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Abstract. Tensor Robust Principal Component Analysis (TRPCA) holds a crucial position
in machine learning and computer vision. It aims to recover underlying low-rank structures and
to characterize the sparse structures of noise. Current approaches often encounter difficulties in
accurately capturing the low-rank properties of tensors and balancing the trade-off between low-
rank and sparse components, especially in a mixed-noise scenario. To address these challenges, we
introduce a Bayesian framework for TRPCA, which integrates a low-rank tensor nuclear norm prior
and a generalized sparsity-inducing prior. By embedding the priors within the Bayesian framework,
our method can automatically determine the optimal tensor nuclear norm and achieve a balance
between the nuclear norm and sparse components. Furthermore, our method can be efficiently
extended to the weighted tensor nuclear norm model. Experiments conducted on synthetic and
real-world datasets demonstrate the effectiveness and superiority of our method compared to state-
of-the-art approaches.
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1. Introduction. With data becoming ubiquitous from diverse fields and ap-
plications, data structures are becoming increasingly complex with higher dimen-
sions. Tensor, a multidimensional array, is an efficient data structure with broad
applications, including machine learning [39] and computer vision [40]. Meanwhile,
high-dimensional data always lie near a low-dimensional manifold, which can be in-
terpreted by their low rank. In matrix processing, the low-rank assumption allows
two-dimensional data recovery from incomplete or corrupted data [11]. However,
expanding the low-rank concept from matrices to tensors remains an unresolved chal-
lenge. A main challenge in tensor analysis is that the tensor rank is not well defined.
Various definitions of tensor rank have been proposed. For example, the CANDE-
COMP/PARAFAC (CP) rank, as described in [28], is based on the CP decomposition
[25] and identifies the smallest number of rank-one tensors needed to represent a ten-
sor. The Tucker rank [14], which stems from the Tucker decomposition [45], consists
of a vector where each component corresponds to the rank of a matrix obtained by
unfolding the original tensor. Furthermore, developments in tensor singular value de-
composition (t-SVD) [27] have led to the tensor multi-rank [14] and tubal rank [26],
both of which are analogous to the matrix singular value decomposition (SVD).

Among all these tensor applications, exploring low-rank features in sparse tensor
decomposition has become essential, which is called Tensor Robust Principal Compo-
nent Analysis (TRPCA) [33]. It extends the Robust Principal Component Analysis
(RPCA) [24] from matrices to tensors. Specifically, TRPCA seeks to extract the low
tubal rank component, £, and eliminate the noise component, S, derived from noisy
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observations, X, expressed as X = £ + §. This is achieved through the optimization
process [33, 51, 36, 17, 48] described as
(L.1) omin ]+ A8
where |||+ is the tensor nuclear norm as the convex relaxation to a certain tensor
rank. Note that minimizing the rank is an NP-hard problem. Various approximations
have been proposed to approach different tensor ranks [23, 52, 37]. Here, ||S||; is the
¢1 norm of sparsity, and A > 0 is the parameter used to balance low-rankedness and
sparsity.

In the TRPCA model, we can further reformulate the equality constraint by a
penalty term and turn the optimization model (1.1) into

(1.2) min G X 8 = L[| + 62[S |1 + O] £l

where 01, 05 and 65 are tuning parameters. Note that (1.2) has broadened applications
by assuming observation data is constructed not just by low-rank tensor and sparsity
but also with certain bias or Gaussian noise, i.e.,

(1.3) X=L+S+E,

where £ is the corresponding bias and the Gaussian noise. This model is widely used
in mixed noise removal [53, 55] and hyperspectral denoising [41].

The selection of the parameters in the model (1.1) and (1.2) is critical. Under
the t-SVD framework, the optimal parameter for A in (1.1) is suggested in [33] for
the tensor nuclear norm. Nevertheless, it cannot be extended to other forms of tensor
low-rank regularization, such as the weighted tensor nuclear norm. This issue becomes
more serious when dealing with models involving multiple parameters in (1.2). Tradi-
tional parameter selection methods, including the discrepancy principle [35], L-curve
[19], GCV [18], and RWP [1, 6], are often customized to specific regularization for-
mulations and need iterative minimizations, which makes it inadequate for our tensor
recovery problem in (1.2).

In this paper, we address the intricate task of simultaneously estimating tensors
L and § and their regularization parameters 6; for TRPCA. We introduce variational
Bayesian inference (VBI) [13] as a powerful tool to tackle this challenge, reformulating
the optimization problem within a Bayesian framework. By treating regularization
parameters 6; as hyperparameters, we apply the inherent strengths of Bayesian meth-
ods, popular for their success in inverse problems [46, 9, 22, 21, 16, 54, 30] and
established applications in matrix and tensor problems like matrix completion [50],
tensor completion [5, 44], and low-rank tensor approximation [34].

Despite these successes, the adoption of VBI in TRPCA remains limited. To
our best knowledge, only [55] has explored VBI for TRPCA, employing a generalized
sparsity-inducing prior. However, this method directly expresses the low-rank tensor
as a t-product of two smaller factor tensors, presupposing the tubal rank, and models
the sparse component S with independent Gaussian priors, which may not be optimal
for sparse data. In contrast, we propose an approach that employs a tensor nuclear
norm prior to £, eliminating the need for predefined tensor ranks. For the sparse
component S, we adopt a Laplace prior, which better captures sparse structures.
This reformulation enhances model flexibility, offering a more principled and less
restrictive approach to tensor recovery, thereby mitigating limitations posed by prior
assumptions on tensor ranks or sparsity patterns.
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VARIATIONAL BAYESIAN INFERENCE FOR TRPCA 3

In comparison, joint maximum a posteriori (MAP) estimation minimizes the neg-
ative log posterior to obtain point estimates for S, £, and 6, simultaneously recovering
tensors and parameters. Our VBI framework, however, approximates the full poste-
rior distribution, enabling uncertainty quantification alongside point estimates. For
practical applications such as denoising and background subtraction, we use the ex-
pectation of the variational distribution as the point estimate for S and L, offering a
robust and versatile approach to tensor recovery.

The primary contributions of this work are succinctly summarized as:

(1) Innovative Variational Bayesian Tensor Recovery Model: This paper proposes a
novel variational Bayesian inference model for tensor recovery. It characterizes
low-rank tensors using the tensor nuclear norm and sparse tensors via the Lapla-
cian distribution. This approach enables simultaneous inference of both low-rank
and sparse components along with the hyperparameters (regularization parame-
ters), eliminating the need for pre-specifying the tensor rank.

(2) Efficient Inference via Laplacian Approximation and MM Framework: We intro-
duce a Laplacian approximation methodology to tackle the computational intrica-
cies associated with non-Gaussian posteriors arising from Laplace priors imposed
on sparse tensor S and low-rank tensor £. This approach directly tackles the ¢
norm minimization and tensor nuclear norm minimization problems in estimating
the expectations of sparse tensor S and low-rank tensor £. For covariance matrix
computation, it integrates with the Majorization-Minimization (MM) framework,
deriving a tight lower bound for the non-quadratic distributions encountered in
the 1 norm and tensor nuclear norm. This facilitates efficient variance compu-
tations, thereby significantly enhancing the efficiency and accuracy of inferring
low-rank, sparse tensors as well as their hyperparameters.

