underscores the effectiveness of our proposed methods, particularly $\text{VBI}_{\text{PSTNN}}$, in handling complex tensor decomposition with higher accuracy and robustness against noise.

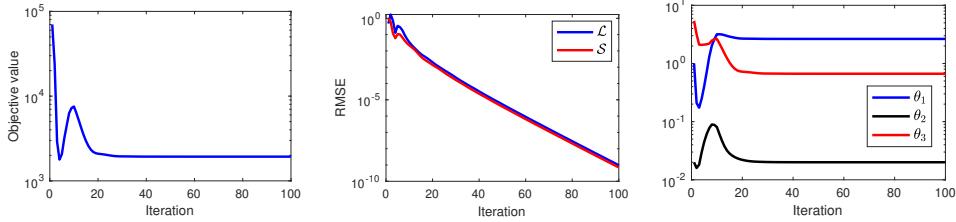


FIG. 1. Empirical evidence on convergence. Left: objective function, middle: RMSE, right: parameters: θ_1, θ_2 , and θ_3 , generated by Algorithm 4.1 across iterations.

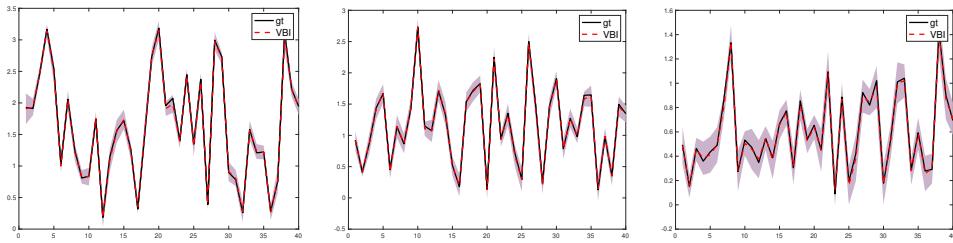


FIG. 2. Uncertainty quantification: recovery of $\bar{\mathcal{L}}_{:ij}$ with 99.73% credible interval (shaded area) where $i = 20, j = 5, 10, 25$.

5.2. Image denoising. In this section, we evaluate the performance of the proposed method on image denoising. The peak signal-to-noise ratio (PSNR) [33] and the structural similarity index (SSIM) [49] are used to evaluate the recovery performance quantitatively.

5.2.1. Image with sparse noise. We conduct experiments on four images: “house”, “moto”, “face”, and “hat”. In this study, we model the clean images as

TABLE 1
Recovery results on the synthetic datasets with different settings.

Method			TNN		VBI _{TNN}		PSTNN		VBI _{PSTNN}	
σ	r	ρ	error _{\mathcal{L}}	error _{\mathcal{S}}						
10^{-3}	3	0.01	0.0029	0.0075	0.0025	0.0056	0.0028	0.0064	0.0023	0.0052
		0.1	0.0034	0.0027	0.0032	0.0025	0.0033	0.0024	0.0029	0.0023
	5	0.01	0.0026	0.0083	0.0025	0.0063	0.0024	0.0070	0.0022	0.0058
		0.1	0.0033	0.0033	0.0036	0.0032	0.0030	0.0028	0.0031	0.0029
10^{-2}	3	0.01	0.0286	0.0738	0.0248	0.0556	0.0276	0.0638	0.0230	0.0523
		0.1	0.0344	0.0274	0.0302	0.0238	0.0325	0.0240	0.0275	0.0223
	5	0.01	0.0257	0.0820	0.0242	0.0620	0.0240	0.0700	0.0219	0.0576
		0.1	0.0331	0.0329	0.0322	0.0294	0.0298	0.0281	0.0281	0.0267
10^{-1}	3	0.01	0.2744	0.7227	0.2317	0.5435	0.2769	0.6398	0.2255	0.5195
		0.1	0.3222	0.2623	0.2730	0.2262	0.3264	0.2410	0.2661	0.2187
	5	0.01	0.2392	0.7841	0.2201	0.5921	0.2346	0.6896	0.2077	0.5620
		0.1	0.2903	0.2961	0.2692	0.2589	0.2864	0.2705	0.2543	0.2484

