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Abstract: For the 3D localization problem using point spread function (PSF) engineering, we13

propose a novel enhancement of our previously introduced localization neural network, LocNet.14

The improved network is a physics-informed neural network (PINN) that we call PiLocNet.15

Previous works on the localization problem may be categorized separately into model-based16

optimization and neural network approaches. Our PiLocNet combines the unique strengths17

of both approaches by incorporating forward-model-based information into the network via a18

data-fitting loss term that constrains the neural network to yield results that are physically sensible.19

We additionally incorporate certain regularization terms from the variational method, which20

further improves the robustness of the network in the presence of image noise, as we show for21

the Poisson and Gaussian noise models. This framework accords interpretability to the neural22

network, and the results we obtain show its superiority. Although the paper focuses on the use23

of a single-lobe rotating PSF to encode the full 3D source location, we expect the method to24

be widely applicable to other PSFs and imaging problems that are constrained by well modeled25

forward processes.26

© 2025 Optica Publishing Group27

1. Introduction28

Locating point sources or structures in three-dimensional (3D) space is a common challenge29

in many scientific applications. This is particularly relevant in computer vision, which has30

numerous applications like robotics, augmented reality, and autonomous systems. For solving the31

3D localization problem, point spread function (PSF) engineering is a promising and effective32

technique that places a specific phase function into the imaging aperture. This aperture function33

processes the photons emitted by a source point and entering the imaging system into an image34

pattern that carries information about the full 3D location of the source. Unlike traditional35

methods that leverage stereo or multi-view images, PSF engineering imprints the 3D location36

information of the point sources into the position and form of the corresponding images acquired37

on a single two-dimensional (2D) sensor. PSF-associated methodologies have wide applications38

that range from telescopic to microscopic imaging systems and have significantly enhanced the39

precision of point source localization. For example, single-molecule localization microscopy40

(SMLM) [1] localizes individual fluorophores in 3D structures to render super-resolution imaging41

of fluorescent molecules. By leveraging the 𝑧-dependent form of the PSFs, 3D SMLM surpasses42

traditional diffraction limits, allowing for the visualization of biological structures at near-43

molecular resolution in all three dimensions. Numerous field studies have underscored this44



Fig. 1. Overview of the PiLocNet: the main improvement is in the inclusion of a
forward loss term based on the matrix A that models the 3D point spread function
along with an appropriate regularization term into the loss function. This added physics
information improves network training.

methodology’s significance and potential [2–5].45

Various depth-encoding phase masks have been developed for PSF engineering, yielding a46

variety of PSFs, such as astigmatic [6], double helix (DH) [7], and tetrapod [8]. Here, we mainly47

consider the single-lobe rotating PSF (RPSF) invented by Prasad [9]. By means of a suitable48

spiral phase function in the imaging aperture, one can create a PSF that rotates by an angle49

proportional to the depth (𝑧) coordinate of the point source around a center fixed by the 2D50

transverse (𝑥, 𝑦) coordinates of the source. The rotating PSF comprises a single bright lobe51

surrounded by a fainter ring-shaped substructure, which rotates together as the source defocus52

distance along the optical (𝑧) axis changes. One of the main benefits of a single-lobe rotating PSF53

over other more complicated PSFs like the DH and tetrapod PSFs is that the former concentrates54

the photon energy into its single lobe with a higher flux density, making it more noise-robust in55

crowded source fields [10].56

The main objective of the problem is to recover the 3D locations of point sources from their57

observed noisy image as accurately as possible. Various methods have been proposed and58

categorized into mathematical optimization and neural network approaches. Several variational59

methods [11–14] have been recently introduced from a non-convex optimization perspective. In60

the case of Gaussian image noise, the Frobenius norm is used as the data fitting term, and a61

continuous exact ℓ0 penalty (CEL0) is the regularization term. For the case of Poisson noise, the62

KL-NC model [14] uses the Kullback-Leibler (KL) divergence data-fitting term and a different63

non-convex regularization term. The optimization problem is solved by an iteratively reweighted64

ℓ1 algorithm.65

Deep-learning neural network approaches have also been proposed to solve this 3D localization66

problem. Two important architectures are DeepSTORM3D [15] and DECODE [16]. Specifically,67