The rest of this paper is organized as follows. In Section 2, we introduce the main
preliminaries, including tensors and their decomposition. In Section 3, we describe
the hierarchical Bayesian model, joint density, and hyperprior. In Section 4, we apply
variational Bayesian inference to infer hyperparameters 6; and solve the tensors £, S
at the same time. In Section 5, we provide the experimental results and show the
superiority of our proposed methods. Finally, in Section 6, some conclusions are
drawn.

2. Preliminaries. This section provides an overview of fundamental notations
and definitions that will be utilized throughout the paper.

2.1. Notations. The set of natural numbers is denoted by N, the set of real
numbers by R, and the set of complex numbers by C. In the context of tensors,
we adopt the convention of using boldface Euler script letters, exemplified by A, to
represent them. Matrices, on the other hand, are indicated with boldface uppercase
letters, such as A, with the identity matrix specifically denoted by I. Vectors follow
the convention of being written in boldface lowercase letters, like a, whereas single
values or scalars are represented by regular lowercase letters, for instance, a. Regard-
ing indexing, for a vector a, the i-th element is denoted by a;. For a matrix A, A;.
signifies the i-th row, A.; denotes the j-th column, and the specific element located
at the intersection of the i-th row and j-th column is represented by either a;; or,
more commonly in matrix notation, A;;. When dealing with a third-order tensor A,
each element positioned at the intersection of the i-th, j-th, and k-th dimensions is
denoted by a;;i, or, more conventionally for tensors, A;;i. This tensor can be dissected
into distinct structural components: column fibers are designated as A.;x, row fibers
as Aj;.i, and tube fibers as A;;.. Furthermore, the tensor can be analyzed through
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various slices: horizontal slices are noted as A;.., lateral slices as A.;., and frontal
slices as A...

We define the inner product of matrices A and B as (A, B) := Tr(A*B), where
A* is the conjugate transpose of A, and Tr(-) represents the trace of a matrix. If A
consists only of real numbers, A” denotes its transpose. The fy-norm of a vector v
in the complex number space C" is defined by ||v|2 = (3, |vi|?)}/?, measuring the
vector’s magnitude in Euclidean space.

The inner product between two tensors A4 and B in C"*"2*"s ig defined as
(A,B) =372 (A, B.k). The complex conjugate of A, which takes the complex
conjugate of each entry of A, is denoted as conj(.A). The conjugate transpose of a
tensor A € C"*"2X"s ig g tensor A* obtained by conjugate transposing each of the
frontal slices and then reversing the order of transposed frontal slices 2 through ng.
The tensor ¢;-norm of A is defined as ||All1 = >~ |aijk|, and the Frobenius norm as

2
[Allr = /220 laie]

2.2. T-product and t-SVD. Before introducing the definitions, we define three
operators:

A::l
-A::2
(2.1) unfold(A) = . , fold (unfold(A)) = A,
A::ng
and
-A::l A::ng A::Q
A::Q A::l e A::3
beirc(A) := ) ) ) ) € RMmsxn2ns,
A::ng A:I,’I’Lgfl o A::l

Here unfold(-) maps A to a matrix of size nins x ny and fold(+) is its inverse operator.
We introduce the notation A := bdiag(A) to concisely represent the block diagonal
matrix derived from the tensor A. Here, bdiag(-) designates the block diagonalization
operator, with the i-th block corresponding to A..;.

Now, we focus on applying the Discrete Fourier Transformation (DFT) to tensors.
We represent the tensor A transformed by DFT along its third (tubal) dimension as
A. This transformation is executed using the MATLAB command fft, specifically
performed as A = fft(A4,[],3). Conversely, to revert the tensor to its original form
from A, we use the inverse operation with A = ifft(A4, [],3). We also introduce the
notation A := bdiag(A) to represent the block diagonal matrix constructed from the
tensor A. Next, we introduce the definition of t-product.

DEFINITION 2.1. (t-product [27]). Let A € R"*!*"s gnd B € RI*"2X"s then the
t-product A x B is defined by
(2.2) A x B = fold(bcirc(A) - unfold(B)),

resulting a tensor of size n1 X ng X n3. Note that Ax B = Z if and only if AB = Z.

Using the t-product framework, we define the identity tensor Z € R"*"*"3 ag a
tensor with its first frontal slice being the n x n identity matrix, while all subsequent
frontal slices consist entirely of zeros. It is clear that A+ Z = A and Z x A = A given
the appropriate dimensions. In addition, a tensor H € R™*"*"s is orthogonal if it
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VARIATIONAL BAYESIAN INFERENCE FOR TRPCA 5

satisfies H**H = H+H* = Z. Moreover, we call a tensor f-diagonal if each of its frontal
slices is a diagonal matrix. Next, we define the tensor singular value decomposition
as below:

DEFINITION 2.2. (tensor singular value decomposition: t-SVD [27]). The t-SVD
of A € R"X"2Xn3 45 gijyen by

(2.3) A=UxD=xV",

where U € RM*m1xns ) ¢ RP2X12X13 qre orthogonal tensors, and D € R™ X"2X"3 g
an f-diagonal tensor.
It follows from Definition 2.1 that A = U x D % V* if and only if A = UDV .
For tensor A € R™*™2%"3 with tubal rank r, we also have skinny t-SVD similar as
matrix. Let r is the tubal rank of A, the skinny t-SVD of A is A = U * D x V*, where
U € Rm*rxns D g R™*"x"s ) ¢ R"2*"X"s in which U* *U =T and V* )V = T.
DEFINITION 2.3. (tensor average rank and tubal rank [33]) The tensor average
rank of A € RmM>m2Xn3 - denoted as rank,(A), is defined as

ns

rank, (A) = ni?) rank(bcirc(A)) = ’I’Lig Zrank(X(i)).
i=1

The tensor tubal rank, denoted as rank;(A), is defined as the number of nonzero
singular tubes of S, where S comes from the t-SVD of A, i.e. A =U xS *V*. In
other words, one has
ranke(A) = #{i, S(i,1,:) # 0}.
For tensor A € R™*"2X"s with tubal rank r, we also have skinny t-SVD similar
as matrix. Minimizing the tubal rank is an NP-hard problem; we introduce a tensor
nuclear norm as a convex relaxation.

DEFINITION 2.4. (tensor nuclear norm [33]). Let A =U*D*V* be the t-SVD of
A e R *m2Xn3 - Define 0,i,(A) is the j-th singular value of A..,,, or simply o1, if the
context is clear. The tensor nuclear norm (TNN) of A is defined as

ng min(ny,ne)

1 & — 1
AL = =3 [Aull, = =3 > o
"= o =

2.3. Probability distribution. Here, we define three kinds of probability dis-
tribution: the uniform distribution, the Gamma distribution, and the multivariate
Gaussian distribution.

The uniform distribution is a distribution that assigns equal probability mass to a
region. For a,b € R and a < b, the uniform distribution for a random variable z € R

is defined as
1
—a @ S z S b>
p(x)=q°7¢ )
0, otherwise.