627 the low-rank component and random corruptions as sparse outliers. Each image is
628 corrupted by setting 10 percent of the pixels to random values ranging from 0 to
629 255, with the locations of these distortions unspecified. We compare our proposed
630 method with several existing techniques, including LRTV [20], $S_{wp}(0.9)$ [51], BTRTF
631 [55], TNN [33], and PSTNN [23], using the original implementations provided by the
632 respective authors. Given the absence of Gaussian noise in this task, the parameter
633 θ_1 is set to a high value of 100 to accommodate this condition, while θ_2 and θ_3 are
634 set to 1. The truncation parameter K for VBI_{PSTNN} is consistently set at 50 across
635 all cases.

636 Quantitative evaluations based on PSNR and SSIM are presented in Table 2, and
637 the corresponding restored images are displayed in Figure 3. Our observations indicate
638 that VBI_{PSTNN} consistently outperforms the other methods in terms of PSNR,
639 achieving at least a 0.5 improvement and matching the best-performing methods in
640 SSIM values. Additionally, the restoration of the “hat” image by VBI_{PSTNN} and
641 BTRTF shows significantly clearer text compared to other methods. However, some
642 artifacts are noted in the “moto” image restored by BTRTF. In contrast, our method
643 exhibits fewer artifacts across all cases.

TABLE 2
Quantitative comparisons of sparse noise removal results obtained by different methods

Data	Index	LRTV	$S_{wp}(0.9)$	BTRTF	TNN	PSTNN	VBI _{TNN}	VBI _{PSTNN}
house	PSNR	26.167	28.028	25.930	27.030	27.522	26.878	28.565
	SSIM	0.9517	0.9717	0.9374	0.9655	0.9691	0.9596	0.9741
moto	PSNR	27.617	28.003	24.871	26.373	27.724	25.945	28.781
	SSIM	0.9590	0.9702	0.9130	0.9554	0.9672	0.9440	0.9719
face	PSNR	32.524	34.061	32.500	30.770	31.543	30.704	34.150
	SSIM	0.9529	0.9759	0.9405	0.9509	0.9557	0.9475	0.9694
hat	PSNR	32.626	32.787	32.558	29.453	30.895	29.755	33.478
	SSIM	0.9435	0.9750	0.9581	0.9473	0.9558	0.9516	0.9735
mean	PSNR	29.733	30.720	28.965	28.407	29.421	28.321	31.244
	SSIM	0.9518	0.9732	0.9375	0.9548	0.9620	0.9507	0.9722

644 **5.2.2. Image with mixed noise.** In this subsection, we perform experiments
645 on four distinct images: “kid”, “house”, “river”, and “hat”. Initially, each image
646 is corrupted with sparse noise, following the procedure of our previous experiment.
647 Subsequently, we introduce Gaussian noise to each pixel, modeled by the distribution

TABLE 3

Quantitative comparisons of mixed noise removal results obtained by different methods

Data	Index	3DTNN	$S_{wp}(0.9)$	BTRTF	TNN	PSTNN	VBI_{TNN}	VBI_{PSTNN}
kid	PSNR	26.670	31.806	32.071	28.691	29.542	29.446	32.802
	SSIM	0.9364	0.9752	0.9593	0.9487	0.9558	0.9521	0.9720
house	PSNR	27.448	32.302	30.791	29.765	30.459	29.862	32.496
	SSIM	0.9292	0.9708	0.9370	0.9474	0.9532	0.9414	0.9659
river	PSNR	24.606	26.388	23.818	25.985	26.439	25.367	26.968
	SSIM	0.9319	0.9471	0.8606	0.9466	0.9515	0.9291	0.9504
hat	PSNR	28.017	32.771	32.553	29.449	30.891	29.753	33.463
	SSIM	0.9359	0.9747	0.9581	0.9471	0.9555	0.9514	0.9733
mean	PSNR	26.685	30.817	29.808	28.473	29.333	28.607	31.432
	SSIM	0.9334	0.9670	0.9288	0.9475	0.9540	0.9436	0.9654