DeepSTORM3D uses a 3D grid network to map and predict the coordinates of the point68

sources, while DECODE uses a different structure, with multiple channels, to predict different69

kinds of information about the input images, including the 3D coordinates, brightness, and the70

probability of existence of point sources. Recently, Dai et al. proposed LocNet [17], adapting71

DeepSTORM3D on single-lobe rotating-PSF images, with an additional post-processing step to72



cluster the initial prediction of the network.73

In the field of neural network studies, the method of physics-informed neural network (PINN)74

has emerged in recent years [18–21], initially in the context of problems involving partial75

differential equations (PDEs) but later applied more widely. The goal is to incorporate any known76

physics information about the problem either directly into the neural network structure or via the77

loss function.78

Inspired by the idea of PINN, we propose here the Physics-Informed Localization Network79

(PiLocNet) for the PSF localization problem, as shown schematically in Fig. 1. Given the process80

of PSF image generation, the forward model is a known piece of physical information. Supplying81

such physical information to the neural network is helpful to the network in generating better82

results than a random black-box kind of fitting approach characteristic of more conventional83

neural networks. With model-specific data fitting and regularization terms, a PINN-based method84

is interpretable to the neural network. The numerical experiments we report here have been85

conducted based on the RPSF model. Our results, as we will show, prove that the added physical86

information can significantly improve the prediction accuracy in terms of both precision and87

recall rates. Our ablation studies also verified the robustness of PiLocNet.88

The rest of this paper is organized as follows: In Section 2, we briefly review the optical89

model of the rotating PSF and the variational methods we used previously for this localization90

problem. In Section 3, we introduce the specific model structure, including an improved loss91

function that encompasses both the forward model and regularization terms. Next, we introduce a92

series of simulation-based experiments that we conducted to verify the effects of our PiLocNet in93

Section 4. We conclude the paper with a summary of our findings and future work in Section 5.94

2. Single-lobe point spread function and its noise models95

This section will provide a review of the single-lobe rotating PSF forward model and the two96

different noise models that we explore in the paper.97

2.1. Forward model of single-lobe RPSF98

The forward model has been described in great detail in our previous papers [9, 13, 14]. Here,99

we only present a brief summary of the model. The RPSF image, A𝜁 , for a point source with100

defocus parameter 𝜁 , a unit flux 𝑓 = 1, at the source location r𝑂 = (𝑥𝑂, 𝑦𝑂) is given by:101

𝐴𝜁 (s) =
1
𝜋

����∫
Ω

exp
[
𝑖

(
2𝜋u · s + 𝜁𝑢2 − 𝜓(u)

)]
𝑑u

����2 ,
where 𝜁 = − 𝜋 𝛿𝑧𝑅2

𝜆𝑧𝑂 (𝑧𝑂+𝛿𝑧) , Ω represents the circular disk-shaped clear pupil of radius 𝑅, and102

𝑖 =
√
−1. The quantity, s = r

𝜆𝑧𝐼/𝑅 , is the position vector, r, of an image-plane point relative to103

the Gaussian image location, when expressed in units of the Rayleigh diffraction scale, 𝜆𝑧𝐼/𝑅,104

in which 𝜆 is the imaging wavelength, and 𝛿𝑧, 𝑧𝑂, 𝑧𝐼 are the distances from the object plane105

to the in-focus object plane, the in-focus object plane to the pupil plane, and the pupil plane106

to the image plane, respectively. The symbol u denotes the position vector in the plane of the107

pupil, in units of the radius of the pupil. Its polar coordinates are u = (𝑢, 𝜙𝑢). The circular108

pupil is segmented into 𝐿 different contiguous annular Fresnel zones, with each zone carrying a109

spiral phase function, 𝜓(u), with the number of complete phase cycles changing successively110

by 1 from one zone to the next. The RPSF can be shown [9] to continuously rotate within the111

scaled defocus range, 𝜁 ∈ [−𝜋𝐿, 𝜋𝐿], as it begins to spread out, break apart, and lose its shape112

unacceptably outside this range. An illustration of the images of a single point source at different113

values of the depth parameter 𝜁 , when the RPSF is used, is presented in Fig 2.114

With the above formulation, for 𝑁 point sources the observed image data count 𝐺 (𝑥, 𝑦) at115



Fig. 2. Single-lobe RPSF images of a single point source for different values of its
depth parameter, 𝜁 , for a fixed (𝑥, 𝑦) location. An anti-clockwise off-center image
rotation about the (𝑥, 𝑦) location with increasing 𝜁 is evident.