The Gamma density function is given as
(2.4) p(x) = G(xla,b) o< 2*~ exp(~ba),

where a > 0 and b > 0 represent shape and scale parameters respectively. We have
its mean and variance of these Gamma distributions:

(2.5) E(x) = %, Var(z) = %.

This manuscript is for review purposes only.
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The multivariate Gaussian distribution is fully characterized by a mean vector p
and a covariance matrix X and is defined as

n 1
p() = N(zlu,E) = @) 22| 2 exp (=4 |l — pll3-1)

where € R" is a random variable.
3. Bayesian model.

3.1. The likelihood. In (1.3), we assume the observed data X can be decom-
posed into three parts: £, S, L. Note that £’s elements as independent and identically
distributed (i.i.d.) from a zero-mean normal distribution with precision #;. Then
we obtain the likelihood function p(X|S, L, 60;) characterizes the probability of ob-
serving X conditioned on S, £, and #;. By exploiting the properties of the normal
distribution, the likelihood function is expressed as:

n 0
(3.1) p(X[S, L,01) o 07 exp (—21|X—S—£||2F>,

where o denotes “proportional to” and n = ni;naongz denotes the total flattened dimen-
sionality of X'. This formulation captures the probabilistic nature of the constraint
violation, enhancing the robustness and applicability of the Bayesian inference process.

To facilitate further analysis and optimization, we consider the log-likelihood
function

9
log p(X|S, £,6,) = —51||X —S—C|%+ glogel e

where C is a constant term that does not depend on S, £, or #; and can be ignored
in inference procedure.

3.2. The prior distributions. In Bayesian inference, the selection of prior dis-
tributions is a fundamental step that shapes the posterior beliefs about the unknown
parameters. These priors encode our prior knowledge or assumptions about the vari-
ables of interest. Here, we choose appropriate prior distributions for S and £, which
represent distinct latent variables with unique characteristics. We remark that the
choice of these priors is informed by regularization terms.

3.2.1. Prior distribution for S. For the sparse component S, we employ a
Laplace prior distribution that induces ¢1-norm regularization. This choice is moti-
vated by the well-established connection between Laplace priors and sparsity promo-
tion in the Bayesian framework [42]. Specifically, the prior density takes the form:

(3.2) p(S102) o 03 exp (—02[|S]|1) ,

where 5 > 0 is a scale parameter. The ¢1-norm arises naturally as the convex envelope
of the ¢y pseudo-norm, making it the tightest convex relaxation for sparse recovery
problems. From a probabilistic perspective, this corresponds to assuming independent
exponentially distributed entries in S, which favors exact zeros in the MAP estimate
while maintaining computational tractability through convex optimization.

Taking the logarithm of the prior distribution, we obtain:

(3.3) log p(S|02) = —62||S||1 + nlog by + Co,

where Cs represents a constant term that does not depend on S or 6s.

This manuscript is for review purposes only.
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3.2.2. Prior distribution for L. For the variable £, we employ a particular
Gibbs prior [29] to promote a low-rank structure in £. This prior takes the form of
an exponential distribution with a tensor nuclear norm penalty, acting as a convex
surrogate for the tensor average rank. It encourages £ to have a low-rank represen-
tation, which is often suitable for capturing the underlying low-dimensionality in the
data. The prior distribution is given by:

(3-4) P(L]03) o 03 exp (=03 [|L],) -

This characteristic encourages the low rank property in £ and is coherent with the
regularization term ||£||, in (1.2). Taking the logarithm of the prior distribution, we
have:

log p(L[03) = =03 L] + nlogfs + Cs,
where C'5 is a constant term that does not depend on L or #3.

3.3. The hyper-prior distribution. In the field of statistical modeling, the
Gamma distribution has obtained significant attention as a versatile prior distribu-
tion for hyperparameters, particularly in Bayesian frameworks [2, 3, 4, 38, 43]. The
choice of a Gamma distribution as the prior for the hyperparameter 6; is driven by
two key reasons. First, it serves as a conjugate prior for precision parameters in expo-
nential family distributions. For instance, when 6; controls the precision of a Gaussian
likelihood p(x|6;) ~ N(0,6; '), the Gamma prior ensures the posterior distribution
remains a Gamma distribution. This conjugacy simplifies posterior calculations in
Bayesian inference, enabling efficient automatic updates of hyperparameters. Sec-
ond, 6; typically represents positive physical quantities like precision or rate. The
Gamma distribution’s support on (0, +00) naturally aligns with this positivity con-
straint, eliminating the need for artificial non-negativity restrictions.

We assign independent Gamma priors to the hyperparameters 6;, which corre-
spond to the mutually independent components £, S, and £ in the model. This
hierarchical structure preserves model consistency while enabling efficient computa-
tion. The independence assumption further facilitates automatic feature selection by
factorizing the posterior distribution into marginal products over each 6;. Hence, we
have

p(al) = g(0i|a0i7b91‘)7i = 172733

where ag, and by, are the shape and scale parameters for each hyperparameter 6;.
However, a key challenge in adopting the Gamma prior lies in the determination of
optimal values for ag, and by,. In the absence of strong prior knowledge, researchers
often resort to weakly informative or non-informative priors, where the influence of
the prior is minimized [4, 2, 38, 3, 43]. This can be achieved by setting extremely
small values for ap, and by, (e.g., ag, = by, = 10~*), thereby adopting an improper
prior [43].

3.4. Joint distribution. The estimation of the unknown tensors £ and S,
given the parameters 6;(i = 1,2,3), can be tackled within the Maximum A Poste-
riori (MAP) estimation framework. This approach aims to maximize the posterior
density p(S, L|X, 0) with respect to £ and S, which is formulated as:

(8", L") = argmax p(S, L| X, 6).

This manuscript is for review purposes only.
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Applying Bayes’ theorem, the maximization problem can be rewritten in terms of the
likelihood function p(X|S, £, @) and the prior densities p(£]0) and p(S|6):

arg max p(X|S, £, 0)p(L|0)p(516).

We remark that, in the MAP framework, the hyperparameters & must be either
pre-specified or estimated prior to the estimation of £ and S. For a more comprehen-
sive estimation that includes the hyperparameters, the joint maximum a posteriori
(JMAP) estimation is employed:

X,S
3.5 St £t 0") = arg max p(S, £,0|X) = argma 17(7
(3.5) ( ) = arg max p( |X) BmaX =

For simplicity, we assume independence among the hyperparameters, allowing us
to express the joint density function of the variables X', S, £, and 0 as:

p(X,S,L,0) = p(XI[S, L, 0)p(L|03)p(S|02)p(01)p(02)p(03)-

In the literature [4, 2, 38, 3, 43], the Gamma distribution is commonly adopted as
a prior for the hyperparameters 6; (i = 1,2,3) due to its conjugacy with certain
likelihood functions, which facilitates analytical tractability in Bayesian inference.
However, prior knowledge about the shape and scale parameters (ap, and by,) of the
Gamma distribution is often lacking. To address this, a non-informative prior can be
implemented by adopting an improper uniform prior distribution, defined as p(z) o 1
for x € {0, | i = 1,2, 3} over the positive real line [43, 15]. Hence we have

n nan 0
(3.6)  p(X,S,L,0) 070505 exp (—21 1 =S — L% — 62 ||SIl, — 0 ||,c||*) .