648 $\mathcal{N}(0, 10^{-3})$. The resultant observation, represented mathematically by $\mathcal{X} = \mathcal{L} + \mathcal{S} + \mathcal{E}$,
649 consists of the real image \mathcal{L} , augmented by sparse noise \mathcal{S} and Gaussian noise \mathcal{E} . To
650 verify that our method's effectiveness is robust to initial conditions, we set the initial
651 values of θ_1 to 100, and θ_2 and θ_3 to 1, as the same as the ones used in the sparse
652 noise-only scenario.

653 We benchmark our proposed algorithm against several state-of-the-art methods,
654 including 3DTNN [53], $S_{wp}(0.9)$ [51], BTRTF [55], TNN [33], and PSTNN [23]. Per-
655 formance metrics such as PSNR and SSIM are detailed in Table 3, with visual re-
656 sults presented in Figure 4. Notably, our algorithm outperforms both TNN and
657 PSTNN—methods that utilize similar regularization techniques—across all test cases
658 in terms of PSNR, achieving an average improvement of 0.6 dB over the best-reported
659 results. Qualitatively, the images restored by VBI_{PSTNN} exhibit notably sharper
660 boundaries compared to those produced by the other methods, which tend to exhibit
661 some degree of blurring.

FIG. 3. Comparison of color image Gaussian noise removal performance on four examples.

662 **5.3. Background modeling.** The background modeling problem focuses on
663 distinguishing foreground objects from the background in video sequences. This is
664 commonly achieved by modeling the background as a low-rank tensor, which rep-
665 represents the relatively static scenes across different frames, and treating the moving
666 foreground objects as sparse components. In the context of Tensor Robust Principal

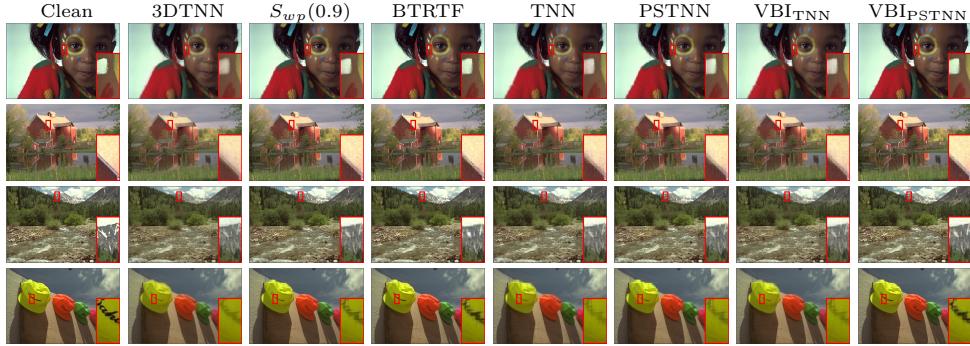


FIG. 4. Comparison of color image mixed noise removal performance on four examples.

667 Component Analysis (TRPCA), these are represented by the low-rank tensor \mathcal{L}_0 and
 668 the sparse tensor \mathcal{S}_0 , respectively.