location (𝑥, 𝑦) may be expressed as:116

𝐺 (𝑥, 𝑦) ≈ N
(
𝑁∑︁
𝑖=1

𝐴𝑖 (𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖) 𝑓𝑖 + 𝑏

)
,

where (𝑥𝑖 , 𝑦𝑖) and 𝑓𝑖 are the transverse coordinates and flux of the 𝑖th point source. Its depth117

coordinate, 𝑧𝑖 , is embedded, via the depth-parameter value 𝜁𝑖 , in the PSF 𝐴𝑖 , 𝑏 is a uniform118

background count at each pixel, and N is the operator for incorporating noise.119

Specifically, the forward model for the Gaussian noise case can be conceptualized as following120

the Gaussian distribution at the 𝑝-th pixel,121

𝐺 𝑝 ∼ N( [T (A ∗ X)] 𝑝 + 𝑏, 𝜎2), 𝑝 = 1, 2, ..., 𝑑, (1)

where N(𝜇, 𝜎2) denotes the Gaussian distribution with expectation 𝜇 and variance 𝜎2, A ∗ X is122

the 3D convolution of A with X, and T projects out a 2D slice of the convolution. The symbol123

A denotes the 3D PSF dictionary represented as a cube, which is built from a series of images,124

each corresponding to a different depth, while X contains the 3D coordinates of the point sources125

where each entry’s value is the corresponding source flux. The total number of pixels in the 2D126

image array is 𝑑 = 𝐻 ×𝑊 . The forward model for the case of Poisson noise takes a similar form:127

𝐺 𝑝 ∼ P( [T (A ∗ X)] 𝑝 + 𝑏), 𝑝 = 1, 2, ..., 𝑑, (2)

where P(𝜆) denotes the Poisson distribution with expectation 𝜆.128

2.2. Optimization approach: the variational models129

In order to recover the 3D tensor X from the given observed image 𝐺, the optimization approach130

can be formulated as a minimization problem,131

min
X

D (T (A ∗ X) + 𝑏, 𝐺) + R (X) ,

where D enforces data fitting and R (X) is an appropriate regularization term. We next formulate132

these two terms for our two different noise models.133

2.2.1. The case of Gaussian noise134

Gaussian noise is a common type of noise for which the random error, as we have just noted, has135

a Gaussian probability distribution. This noise is present due to various factors such as sensor136

read-out error, non-uniform brightness response of the image sensor, noise and mutual interference137

from circuit components, and prolonged usage of the image sensor at high temperatures. For the138

Gaussian noise case, the data-fitting term is a simple quadratic function,139

D(T (A ∗ X) + 𝑏, 𝐺) := ∥T (A ∗ X) + 𝑏 − 𝐺∥2
𝐹 ,



where ∥ · ∥𝐹 denotes the Frobenius norm, namely the ℓ2 norm, of the vectorized input. The140

regularization term enforces sparsity, for which we used a non-convex term approaching the ℓ0141

norm for linear least squares data fitting problems. Specifically, we have used the Continuous142

Exact ℓ0 (CEL0) penalty function [22] defined as:143

R(X) := 𝜙CEL0 (X) =
∑︁
𝑖, 𝑗 ,𝑘=1

𝜙(∥T (A ∗ 𝛿𝑖 𝑗𝑘)∥, 𝜇;X𝑖 𝑗𝑘), (3)

where 𝜙(𝑎, 𝜇; 𝑢) = 𝜇 − 𝑎2

2

(
|𝑢 | −

√
2𝜇
𝑎

)2
1
{ |𝑢 | ≤

√
2𝜇
𝑎

}
and 1𝐸 :=

{
1 if 𝑢 ∈ 𝐸 ;
0 others.

. In addition, 𝛿𝑖 𝑗𝑘144

is a 3D tensor whose only nonzero entry is at (𝑖, 𝑗 , 𝑘) with value 1; 𝜇 is the parameter to control145

the non-convexity. The minimization problem was formulated as146

min
X≥0

∥T (A ∗ X) + 𝑏 − 𝐺∥2
𝐹 +

∑︁
𝑖, 𝑗 ,𝑘=1

𝜙(∥T (A ∗ 𝛿𝑖 𝑗𝑘)∥, 𝜇;X𝑖 𝑗𝑘)
 .