4. Variational Bayesian inference. In Bayesian modeling, inference involves
conditioning on observed data X and estimating the posterior density p(S, £, 0|X).
This task can be tackled via Markov Chain Monte Carlo (MCMC) sampling or op-
timization approaches. However, in this paper, we adopt variational inference as the
methodological framework to approximate the latent variables £ and S, along with
the parameter vector 6.

4.1. Kullback-Leibler divergence and evidence lower bound. The central
goal of variational inference is to identify an optimal variational density ¢(S, £, @) that
closely approximates the posterior density p(S, £, 0|X), thereby facilitating efficient
inference on the latent variables and parameters [8].

Within this framework, we define a family of densities Q over the latent variables
and parameters. Each candidate ¢(S, L,0) € Q represents an approximation to the
true posterior. The optimal candidate is chosen by minimizing the Kullback-Leibler
(KL) divergence from the true posterior:

KL(q(S, £, 0)[p(S, £, 0]X)) = / oS, £, 0) log (m

(@1) S,L.0
_E log (45 £,0)_
q(S,L,0) p(S, L,6]X) :

The variational inference task simplifies to finding the variational density ¢'(S, £, 0)
that minimizes the Kullback-Leibler (KL) divergence from the variational density to

> dLds do

This manuscript is for review purposes only.
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the true posterior:

¢'(5,£,0) = argmin KL(¢(S.L.0) || p(S. L, 0]X)).
q(8,L£,0)eQ

According to (3.5), the posterior density p(S, £, 8|X) is the ratio between p(X, S, L, 0)
and p(X). The density p(X) involves integrating out the latent variables from the
joint density. Unfortunately, this integration is often intractable, rendering direct
computation of the posterior challenging. Expand the condition density, we have

KL(4(S,£.6) | (.£.613)) = ~Eys.ca 1o D252 ) | 4 vognc)

The second term is independent of latent variables and hyperparameters; therefore,
it’s just a constant in the minimization problem, and we can ignore this term. To
circumvent the intractability, we optimize an alternative objective that is equivalent
to the KL divergence up to an additive constant. Specifically, we minimize the first
term on the right-hand side of the equation, which constitutes the evidence lower
bound (ELBO), denoted J(¢(S, L, 0))

(42) J(q(S, E, 0)) = Eq(S,ﬁ,@) |:10g <W>:| .
This is
(4.3) q'(S,L£,0) = argmax J(q(S,L,0)).

q(S,£,0)€Q

4.2. Mean-field variational family. To fully specify the optimization prob-
lem, we now consider the variational family. The complexity of this family directly
impacts the difficulty of the optimization, with more intricate families posing greater
challenges.

In this paper, we concentrate on the mean-field variational family, which assumes
mutual independence among the latent variables, with each variable being governed
by its individual variational factor [8]. This assumption simplifies the variational
density into a factorized form:

3
4(S,£,0) = q(L)q(S) [ a(62).

=1

The selection of variational densities ¢(£), ¢(S), and ¢(6;) is importance. For
q(£) and ¢(S), we adopt normal distributions due to their versatility and analytical
convenience. The choice of the variational density ¢(6;) as a Gamma distribution is
motivated by the conjugacy properties derived from the likelihood function (Eq. 3.1)
and the prior distributions specified in Egs. (3.2) and (3.4). These indicate that the
posterior distribution of #; and the conditional posteriors of 6; for ¢ = 2,3 follow
Gamma distributions. Since the Gamma distribution is conjugate to itself, selecting
q(0;) as a Gamma density ensures compatibility with the posterior, facilitating efficient
variational inference.

Let Qg denote the set of Gamma densities for the hyperparameters 6; (i =
1,2,3), and Qar denote the set of multivariate normal densities over the tensor space
Rmxm2xn3 - The overall variational family Q can be expressed as the Cartesian prod-
uct of these sets: Q = On x Qu X Qg.
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4.3. Laplacian approximation. In (3.6), the non-quadratic properties inher-
ent in both the ¢; norm of S, which represents the sum of the absolute values of all
elements, and the tensor nuclear norm of £, which is the weighted sum of its singu-
lar values, pose significant obstacles for direct optimization within standard density
families. These non-quadraticities complicate direct inference procedures, rendering
them computationally intractable. To address this, we utilize the Laplace approxima-
tion method, involving mean calculation, variance estimation, and density function
construction, to approximate the density with a Gaussian distribution form.

Here, we consider a general density function ¢(x) with a single random variable
z and simplify (4.3) as

q'(z) = argmax/ q(z) log de.
a(@eon Jo q(x)

where Qs is the set of all the density functions for the Gaussian distribution. Ac-

cording to Gibbs’ inequality, for any two probability distributions ¢(z) and p(z) over

a domain €2, the following holds:

p(z) .
/Qq(x) log ) dz <0,

with equality achieved if and only if ¢(z) = p(x), implying identical means and vari-

ances. However, the non-quadratic nature of the log p(x) term complicates the direct

estimation of ¢(x) in practice. To address this, we employ the Laplacian approx-
imation method to estimate ¢(z). Since ¢(z) is Gaussian, we have the following
properties:

(1) First-Order Condition for the Mean (E;): The gradient of logg(z) evaluated at
E. is zero, implying E, is a maximum of log p(z).

(2) Second-Order Condition for the Variance (c2): The negative of the Hessian
(second-order derivative) of log¢(z) evaluated at E, equals the reciprocal of the
variance. However, since we directly approximate p(x), we use the Hessian of
log p(x) evaluated at E, to estimate o2:

1
V2 logp(z)|a—e, = ——-
UI
We now detail the estimation of E, and o2 based on these conditions for some specific
density function p(z).

4.3.1. Absolute value function. The ¢; norm of S, as the sum of absolute
element values, necessitates approximating the distribution of absolute values to en-
able effective optimization within Gaussian density families. Given the log-probability
density function log p(z) o —%(m — b)? — B|x|, the first step of Laplace approxima-

tion involves computing the mean E, of ¢(x), which corresponds to the maximum of
log p(z): '
E, = argmaxlogp(z) = argmin i(x — )% + Blz|.
x xr

In the paper, we utilize the sans serif font E accompanied by a subscripted variable x
to denote the expectation of a random variable z. The solution is given by:

E _ b — Bsign(b), if || > B
T 0, otherwise.
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VARIATIONAL BAYESIAN INFERENCE FOR TRPCA 11

Proceeding to the second stage, we estimate the variance, 02. When E, = 0, we

directly set 02 = 0. For non-zero E,, we leverage the inequality |z| < % + % with
equality at x = y # 0. By setting y = |E;|, this facilitates a lower bound on log p(x):
1
log p(x) > —5(:1: —b)% - 2|€m|x2 + const.