669 We evaluated our models on sequences from the 12R dataset [32], specifically the
 670 ‘‘bootstrap’’ ($120 \times 160 \times 400$), and ‘‘sidewalk’’ ($220 \times 352 \times 400$) videos, all characterized
 671 by slow-moving objects against varying backgrounds. Our models were compared
 672 with several others, including 3DTNN, TNN, BTRTF, PSTNN, and t- $S_{w,p}(0.9)$. For
 673 VBI_{PSTNN}, the truncated parameter K is set as 5, while the initial values of $\theta_1, \theta_2, \theta_3$
 674 are set as 1, 1, 100, respectively. The results of these comparisons are visually pre-
 675 sented in Figure 5. Each video’s analysis starts with a frame from the sequence as
 676 shown in column (a) of Figure 5, followed by background images generated by the
 677 respective methods, from 3DTNN to our approach VBI_{PSTNN}. Additionally, the motion
 678 in each scene is depicted in the second row for each video. In the ‘‘bootstrap’’
 679 video, except for 3DTNN, all the methods achieved superior background separation
 680 with fewer ghost silhouettes. In the ‘‘sidewalk’’ videos, all the approaches perform
 681 similarly, while 3DTNN has slightly better results.

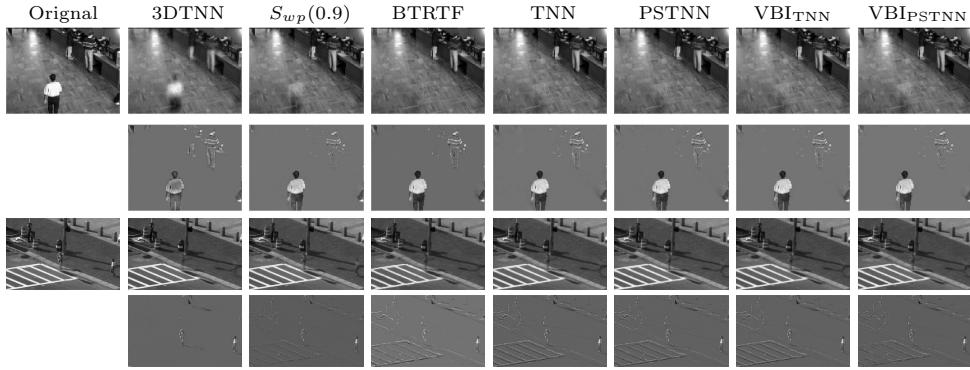


FIG. 5. Background modeling results of two surveillance video sequences.

682 **6. Conclusions.** In this paper, we presented a method for recovering low-rank
 683 tensors from observations contaminated by sparse outliers and Gaussian noise. Util-
 684 izing variational Bayesian inference, we effectively resolved the tensors while simulta-
 685 neously selecting model parameters. Numerical evaluations highlight the advantages
 686 and superior performance of our approach compared to existing methods. Currently

687 limited to linear and convex relaxations, our future work will explore extending this
 688 parameter selection technique to nonconvex approximations within tensor recovery
 689 models.