2.2.2. The case of Poisson noise147

The Poisson noise model describes the probability distribution of the number of random events,148

such as photon counts, occurring per unit time. The data fitting term for the Poisson noise case is149

the 𝐼-divergence, which is also known as the Kullback-Leibler (KL) divergence [23]:150

D(T (A ∗ X) + 𝑏, 𝑔) := 𝐷𝐾𝐿 (T (A ∗ X) + 𝑏, 𝐺),

where 𝐷𝐾𝐿 (𝑧, 𝑔) = ⟨𝑔, ln 𝑔

𝑧
⟩ + ⟨1, 𝑧 − 𝑔⟩. The sparsity-enforcing regularization term is designed151

as a non-convex function [24–26]:152

R(X) := 𝜇
∑︁
𝑖, 𝑗 ,𝑘=1

𝜃 (𝑎;X𝑖 𝑗𝑘) = 𝜇
∑︁
𝑖, 𝑗 ,𝑘=1

|X𝑖 𝑗𝑘 |
𝑎 + |X𝑖 𝑗𝑘 |

,

where 𝑎 is a fixed parameter that determines the degree of non-convexity. The Poisson153

minimization problem was formulated as154

min
X≥0

(1,T (A ∗ X) − 𝐺 ln(T (A ∗ X) + 𝑏)) + 𝜇
∑︁
𝑖, 𝑗 ,𝑘=1

|X𝑖 𝑗𝑘 |
𝑎 + |X𝑖 𝑗𝑘 |

 .

3. The PINN Methodology155

Here we propose a physics-informed neural network called PiLocNet that works for RPSF156

imaging for the Gaussian and Poisson noise models. As an enhancement of the typical black-box157

type of neural networks, the proposed model builds the known physics information of the forward158

process into a PINN framework through additional loss functions.159

3.1. Convolutional Neural Network: LocNet160

LocNet [15], which combines a deep convolutional neural network (CNN) with a post-processing161

step, was adopted for RPSF-image based 3D source localization. The CNN part, similar to162

DeepSTORM3D, consists of 3D grid layers to accommodate the point source prediction. Several163

practical CNN techniques were employed, such as up-sampling and residual layers. The loss164

function of LocNet is165

LLocNet = ∥G3D ∗ (X̂ − XGT)∥2
𝐹 ,



which is the mean square error of the ground truth XGT and prediction X̂, with both smoothed by166

a 3D Gaussian kernel G3D. After the network generates the initial predictions, a post-processing167

step further refines the results by treating each cluster of closely spaced point sources as a single168

source and removing sources with brightness lower than a threshold.169

3.2. The pipeline of PiLocNet and its architecture170

LocNet is a data-driven approach that only considered the Poisson noise scenario in Ref. [15].171

Here we incorporate PINN into LocNet and propose a new framework, PiLocNet, for both172

Poisson and Gaussian noise cases. The main idea of PINN is to include information about the173

physics of the problem at hand into the neural network’s loss function, as illustrated in the Fig. 1.174

This approach helps the training process to achieve more accurate results by minimizing the loss175

with improved guidance provided by known physical information. In this context, we discuss176

how this concept can be implemented to solve the PSF problem. We modify the LocNet loss177

function by adding to it two extra terms,178

LPiLocNet = 𝑤1D(T (A ∗ X̂) + 𝑏, 𝐺) + 𝑤2R(X̂) + 𝑤3LLocNet, (4)

the first term being the data-fitting term, which contains the PSF operator, A, the known physics179

information to guide the neural network. However, to add the data fitting term into the loss180

function correctly, it needs to be model-dependent for different noise types and must, furthermore,181

be accompanied by an appropriate regularization, which is the second term. Additionally, we182

need different relative weights, 𝑤1 : 𝑤2 : 𝑤3, for the three terms to ensure proper balance and183

trade-off of these terms.184

We employ the same data fitting and regularization terms for the cases of Gaussian and Poisson185

noise that we described in the previous section, but now allow them to have different relative186

weights. In other words, we use the following PINN loss functions for the two noise cases,187

respectively:188

L𝑔 = 𝑤1∥T (A ∗ X̂) + 𝑏 − 𝐺∥2
𝐹 + 𝑤2ΦCEL0 (X̂) + 𝑤3∥G3D ∗ (X̂ − XGT)∥2

𝐹 . (5)

and189

L𝑝 = 𝑤1
〈
1,T (A ∗ X̂) − 𝐺 ln(T (A ∗ X̂) + 𝑏)