To simplify the variance estimation process, we exclude the constant term and mean
shift from consideration, as they do not impact the variance calculation. Approximat-
ing the second-order derivatives of this lower bound around E,, we derive the variance

estimate: )
5 B\ |Ez|
oz~ |1+ ) = —.
( |Esl |Ez| + 8

2
x

Ultimately, utilizing the estimated mean E, and variance o
Gaussian density approximation:

(4.4) g(z) =N (Em, |Eg|jif3> .

, we construct the optimal

1
2|Ex]

Given the approximation |z| & %+ ‘ET” at x = E,, we derive the expectation of

the absolute value of x:
1
2(|Ez| +8)

4.3.2. Nuclear norm. The Laplace approximation approach does not directly
extend the Gaussian density approximation of absolute functions to the nuclear norm
of matrices, given its intrinsic nature as a sum of singular values rather than element-
wise absolute values. When considering a density function incorporating the weighted
nuclear norm of a matrix X € R"*"2 we assume n; < ny for generality. The targeted
density is formulated as:

«
p(X) o exp (~ZIX — AJ% - BIX]. ),

(4.5) El| = E.| +

where A is a given matrix, 3 is a regularization parameter, and w € R™ represents
the vector of weights. We find the density ¢(X) that maximizes:

- rX)
q(X) = argq()r(r;zééN/q(X) log oX) dX.

Applying the Laplacian approximation method, the mean Ex of ¢(X) is obtained by
solving:

. «
Ex = argmin (3 [X — All7. + 81X, ) -

Given the SVD of A as A = UpDa VY%, the minimizer Ex for the aforementioned
problem can be formulated as [10]:

Ex = Uamax{Da — 21,0} V%,

where max{-,0} denotes an element-wise maximum operation applied to the diagonal
matrix. To compute the covariance of X, we introduce an inequality derived from

[31]:
1 o1
IX[l, < 5Tr(Y)XXT) + S YL,
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12 C. WANG, H. ZHENG, R. CHAN, AND Y. WEN

where w(Y) = (YYT)~1/2 and equality holds when X =Y. Hence we obtain

1
(4.6) X[l & 5 Tr(w(Ex)XXT) + [|Ex..

N =

Considering the j-th columns of X and A denoted by X.; and A.; respectively, we
bound the log-likelihood log p(X) as follows:

o
logp(X) > = <2||X:j — A3+ gxgw(Ex)X;O + const.
J

Evaluating the second-order derivatives of the lower bound with respect to X.; yields
the inverse covariance matrix E;(:lj = al + Bw(Ex). Let Ex = UDVT be the skinny

SVD of Ex, we have w(Ex) = UD~'U7”. Hence we have
(4.7) x, = UD (aD + 1)~ ' UT.

Finally, the optimal density approximation ¢(X) is expressed as:

(4.8) ¢(X) = [[NV(X,|Ex,,, UD (aD + L)' UT).
J
We have
(19)  EIXIZ = [Exli+ YT (Bx,) = [Ex|Z 4123 i
F F - 15 F - OCD1+5

According to the approximation of the nuclear norm in (4.6), we have
1 " 1
(4.10) E[X]. = 5 > B [XwEx)Xy] + 5 Exl
J

Let D; be the i-th singular values of Ex. Then we have

1

_ 2 1) = Y =13
(1) EX|, = [Ex], + 2T (@D + 507 ) = [Exl. + T X 5

i

4.4. Coordinate ascent variational inference. In order to maximize the
ELBO J(¢(S, L, 0)), we apply coordinate ascent variational inference (CAVI) [8, 47].
Starting from an initial density (go(€), go(L), go(S)), the densities of S, £ and 6 are
updated as follows:

(4.12) () = argmax T (oS (C)ae-1(0)).

(4.13) qe(L) = argmax 7 (q¢(S)q(L)qe-1(0)),
q(L)eQN

(4.14) qe(0) = argmax.J (q¢(S)qe(£)q(8)) ,
q(0)€Qg

where q;(0), ge(L), q¢(S) refer to the variational densities obtained in the ¢-th iteration.
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4.4.1. The density ¢(S). In accordance with (4.2), we formulate the optimiza-
tion problem as maximizing the evidence lower bound (ELBO) with respect to the
variational distribution ¢(S):

X, S
(4.15) argmax J(¢(S), qe—1(L,0)) = argmax /q(s)qu{_l(ﬁ’g) logp
a(S)eQn a(S)eQn

Given the joint density distribution as defined in (3.6), we can express the expectation
term within the ELBO as:

Eq_i(c.0) [logp(X,S, L, 0)]
Ez 1 2
=- Z ( ( ik — Eéﬁ_i],lk - Sijk) + Ef;z_l |Sijk|> + const,
ijk

where const is a constant independent of S. According to the discussion in Section
4.3.1, the mean of S;;, is given by

-1 5
= S|[p +E5 IS -

It is known that the minimizer is the well-known soft threshold:

e 1 E[—l -1 E[—l
) . 6
zgk E - Egiu if Xijk E Lijk > Ez;u
1 1
4.16 ES = o 1 Eﬁfl . -1 Eop '
( ) Sigk z]k E Ezzu if Xijk - ELU,C < _Eéil7
01 01
0, others.

Applying (4.4), the variance of S;j is given by

-1
E, Egijk |

E‘ 1|E s E§2‘1

£ _
Sijk

Then the density function of ¢(S) is given:
(4.17) 40(Siji) = N(SIES . B5,,,)-

4.4.2. The density ¢¢(L£). In accordance with (4.2), we formulate the optimiza-
tion problem as maximizing the evidence lower bound (ELBO) with respect to the
variational distribution ¢(L£):

(4.18)
argmax J (¢e(S), q(£), qe-1(8)) = argmax /Q(ﬁ)]qu(S)q/Z () log 2LE:5.50) o Dar.
a(L)EQN q(L)EQN

Given the joint density distribution as defined in (3.6), we can express the expectation
term within the ELBO as:

E£71 9 B
Ego(S)ar_s(0) [log (X, S, £,0)] = — (92 £ - (x -S|, +E5 ||c||*> + const

{—1

Eot -
- - Hc (X - Ef)H + =% |[Z]). | + comst
2n3 n *
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14 C. WANG, H. ZHENG, R. CHAN, AND Y. WEN
According to the discussion in Section 4.3.2, the mean of L is given by

EL = argml Eg;l L]l

This subproblem is to solve a proximal operator of the tensor nuclear norm, which
has a closed-form solution as tensor singular value thresholding (t-SVT) [33]. Let the

SVD of X — ES is given by X — ES = U’ « D’ « V' The update of E% is
(4.19) EL =U + DL % VZT,

where De is an ni X ng X n3 tensor that satisfies 52 = max{ﬁ — 7,0} with 7 =
EZ ! / EZ g . Recall that we adopt the notation of an overhne A to signify the applica-
tlon of the DFT to the tensor A specifically along its third dimension.

We apply (4.7) and then obtain the covariance matrix of the vector Z;jk

) — — -1_, T
2%:jk = n3u:é:k,Df'::k (Egl_llDf'::k + Egg_ll) uék .