690

REFERENCES

- 691 [1] M. ALMEIDA AND M. FIGUEIREDO, *Parameter estimation for blind and non-blind deblurring*
 692 *using residual whiteness measures*, IEEE Trans. Image Process., 22 (2013), pp. 2751–2763.
- 693 [2] B. AMIZIC, R. MOLINA, AND A. K. KATSAGGELOS, *Sparse Bayesian blind image deconvolution*
 694 *with parameter estimation*, EUSIPCO, 2012 (2012), pp. 1–15.
- 695 [3] S. D. BABACAN, R. MOLINA, AND A. K. KATSAGGELOS, *Parameter estimation in TV image*
 696 *restoration using variational distribution approximation*, IEEE Trans. Image Process., 17
 697 (2008), pp. 326–339.
- 698 [4] J. M. BARDSLEY, *MCMC-based image reconstruction with uncertainty quantification*, SIAM J.
 699 Sci. Comput., 34 (2012), pp. A1316–A1332.
- 700 [5] J. A. BAZERQUE, G. MATEOS, AND G. B. GIANNAKIS, *Rank regularization and Bayesian*
 701 *inference for tensor completion and extrapolation*, IEEE Trans. Signal Process., 61
 702 (2013), pp. 5689–5703, <https://doi.org/10.1109/TSP.2013.2278516>, <http://ieeexplore.ieee.org/document/6579771/> (accessed 2024-09-01).
- 704 [6] F. BEVILACQUA, A. LANZA, M. PRAGLIOLA, AND F. SGALLARI, *Whiteness-based parameter se-*
 705 *lection for poisson data in variational image processing*, Applied Mathematical Modelling,
 706 117 (2023), pp. 197–218.
- 707 [7] A. BHATTACHARYA, D. PATI, AND Y. YANG, *On the convergence of coordinate ascent variational*
 708 *inference*, The Annals of Statistics, 53 (2025), pp. 929–962.
- 709 [8] D. M. BLEI, A. KUCUKELBIR, AND J. D. MCAULIFFE, *Variational inference: A review for*
 710 *statisticians*, Journal of the American statistical Association, 112 (2017), pp. 859–877.
- 711 [9] H. CAI, Z. CHAO, L. HUANG, AND D. NEEDELL, *Robust tensor cur decompositions: Rapid*
 712 *low-Tucker-rank tensor recovery with sparse corruptions*, SIAM J. Imag. Sci., 17 (2024),
 713 pp. 225–247.
- 714 [10] J. CAI, E. CANDES, AND Z. SHEN, *A singular value thresholding algorithm for matrix comple-*
 715 *tion*, SIAM Journal on Optimization, 20 (2010), pp. 1956–1982.
- 716 [11] E. CANDES AND B. RECHT, *Exact matrix completion via convex optimization*, Commun. ACM,
 717 55 (2012), pp. 111–119.
- 718 [12] Y. CHANG, L. YAN, X.-L. ZHAO, H. FANG, Z. ZHANG, AND S. ZHONG, *Weighted low-rank tensor*
 719 *recovery for hyperspectral image restoration*, IEEE Trans. Cybern., 50 (2020), pp. 4558–
 720 4572.
- 721 [13] G. CHANTAS, N. P. GALATSANOS, R. MOLINA, AND A. K. KATSAGGELOS, *Variational bayesian*
 722 *image restoration with a product of spatially weighted total variation image priors*, IEEE
 723 Trans. Image Process., 19 (2009), pp. 351–362.
- 724 [14] S. GANDY, B. RECHT, AND I. YAMADA, *Tensor completion and low-n-rank tensor recovery via*
 725 *convex optimization*, Inverse Probl., 27 (2011), p. 025010.
- 726 [15] A. GELMAN, A. JAKULIN, M. G. PITTAU, AND Y.-S. SU, *A weakly informative default prior*
 727 *distribution for logistic and other regression models*, Ann Appl. Stat., 2 (2008), pp. 1360–
 728 1383.
- 729 [16] J. GLAUBITZ AND A. GELB, *Leveraging joint sparsity in hierarchical Bayesian learning*,
 730 SIAM/ASA J. Uncertainty Quantif., 12 (2024), pp. 442–472.
- 731 [17] D. GOLDFARB AND Z. QIN, *Robust low-rank tensor recovery: Models and algorithms*, SIAM J.
 732 Matrix Anal. Appl., 35 (2014), pp. 225–253.
- 733 [18] G. GOLUB, M. HEATH, AND G. WAHBA, *Generalized cross-validation as a method for choosing*
 734 *a good ridge parameter*, Technometrics, 21 (1979), pp. 215–223.
- 735 [19] P. HANSEN AND D. O’LEARY, *The use of the L-curve in the regularization of discrete ill-posed*
 736 *problems*, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.
- 737 [20] W. HE, H. ZHANG, L. ZHANG, AND H. SHEN, *Total-variation-regularized low-rank matrix factor-*
 738 *ization for hyperspectral image restoration*, IEEE Trans. Geosci. Remote Sens., 54 (2015),
 739 pp. 178–188.
- 740 [21] T. HELIN, N. HYVÖNEN, AND J.-P. PUSKA, *Edge-promoting adaptive Bayesian experimental*
 741 *design for X-ray Imaging*, SIAM J. Sci. Comput., 44 (2022), pp. B506–B530.
- 742 [22] J. JIA, Q. ZHAO, Z. XU, D. MENG, AND Y. LEUNG, *Variational Bayes’ method for functions*
 743 *with applications to some inverse problems*, SIAM J. Sci. Comput., 43 (2021), pp. A355–
 744 A383.
- 745 [23] T.-X. JIANG, T.-Z. HUANG, X.-L. ZHAO, AND L.-J. DENG, *Multi-dimensional imaging data*