〉
+𝑤2

∑︁
𝑖 𝑗𝑘

| X̂𝑖 𝑗𝑘 |
| X̂𝑖 𝑗𝑘 |+𝑎

+𝑤3∥G3D∗(X̂−XGT)∥2
𝐹 . (6)

The entire loss function, expressed as a weighted summation, facilitates the training process190

of the neural network via gradient descent. Each component of the loss is computed to yield191

distinct absolute values, particularly of varying magnitudes. Therefore, the weighting of each loss192

component is critical in guiding the correct convergence of the neural network. If the loss weights193

are not appropriately balanced, training might be predominantly influenced by a single term,194

resulting in undesired outcomes, or potentially causing the network training to fail. For most of195

the experiments conducted in the paper, the weights 𝑤1, 𝑤2, 𝑤3, were in the ratio 1:700:1000 for196

the case (5) of Gaussian noise and 1:1:500 for the case (6) of Poisson noise. For experiments in197

ablation study on different noise levels, one can go through a searching process to reach optimal198

weight values correspondingly. The approach for the search strategy will be elaborated upon in199

detail in Section 4.3.200

The architecture of PiLocNet closely resembles that of LocNet [17], which was shown to201

be robust. In a hypothetical experiment with no noise added, the network can output results202

with very high accuracy, proving that it is well-designed. The network leverages convolutional203

kernels of specific dimensions to extract pertinent features, followed by batch normalization to204

expedite convergence. Subsequently, the ReLU activation function is applied. Finally, a shortcut205



connection is utilized to merge the input content with the output layer, facilitating residual206

convolution via a summation layer. The final prediction layer consists of a convolution layer207

with a convolution kernel size of 𝜋 and an activation layer with an activation function with a208

HardTanh range of 𝜋. The final output is a 3D lattice image, where the value of each vertex209

reflects the degree of confidence that there is a point source near the point. The higher the value,210

the more likely a point source is near the lattice point.211

From the output of the network, we obtain a tensor X̂ ∈ R𝐻×𝑊×𝐷 as the initial prediction,212

where 𝐻 is the pixel size of height, 𝑊 is the pixel size of width, and 𝐷 is the pixel size of depth.213

The value of the tensor at a node is proportional to the probability of the existence of a real214

source near this node; we name the value of each node as intensity, denoted as X̂𝑖 𝑗𝑘 ∈ [0, 𝜋].215

After initial prediction, we employ the same post-processing as in [13] to X̂, which refines the216

results by clustering nearby points of 2 pixels, and removing points with brightness lower than217

a threshold set at 5% of the highest value of the tensor. In this way we obtain a set of points218

X̂ = {x̂1, ..., x̂𝑚}, where x̂𝑖 ∈ ((0, 𝐻) × (0,𝑊) × (0, 𝐷)) ⊆ R3 is a 3D location vector for each219

𝑖 ∈ {1, 2, ..., 𝑚}.220

3.3. Network training221

The construction of our training dataset proceeds as follows. We generate a corpus comprising222

10,000 images, each defined on a 96 × 96 pixel array. The flux values for the point sources223

within each image are drawn from a Poisson distribution with a mean of 2000 photon counts.224

Subsequently, 90% of the images in this dataset are allocated for training purposes, while the225

remaining 10% are used for validation. Within this cohort of 10,000 images, the number of226

point sources is randomly distributed following a uniform distribution from 5 to 50. For our test227

dataset, we introduce varying numbers, also referred to as densities, of point sources, specifically228

5, 10, 15, 20, 25, 30, 35, 40, and 45 sources per image, with the aim to assess our model’s efficacy229

across different source densities. Finally, we generate 100 images for each of these densities, thus230

900 images in all, for comprehensive testing. We employ the Adam optimization algorithm [27]231

in conjunction with a mini-batch size 16. The initial learning rate is stipulated at 1× 10−3, with a232

decay factor of 0.5 applied after every three epochs if there is no discernible improvement in the233

loss. The termination criterion for the training process is either the absence of any improvement234

in validation loss over 15 epochs or a validation loss lower than 1 × 10−7.235

The network under consideration is relatively compact and cost-efficient, with a total of 0.3236

million parameters. The GPU memory consumption is maintained within 10 GB for the batch237

size of 16. Such a configuration permits the training to be executed on a single GPU card or238

distributed across multiple GPUs. Typically, effective training of the model requires between239