Thus, we construct the density function and parameterize a normal density ¢(£) as
v = ‘
(4.20) 0@ = T[N (CanlEs =% )
ik

4.4.3. The density ¢(0). In accordance with (4.2), we frame the optimiza-
tion problem as maximizing the evidence lower bound (ELBO) with respect to the
variational distribution ¢(8),

(4.21)  argmax J(qe(S), qe(£),q(0)) = argmaX/Q(())qu(s,a) log %d()
1(0)€Qg 4(6)€Qg

where Qg is the set of all the density functions for the Gamma distribution. By
taking the partial derivative of the objective function in (4.21) with respect to ¢(8),
and letting it be equal to 0, we obtain that the optimal ¢(8) is proportional to

q(0) oc expEqy,(s,r)logp(X, S, L, 0)
with

Eq,(s5.0)l0gp(X, S, £,0) = =3By s.0) |X =S = L||T = 6:Fq,s) IS]);
*agqu(L) L]l + 5 log 61 4+ nlog 6z 4 nlog f3 + const.

Since ¢(0) = Hl 1 q(6;) is assumed to factorize due to the independence of the model
components, we derive the form of each ¢(6;) by comparing the coefficients of ; and
log 0; with the log-density of a Gamma distribution

3
log q(6 Z —1)logh; — Hi) + const,
i=1

where aa and bl are the shape and rate parameters, respectively. By comparing the
coefficients in qu(s rylogp(X, S, L,0) with those of a Gamma density (G(z|a,b) o
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x% texp(—bx)), we can infer the shape aéi and scale bgl_ parameters for each 0;.
Consequently, the shape parameters are given by:

a§1:g+1, ag2:n+1, a53:n—|—1.

While the scale parameters are expressed as expectations over the variational distri-
butions ¢;(S) and g¢(L), as defined in the following system of equations:

2
bgl = %qu(ﬁ)qz(s) [”X -§- £||F] )
(422 th, = Eqcs) IS
bo, = Eq, o) I, -

The computation for bgl involves the expectations of both ||S||?, and ||£H§, It is
obvious that

Egu(s) ISI7 = D B, ISiel* =) <’E§W

ijk ijk

2
+ Egm> :
According to (4.9), we have
Buo 1217 = 1 B 1Bl = o 2 (8, ]+ (25,.)
ae(£) -1l = 0 < qe(C) 1=:dkllp = 0 ~ Lkl p L) )"
Hence we have
2 1
qu(ﬁ)qe(s)(HX -5 EH%’) = HX - Eeﬁ - EgHF + e ZTr (Ezrjk> + Zzéiy‘k'
3 ik ijk
For the expectation of ||S||1, according to (4.5), we have
1 —
Ey) IS = Y Equs)|Sunl = IEII + 5 Y (Ef, IES,,, | +E5,)
ijk ijk

For the expectation of the nuclear norm [|L]],, it is the arithmetic mean of each slice
L..;, of the tensor £. Hence we need to evaluate ]qu(Z.,k) I|I£..kx]|«- According to (4.11),
we have

7 L nang —139¢ =1\
B,z ol = [ES || + 72 Tr((Eel D, +E, ) )

Hence B
ace 121 = [EE], + 5 S (652 + £) ).
k

Now, we focus on the expectation of the nuclear norm ||£||,, which requires evaluating
EqZ(Z“k)HZ::k”* for each slice L..;; of the tensor L.

We summarize the proposed adaptive method in Algorithm 4.1. For simplicity, we
refer to our proposed algorithm for solving the tensor nuclear norm model as VBIrnN-.

Remark 4.1. According to [7], a general theoretical treatment of analyzing the
convergence of CAVI is missing in the literature. This is due to the lack of tractability
of the updating formula involving unwieldy normalization constants and the technical
challenge of dealing with optimization over infinite-dimensional distributions. Here,
we will empirically show the convergence in Section 5.
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16 C. WANG, H. ZHENG, R. CHAN, AND Y. WEN

Algorithm 4.1 VBIryy :Variational Bayesian inference for the TNN-based TRPCA.

1: Initialization: Ey,,Eg,,Eg,, E% E%, X% %
2: LetCLgl:%—Fl, ag, =n+1, ag, =n+1.
3: while ¢ < fppay or not converged do

1 gl-1 r—1 EST
— 6< : o
Xijr —Ep = gy X =B > s
01 01
' VESY -1
4 Ef = -1, 1 o 5
Sijk Xijk — El:i‘k + Ezil, if ngk EE i < _Eezl
J 01 01
0, others

5. Take the SVD of X — E as X — E§ = U« Dl x V!T
6: Eézuz*Df*VzT
l _ EgzllEgijkl

T g = o Ty R
Sijk E61 \Esijk\+E92

8: Q(Sijk) = N(8|Ee Eélﬂc) and q(ﬂ) ij./\/ (ij|E£ 2£ k) .

) — __ -1_, T
and £% = ngll., D, (B D +ELT) T,

l]k’
9: _HX EZ_E HF/2+2n ij:rrr(z )+Zz]k Sijk 2
10 b, = E5l + 5 0 (EG IES,, | +E5,)
n —177¢ — -1
et =l + 5 S (8 D) )

12: q(6;) = g(é)i\agi,bf)i), and Ef)i = agi/bgii =1,2,3
13: end while
14: return £L=E. S = Efg

5. Variational Bayesian inference for weighted tensor nuclear norm.
In this subsection, we consider a variant of the tensor nuclear norm by reweighting the
singular values [23, 12]. Note that the standard tensor nuclear norm can be regarded
as a special version of the weighted tensor nuclear norm, where the weighting matrix
consists of elements that are all equal to one. Formally, for a non-negative matrix
W ¢ Rwin(nn2)Xns with column vectors W., the weighted tensor nuclear norm
| Ally, is defined as:

ng min(ni,ng)

HAHW* - Z Z W; jkO 5k,

where 05 denotes the j-th singular value of the k-th frontal slice A..; of tensor A.
To incorporate this weighted norm, we modify the robust principal component model
(1.2) as follows:

. [0
(1.23) wip {1 = £ ST+ 62lSlh -+ 6l |

During the inference of £, we update the expectation of L..; in (4.20) to
(4.24) EL = Ul + Dy + VO

where D%V is an n1 X ng X ng tensor that satisfies

£—1

7 b~ E,
DW::k = max {Dz::k - Efl—l
03

diag(W;k),O} .
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VARIATIONAL BAYESIAN INFERENCE FOR TRPCA 17

Concurrently, the covariance matrix of L..; is adjusted to:

ieT

— ¢ 1=t 1 -1
Eé = n3u::k:D 11k(7e) (Egl 1DT::k + Egg, ! dlag(wk)) Z/{::k:

L.jk
Given these updates, the computation of bgs = Eq,(z) lI£]lw, necessitates a corre-
sponding adjustment:

n3
Ny 1t 1 S\
Eo, o) | Lllw. = |IE|lw, + ) > T <(Ef)1 D, . +Ej ! diag(W ) 1) ) .
k=1

Note the subtle yet crucial change in the trace term, ensuring consistency with the
weighted norm definition.

5. Experiments. In this section, we give experimental results to illustrate the
performance of the proposed method. All the experiments are implemented using
MATLAB (R2022b) on the Windows 10 platform with Intel Core 15-1135G7 2.40
GHz and 16 GB of RAM.