746 *recovery via minimizing the partial sum of tubal nuclear norm*, *J. Comput. Appl. Math.*,
 747 372 (2020), p. 112680.

748 [24] I. T. JOLLIFFE AND J. CADIMA, *Principal component analysis: a review and recent developments*, *Phil. Trans. R. Soc. A.*, 374 (2016), p. 20150202.

749 [25] H. A. KIERS, *Towards a standardized notation and terminology in multiway analysis*, *J. Chemom.*, 14 (2000), pp. 105–122.

750 [26] M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER, *Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging*, *SIAM J. Matrix Anal. Appl.*, 34 (2013), pp. 148–172.

751 [27] M. E. KILMER AND C. D. MARTIN, *Factorization strategies for third-order tensors*, *Linear Algebra Appl.*, 435 (2011), pp. 641–658.

752 [28] T. G. KOLDA AND B. W. BADER, *Tensor decompositions and applications*, *SIAM Rev.*, 51 (2009), pp. 455–500.

753 [29] D. S. LALUSH AND B. M. TSUI, *Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions*, *IEEE Trans. Med. Imaging*, 11 (1992), pp. 267–275.

754 [30] K. J. H. LAW AND V. ZANKIN, *Sparse online variational Bayesian regression*, *SIAM/ASA J. Uncertainty Quantif.*, 10 (2022), pp. 1070–1100.

755 [31] S. LEFKIMMIATIS AND I. KOSHELEV, *Learning sparse and low-rank priors for image recovery via iterative reweighted least squares minimization*, in *Proc. ICLR*, 2023.

756 [32] L. LI, W. HUANG, I. Y.-H. GU, AND Q. TIAN, *Statistical modeling of complex backgrounds for foreground object detection*, *IEEE Trans. Image Process.*, 13 (2004), pp. 1459–1472.

757 [33] C. LU, J. FENG, Y. CHEN, W. LIU, Z. LIN, AND S. YAN, *Tensor robust principal component analysis with a new tensor nuclear norm*, *IEEE Trans. Pattern Anal. Mach. Intell.*, 42 (2020), pp. 925–938.

758 [34] C. MENZEN, M. KOK, AND K. BATSELIER, *Alternating linear scheme in a Bayesian framework for low-rank tensor approximation*, *SIAM J. Sci. Comput.*, 44 (2022), pp. A1116–A1144.

759 [35] V. MOROZOV, *Methods for solving incorrectly posed problems*, Springer-Verlag, New York, 1984.

760 [36] C. MU, B. HUANG, J. WRIGHT, AND D. GOLDFARB, *Square deal: Lower bounds and improved relaxations for tensor recovery*, in *Proc. ICML*, PMLR, 2014, pp. 73–81.

761 [37] Y. MU, P. WANG, L. LU, X. ZHANG, AND L. QI, *Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD*, *Pattern Recognit. Lett.*, 130 (2020), pp. 4–11.

762 [38] J. P. OLIVEIRA, J. M. BIOCAS-DIAS, AND M. A. FIGUEIREDO, *Adaptive total variation image deblurring: a majorization-minimization approach*, *Signal Process.*, 89 (2009), pp. 1683–1693.

763 [39] Y. PANAGAKIS, J. KOSAIFI, G. G. CHRYSOS, J. OLDFIELD, M. A. NICOLAOU, A. ANANDKUMAR, AND S. ZAFEIRIOU, *Tensor methods in computer vision and deep learning*, *Proc. IEEE*, 109 (2021), pp. 863–890.