100 to 180 epochs. Employing an A100 GPU decreases the time per epoch to between 30 to240

80 seconds, thereby the overall training duration to 30 to 100 minutes. Also tested with lower241

resources, training on an RTX 2080Ti GPU, each epoch requires more than 2 minutes, resulting242

in a total training time of approximately 3 to 5 hours. The inference for processing of 100 test243

images per group requiring approximately 30 seconds in both devices.244

4. Results245

To evaluate the 3D-localization performance of our proposed method, we employ recall and246

precision rates. The recall rate is defined as the ratio of the total number of predicted true247

positives to the total number of point sources that should have been identified as positive. The248

precision rate is similarly defined as the ratio of the total number of true positives to the total249

number of point sources predicted as positive. True positives are identified based on a specified250

distance threshold between predicted and ground-truth point sources based on [17]. Note that251

reducing false negatives improves recall, while reducing false positives improves precision.252



4.1. Comparison with previous methods253

Based on the experimental setup outlined previously, we compare the average recall and precision254

rates for PiLocNet with those for three different methodologies: the variational methods [13], the255

original LocNet method [17], and a modified LocNet v2, which has the same loss function as256

LocNet except that its architecture is changed to be that of PiLocNet. The primary changes we257

have made were the removal of the up-sampling layer and adjustments made to the dilation rates258

within the residual convolution layers. The decision to eliminate the up-sampling layer stemmed259

from our observation that its removal reduces training time substantially without compromising260

the model’s performance. The dilation rates were aligned from {1, 2, 5, 9, 17} to {1, 2, 4, 8, 16}.261

A comparative analysis between PiLocNet and LocNet v2 is crucial to ascertain the efficacy of262

our proposed model in terms of PiLocNet’s use of a more physically sensible loss function. The263

chosen noise model is either Gaussian or Poisson, as described by Eq. 1 or Eq. 2, respectively. For264

the case of Gaussian noise, its standard deviation, 𝜎, is taken to be uniform across the image and265

equal to a fraction of the value, 𝐼max, of the maximum flux at the pixels in an arbitrary observed266

image. Unless noted otherwise, we chose 𝜎 = 0.1 × 𝐼max for our studies on the Gaussian noise267

model. We chose the background value of 𝑏 = 5 for both noise models.268

Table 1. Evaluation results of ℓ2 − CEL0, LocNet, LocNet v2, and PiLocNet for RPSF
images with Gaussian noise

ℓ2 − CEL0 [13] LocNet [17] LocNet v2 PiLocNetg

Density Recall Precision Recall Precision Recall Precision Recall Precision

10 95.80% 79.72% 96.00% 92.15% 93.60% 92.60% 93.60% 92.62%

15 93.20% 77.68% 95.60% 87.40% 93.73% 88.99% 94.27% 89.55%

20 89.30% 72.12% 92.95% 81.63% 92.00% 85.21% 92.15% 85.84%

30 87.20% 58.77% 88.10% 72.56% 88.27% 79.15% 88.30% 80.12%

40 77.40% 52.87% 84.28% 63.51% 85.12% 72.44% 85.23% 73.06%

Average 88.58% 68.23% 91.39% 79.45% 90.54% 83.68% 90.71% 84.24%

Table 2. Evaluation results of KL-NC, LocNet, LocNet v2, PiLocNet for RPSF
images with Poisson noise

KL − NC [13] LocNet [17] LocNet v2 PiLocNetp

Density Recall Precision Recall Precision Recall Precision Recall Precision

10 99.20% 95.00% 98.90% 96.28% 99.20% 98.63% 99.30% 99.17%

15 98.80% 89.18% 98.87% 95.54% 99.13% 98.99% 99.33% 98.99%

20 97.55% 85.02% 98.00% 94.45% 97.99% 98.70% 98.95% 97.85%

30 97.30% 79.54% 96.87% 93.97% 97.53% 95.91% 97.80% 96.67%

40 95.58% 73.64% 95.00% 90.59% 96.20% 93.83% 96.43% 94.17%

Average 97.69% 84.48% 97.53% 94.17% 98.15% 97.07% 98.36% 97.37%

The comprehensive outcomes are presented in Tables 1 and 2, delineating the performance269

metrics across the aforementioned methods under Gaussian and Poisson noise, respectively. The270

percentages shown in bold font in each row are the best ones that we obtained for recall and271



precision for the corresponding source density for the four methods. We restrict our attention272

here to only those images in which the number of point sources is either 10, 15, 20, 30, or 40273

in order to have a more meaningful comparison with the previously published results of the274