5.1. Validation on synthetic data. Here, we generate each observation X in
R™xm2xM3 hy combining a low-rank tensor Ly and a sparse tensor Sy with a Gaussian
noise & in the the same dimensions. The low-rank tensor L£g is derived from the t-
product of two smaller tensors, namely P in R™*"*"3 and H in R"*"2*"3  where
r is significantly smaller than ns. The tubal rank of £y does not exceed r. The
entries of P are independently and identically distributed according to a Gaussian
distribution A (0,1/n1), and those of H follow A(0,1/n2). The sparse tensor Sy has
entries determined by a Bernoulli process, where each element is either +1 or —1 with
a probability p, and 0 with a probability 1 — 2p. The entries in Gaussian noise Sy
follow NV (0, 02).

We initiate our analysis by examining the convergence properties using a third-
order tensor with dimensions 40 x 40 x 30. The rank parameter r is set to 3, with the
parameter p at 0.1 and the noise level o at 1072, The algorithm is allowed a maximum
of 100 iterations, starting with initial guesses for £ and S as X and O, respectively.
The convergence of the algorithm is monitored using the relative mean square error
(RMSE) for £ and S, defined as IE2=Ec_llr 5,4 &S

5—E5 e
IEZIIF IESIF
gression of the objective values, RMSE, and parameters (61,02,03) is plotted across
iterations in Figure 1. Due to the nonlinear and nonconvex nature of simultaneously
optimizing three tensors and their associated parameters, initial fluctuations in the
objective values are observed. However, after approximately ten iterations, the objec-
tive values begin to decrease steadily and achieve convergence by the 30th iteration.
The parameter values similarly stabilize within these iterations. Both RMSE metrics
show a sharp decline, reaching as low as 10~* by the 30th iteration. Given these
observations, we establish a stopping criterion where the algorithm terminates when
RMSE falls below 10~ or when 50 iterations are reached, whichever occurs first. This
criterion ensures efficient and effective convergence to an optimal solution within a
reasonable number of iterations.

Here, we further evaluate the uncertainty quantification performance of our Vari-
ational Bayesian Inference (VBI) algorithm using the same simulated tensor as previ-
ously described. Figure 2. presents the mean estimates and 99.73% credible intervals
for the recovery of tensor filter Z;z’j with ¢ = 20,5 = 5,15,20. The mean values
consistently align with the ground truth across all fibers, while remarkably narrow

, respectively. The pro-
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credible intervals (indicated by minimal shading) demonstrate the high precision of
our method. This precision is further corroborated by the low parameter standard
deviations.

As part of a proof-of-concept study, we employ a partial sum of the tubal nuclear
norm [23] as a representative example for a weighted TNN in our numerical experi-
ments. We aim to compare our proposed algorithms, VBIpny and VBIpsTnN, against
two established methods in tensor rank approximation: TNN [33] and PSTNN [23].
For this comparative analysis, we set the noise levels o at 1073, 1072, and 10!, the
rank 7 at 3 and 5, and the parameter p at 0.01 and 0.1. We assess the performance of
these methods by calculating the relative square error between the recovered tensors,

L and S, and the ground-truth tensors, Lot and Sgr. These errors are quantified as

follows: errory = % for the low-rank component and errors = %

for
the sparse component.

As shown in Table 1, VBIpyn generally outperforms TNN across most tested
scenarios, while VBIpgTnN is better than PSTNN. Moreover, VBIpgrnn consistently
delivers the best performance, indicating its superior ability to recover both the low-
rank and sparse components of tensors under various noise and rank conditions. This
comparative analysis underscores the effectiveness of our proposed methods, particu-
larly VBIpstnn, in handling complex tensor decomposition with higher accuracy and

robustness against noise.

10"

10°

RMSE

10*
E——

03

Objective value

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration Iteration

FiGc. 1. Empirical evidence on convergence. Left: objective function, middle: RMSE, right:
parameters: 01,02, and 03, generated by Algorithm 4.1 across iterations.

FiG. 2. Uncertainty quantification: recovery szzij with 99.73% credible interval (shaded area)
where i = 20,5 = 5,10, 25.

5.2. Image denoising. In this section, we evaluate the performance of the pro-
posed method on image denoising. The peak signal-to-noise ratio (PSNR) [33] and the
structural similarity index (SSIM) [49] are used to evaluate the recovery performance
quantitatively.

5.2.1. Image with sparse noise. We conduct experiments on four images:
“house”, “moto”, “face”, and “hat”. In this study, we model the clean images as
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TABLE 1
Recovery results on the synthetic datasets with different settings.

Method TNN VBITNN PSTNN VBIPSTNN
o T p error, | errors | errory | errors | errory | errors | errory | errors
3 0.01 | 0.0029 | 0.0075 | 0.0025 | 0.0056 | 0.0028 | 0.0064 | 0.0023 | 0.0052
10-3 0.1 | 0.0034 | 0.0027 | 0.0032 | 0.0025 | 0.0033 | 0.0024 | 0.0029 | 0.0023
5 0.01 | 0.0026 | 0.0083 | 0.0025 | 0.0063 | 0.0024 | 0.0070 | 0.0022 | 0.0058
0.1 | 0.0033 | 0.0033 | 0.0036 | 0.0032 | 0.0030 | 0.0028 | 0.0031 | 0.0029
3 0.01 | 0.0286 | 0.0738 | 0.0248 | 0.0556 | 0.0276 | 0.0638 | 0.0230 | 0.0523
10-2 0.1 | 0.0344 | 0.0274 | 0.0302 | 0.0238 | 0.0325 | 0.0240 | 0.0275 | 0.0223
5 0.01 | 0.0257 | 0.0820 | 0.0242 | 0.0620 | 0.0240 | 0.0700 | 0.0219 | 0.0576
0.1 | 0.0331 | 0.0329 | 0.0322 | 0.0294 | 0.0298 | 0.0281 | 0.0281 | 0.0267
3 0.01 | 0.2744 | 0.7227 | 0.2317 | 0.5435 | 0.2769 | 0.6398 | 0.2255 | 0.5195
10-1 0.1 |0.3222 | 0.2623 | 0.2730 | 0.2262 | 0.3264 | 0.2410 | 0.2661 | 0.2187
5 0.01 | 0.2392 | 0.7841 | 0.2201 | 0.5921 | 0.2346 | 0.6896 | 0.2077 | 0.5620
0.1 | 0.2903 | 0.2961 | 0.2692 | 0.2589 | 0.2864 | 0.2705 | 0.2543 | 0.2484

the low-rank component and random corruptions as sparse outliers. Each image is
corrupted by setting 10 percent of the pixels to random values ranging from 0 to
255, with the locations of these distortions unspecified. We compare our proposed
method with several existing techniques, including LRTV [20], S,,,(0.9) [51], BTRTF
[55], TNN [33], and PSTNN [23], using the original implementations provided by the
respective authors. Given the absence of Gaussian noise in this task, the parameter
0, is set to a high value of 100 to accommodate this condition, while 65 and 63 are
set to 1. The truncation parameter K for VBIpgrnn is consistently set at 50 across
all cases.