764 [40] A.-H. PHAN, K. SOBOLEV, K. SOZYKIN, D. ERMILOV, J. GUSAK, P. TICHAVSKÝ, V. GLUKHOV, I. OSELEDETS, AND A. CICHOCKI, *Stable low-rank tensor decomposition for compression of convolutional neural network*, in *Proc. ECCV*, 2020, pp. 522–539.

765 [41] Y. SU, H. ZHU, K.-C. WONG, Y. CHANG, AND X. LI, *Hyperspectral image denoising via weighted multidirectional low-rank tensor recovery*, *IEEE Trans. Cybern.*, 53 (2022), pp. 2753–2766.

766 [42] R. TIBSHIRANI, *Regression shrinkage and selection via the lasso*, *Journal of the Royal Statistical Society. Series B (Methodological)*, (1996), pp. 267–288.

767 [43] M. E. TIPPING, *Sparse bayesian learning and the relevance vector machine*, *J. Mach. Learn. Res.*, 1 (2001), pp. 211–244.

768 [44] X. TONG, L. CHENG, AND Y.-C. WU, *Bayesian tensor Tucker completion with a flexible core*, *IEEE Trans. Signal Process.*, 71 (2023), pp. 4077–4091.

769 [45] L. R. TUCKER, *Some mathematical notes on three-mode factor analysis*, *Psychometrika*, 31 (1966), pp. 279–311.

770 [46] F. URIBE, Y. DONG, AND P. C. HANSEN, *Horseshoe priors for edge-preserving linear Bayesian inversion*, *SIAM J. Sci. Comput.*, 45 (2023), pp. B337–B365.

771 [47] C. WANG AND D. M. BLEI, *Variational inference in nonconjugate models*, *J. Mach. Learn. Res.*, 2013.

772 [48] H. WANG, J. PENG, W. QIN, J. WANG, AND D. MENG, *Guaranteed tensor recovery fused low-rankness and smoothness*, *IEEE Trans. Pattern Anal. Mach. Intell.*, 45 (2023), pp. 10990–11007.

773 [49] Z. WANG, A. C. BOVIK, H. R. SHEIKH, AND E. P. SIMONCELLI, *Image quality assessment: from error visibility to structural similarity*, *IEEE Trans. Image Process.*, 13 (2004), pp. 600–612.

774 [50] L. YANG, J. FANG, H. DUAN, H. LI, AND B. ZENG, *Fast low-rank Bayesian matrix completion with hierarchical Gaussian prior models*, *IEEE Trans. Signal Process.*, 66 (2018), pp. 2804–

808 2817.

809 [51] M. YANG, Q. LUO, W. LI, AND M. XIAO, *Nonconvex 3D array image data recovery and pattern*
810 *recognition under tensor framework*, Pattern Recognit., 122 (2022), p. 108311.

811 [52] H. ZHENG, Y. LOU, G. TIAN, AND C. WANG, *A scale-invariant relaxation in low-rank tensor*
812 *recovery with an application to tensor completion*, SIAM J. Imag. Sci., 17 (2024), pp. 756–
813 783.

814 [53] Y.-B. ZHENG, T.-Z. HUANG, X.-L. ZHAO, T.-X. JIANG, T.-H. MA, AND T.-Y. JI, *Mixed noise*
815 *removal in hyperspectral image via low-fibered-rank regularization*, IEEE Trans. Geosci.
816 Remote Sens., 58 (2019), pp. 734–749.

817 [54] X. ZHOU, Q. HENG, E. C. CHI, AND H. ZHOU, *Proximal MCMC for Bayesian inference of*
818 *constrained and regularized estimation*, Am. Stat., (2024), pp. 1–12.

819 [55] Y. ZHOU AND Y.-M. CHEUNG, *Bayesian low-tubal-rank robust tensor factorization with multi-*
820 *rank determination*, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2019), pp. 62–76.