KL-NC [13] and ℓ2 − CEL0 [13] optimization approaches.275

The tabulated results show that both LocNet and PiLocNet, as neural network-based methods,276

substantially outperform the variational approach in handling images with either Gaussian or277

Poisson noise. Notably, PiLocNet, with its physics-informed design, shows typically the most278

impressive results, leading to the highest overall performance metrics for both noise cases.279

Specifically, PiLocNet improves precision by approximately 0.6% over LocNet v2 in the Gaussian280

noise scenario and 0.3% in the Poisson noise case. The recall rate has also improved, but not as281

much as the precision rate. The improvement in precision can be more substantial, however, at282

higher noise levels, as we will see later in Sec.4.4. This enhancement highlights the efficacy of283

incorporating physical knowledge into the neural network framework, particularly evident in the284

precision gains across both types of noise, affirming the value of physics-informed approaches in285

improving neural network predictions.286

It is noteworthy that LocNet v2 consistently demonstrates a significant improvement in287

precision rates compared to LocNet [17]. This enhancement stems from LocNet v2’s omission288

of the upsampling algorithm during its operation, which reduces the number of predicted point289

sources, particularly the false positives.290

An example of recovery of sources from their noisy Gaussian and Poisson RPSF image data291

has been shown in Fig. 3 and Fig. 4. The first row in each figure refers to the same specific 2D292

snapshot where “o” labels the (𝑥, 𝑦) positions of the ground-truth point sources, “x” labels the293

estimated point sources according to the method used, and “△” represents a mismatch, with the294

red and yellow colors labeling false-negative and false-positive sources, respectively. The second295

row shows the locations in 3D grids where the ground-truth point sources are in red markers with296

red “△” being false-negative and red “o” being true-positive. The estimated source positions are297

in yellow for the 2D snapshots in the first row and in blue for the 3D grids in the second row,298

with “△” denoting false-positive and “x” denoting true-positive. It is evident that compared to299

the original LocNet, LocNet v2 exhibits lower prediction errors. However, it fails at times to300

predict a ground-truth point source. The fact that when two or more ground-truth point sources301

are located closely, LocNet v2, having abandoned the upsampling process, is less sensitive to302

locating such densely packed point sources is the root of such failures. By contrast, since the303

loss function of PiLocNet incorporates additional information, it more effectively mitigates these304

errors.305

(a) CEL0 [13] (b) LocNet [17] (c) LocNet v2 (d) PiLocNet

Fig. 3. 2D snapshot images (top) and 3D locations (bottom) for the 30-point-source
case with Gaussian noise. The triangles denotes the missed matches.



(a) KL-NC [13] (b) LocNet [17] (c) LocNet v2 (d) PiLocNet

Fig. 4. 2D snapshot images (top) and 3D locations (bottom) for the 30-point-source
case with Poisson noise. The triangles denote the missed matches (see text for more
details).

4.2. Contributions of the data-fitting and regularization terms306

For the purposes of this section, let us rewrite the physics-informed loss function of PiLocNet,307

namely Eq. 4, in a simplified form, LPiLocNet = 𝑤1D + 𝑤2R + 𝑤3MSE, where D and R are308

model specific terms. Setting the first two weights to zero, 𝑤1 = 0, 𝑤2 = 0, reduces PiLocNet to309

LocNet v2. For this section, we set up control groups to study the individual contribution of each310

added term within the loss function, presenting our results in Table 3.311

Table 3. Effectiveness of data-fitting and regularization terms for Gaussian and
Poisson noised images. The average values of precision and recall among

different density cases are shown.