Quantitative evaluations based on PSNR and SSIM are presented in Table 2, and
the corresponding restored images are displayed in Figure 3. Our observations indi-
cate that VBIpgTnN consistently outperforms the other methods in terms of PSNR,
achieving at least a 0.5 improvement and matching the best-performing methods in
SSIM values. Additionally, the restoration of the “hat” image by VBlpstnn and
BTRTF shows significantly clearer text compared to other methods. However, some
artifacts are noted in the “moto” image restored by BTRTF. In contrast, our method
exhibits fewer artifacts across all cases.

TABLE 2
Quantitative comparisons of sparse noise removal results obtained by different methods

Data | Index | LRIV | S4p(0.9) | BTIRTF | TNN | PSTNN | VBItny | VBIpsTaN
house | PSNR [ 26.167 | 28.028 | 25.930 | 27.030 | 27522 | 26.878 28.565
SSIM | 0.9517 | 0.9717 | 0.9374 |0.9655 | 0.9691 | 0.9596 0.9741
oto | PSNR[27.617 | 28.008 | 24.871 | 26.373 | 27.724 | 25.945 28.781
SSIM | 0.9590 | 0.9702 | 0.9130 |0.9554 | 0.9672 | 0.9440 | 0.9719
taco | PONR[32.524 | 34.061 | 32.500 |30.770 | 31.543 | 30.704 34.150
SSIM | 0.9529 | 0.9759 | 0.9405 |0.9509 | 0.9557 | 0.9475 0.9694
1oy | PSNR[32.626 | 32.787 | 32558 | 20.453 | 30.895 | 20.755 33.478
SSIM | 0.9435 | 0.9750 | 0.9581 |0.9473 | 0.9558 | 0.9516 0.9735
oan | PSNR[20.733 [ 30720 | 28.965 | 28.407 | 29.421 | 28.321 31.244
SSIM | 0.9518 | 0.9732 | 0.9375 |0.9548 | 0.9620 | 0.9507 0.9722

5.2.2. Image with mixed noise. In this subsection, we perform experiments
on four distinct images: “kid”, “house”, “river”, and “hat”. Initially, each image
is corrupted with sparse noise, following the procedure of our previous experiment.
Subsequently, we introduce Gaussian noise to each pixel, modeled by the distribution
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TABLE 3
Quantitative comparisons of mized noise removal results obtained by different methods

Data | Index | 3DTNN | S,,(0.9) | BTRTF | TNN | PSTNN | VBItny | VBIpsTaN
id_ | PSNR[26.670 | 31.806 | 32.071 | 28.691 | 20.542 | 29.446 32.802
SSIM | 0.9364 | 0.9752 | 0.9593 |0.9487 | 0.9558 | 0.9521 0.9720
house | PSNR [ 27.448 | 32302 | 30.791 | 29.765 | 30.450 | 20.862 32.496
SSIM | 0.9292 | 0.9708 | 0.9370 |0.9474 | 0.9532 | 0.9414 0.9659
ver | PSNR[ 24606 | 26.388 | 23.818 | 25.085 | 26.430 | 25367 | 26.968
SSIM | 0.9319 | 0.9471 | 0.8606 |0.9466 | 0.9515 | 0.9291 0.9504
1ot | PSNR|[ 28017 | 32771 | 32.553 | 29.449 | 30.801 | 20.753 33.463
SSIM | 0.9359 | 0.9747 | 0.9581 |0.9471 | 0.9555 | 0.9514 0.9733
oun | PSNR[ 26685 | 30817 | 20.808 |28.473 | 29.333 | 28.607 | 31.432
SSIM | 0.9334 | 0.9670 | 0.9288 |0.9475 | 0.9540 | 0.9436 0.9654

N(0,1073). The resultant observation, represented mathematically by X = L+S+¢&,
consists of the real image £, augmented by sparse noise S and Gaussian noise £. To
verify that our method’s effectiveness is robust to initial conditions, we set the initial
values of Ay to 100, and A, and 63 to 1, as the same as the ones used in the sparse
noise-only scenario.

We benchmark our proposed algorithm against several state-of-the-art methods,
including 3DTNN [53], S, (0.9) [51], BTRTF [55], TNN [33], and PSTNN [23]. Per-
formance metrics such as PSNR and SSIM are detailed in Table 3, with visual re-
sults presented in Figure 4. Notably, our algorithm outperforms both TNN and
PSTNN-—methods that utilize similar regularization techniques—across all test cases
in terms of PSNR, achieving an average improvement of 0.6 dB over the best-reported
results. Qualitatively, the images restored by VBlpsTnn exhibit notably sharper
boundaries compared to those produced by the other methods, which tend to exhibit
some degree of blurring.

Clean LRTV Swp(0.9) VBITnN VBIpsTNnN
L T E——

BTRTF TNN PSTNN
=

Fic. 3. Comparison of color image Gaussian noise removal performance on four examples.

5.3. Background modeling. The background modeling problem focuses on
distinguishing foreground objects from the background in video sequences. This is
commonly achieved by modeling the background as a low-rank tensor, which rep-
resents the relatively static scenes across different frames, and treating the moving
foreground objects as sparse components. In the context of Tensor Robust Principal
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Clean 3DTNN Swp(0.9) BTRTF PSTNN VBItrnn VBIpsTnN

RIS R R RS
e | B Il Il

Fic. 4. Comparison of color image mized noise removal performance on four examples.

Component Analysis (TRPCA), these are represented by the low-rank tensor £, and
the sparse tensor Sy, respectively.

We evaluated our models on sequences from the 12R dataset [32], specifically the
“bootstrap” (120 x 160 x 400), and “sidewalk” (220 x 352 x 400) videos, all character-
ized by slow-moving objects against varying backgrounds. Our models were compared
with several others, including 3DTNN, TNN, BTRTF, PSTNN, and t-S,, ,(0.9). For
VBIpsTNN, the truncated parameter K is set as 5, while the initial values of 61, 65, 03
are set as 1, 1, 100, respectively. The results of these comparisons are visually pre-
sented in Figure 5. Each video’s analysis starts with a frame from the sequence as
shown in column (a) of Figure 5, followed by background images generated by the
respective methods, from 3DTNN to our approach VBIpgTnn. Additionally, the mo-
tion in each scene is depicted in the second row for each video. In the “bootstrap”
video, except for 3DTNN, all the methods achieved superior background separation
with fewer ghost silhouettes. In the “sidewalk” videos, all the approaches perform
similarly, while 3DTNN has slightly better results.

Orignal 3DTNN Suwp(0.9)  BTRTF PSTNN VBItnN VBIpSTNN

F1a. 5. Background modeling results of two surveillance video sequences.

6. Conclusions. In this paper, we presented a method for recovering low-rank
tensors from observations contaminated by sparse outliers and Gaussian noise. Uti-
lizing variational Bayesian inference, we effectively resolved the tensors while simulta-
neously selecting model parameters. Numerical evaluations highlight the advantages
and superior performance of our approach compared to existing methods. Currently
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limited to linear and convex relaxations, our future work will explore extending this
parameter selection technique to nonconvex approximations within tensor recovery
models.
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