Components Gaussian noise Poisson noise

D R MSE Recall Precision Recall Precision

× × ✓ 90.54% 83.68% 98.15% 97.07%

✓ × ✓ 90.67% 82.38% 98.27% 96.33%

× ✓ ✓ 89.78% 84.19% 97.96% 96.21%

✓ ✓ ✓ 90.71% 84.24% 98.36% 97.37%

For the Gaussian case, adding D to MSE improves the average recall rate from 90.54% to312

90.67%, but the average precision drops from 83.68% to 82.38%. When R is added to MSE,313

promotes sparsity and thereby r, we increase the precision from 83.68% to 84.19%, while the314

average recall is not as good as that of the group in which only D has been added to MSE. For315

PiLocNet, we find the best average recall and precision rates. Similarly, for the Poisson case,316

adding D to MSE improves average recall from 98.15% to 98.27%, the latter being the best recall317

result among all groups. However, its precision decreases from 97.07% to 96.33%. Combining318

D, R, and MSE, we once again achieve the best average recall and precision rates.319

Fig. 5 illustrates the effect of each added term in the loss function. Simply combining MSE320

and D turns some false negatives into true positives, while also introducing some false positives,321

as evidenced by Fig. 5b, which displays a higher count of falsely estimated points compared to322

Fig. 5a. In contrast, the regularization term R tends to elevate the precision rate, as its inclusion323

within the variational framework acts to control sparsity, thereby mitigating the occurrence324

of undesired false positives. Fig. 5c is a compelling illustration of how the incorporation of325



(a) MSE only. (b) MSE + D. (c) MSE + R. (d) MSE + D + R.

Fig. 5. The effects of the different components in the loss function Eq. 4. The triangles
denotes the missed matches.

regularized terms alone can diminish the occurrence of falsely estimated points. By leveraging326

both components, PiLocNet balances these effects, leading to an overall enhancement, as seen in327

Fig. 5d.328

4.3. Optimization of the Relative Weights, 𝑤1 : 𝑤2 : 𝑤3329

To correctly incorporate each term and ensure the proper direction of the network’s gradient330

descent, it is crucial to effectively search for the optimal ratio of the weights 𝑤1, 𝑤2, and 𝑤3. The331

third term, MSE, serves as the foundational loss term, directing the training process and enabling332

the neural network to align prediction coordinates with the ground truth, thereby offering the333

most efficient result-driven guidance for network training.334

As our results in Sec. 4.2 show, adding the D term to this MSE term tends to enhance recall335

because it encapsulates the physical information in the PSF, A, for both noise models. If the336

weight 𝑤1 is set too low, any improvement in recall might be negligible. Conversely, if 𝑤1 is337

set too high, the first term could dominate the training. However, since this term simulates a338

forward process generating the 2D image as compared to the observed image, it can steer the339

network training only indirectly at best. Thus we still need to rely largely on MSE as the core340

guiding element in the main training phase. Only an appropriate proportion of the first term341

D can enable the network to make more accurate predictions. As previously mentioned and342

supported by the mathematical model, incorporating only the data-fitting term D might boost343

recall, but that may also lead to an increase in false positives, reducing precision. The second344

term R is therefore added as a regularization penalty term to mitigate overfitting.345

Our search strategy was therefore to start with the third term as the basic foundation for network346

training, then add the first term, adjust the weight until recall was improved and optimal, and then347

finally add the second term and adjust its weight to improve and optimize precision. The initial348

step involved starting with the weight ratio of the first and third terms, 𝑤1 : 𝑤3, at five rather349

disparate values, from 1:1, 1:10, 1:100, 1:1000, to 1:10000, with 𝑤2 set to 0. After finding out350

the optimal ratio among these five, we checked to see if smaller adjustments of the ratio around it351

could be made to reach the improve the recall further. A similar subsequent search strategy on352

the correct 𝑤2 : 𝑤3 ratio that optimizes precision without greatly affecting recall allowed us to353

arrive at the final optimal weight combination, 𝑤1 : 𝑤2 : 𝑤3. For this choice of relative weights,354

we were thus able to improve both recall and precision in the final results obtained by PiLocNet355

when compared to those obtained by LocNet v2.356

4.4. Robustness on Noise Level357

We also conducted a comprehensive assessment of the robustness of PiLocNet’s performance,358

relative to LocNet v2’s, across varying noise levels for the two models of noise considered359

here. We chose the number of point sources to be 25 for this purpose. In the case of Gaussian360

noise, we evaluated performance across five different noise levels, as depicted in Fig. 6a, where361



the horizontal axis represents the noise level, with the noise standard deviation, 𝜎, being the362

indicated value multiplied by 𝐼max and the background 𝑏 fixed at 𝑏 = 5 for each noise level. The363

results involving Poisson noise are illustrated in Fig. 6b, where the horizontal axis represents364

the background photon count, 𝑏. Across both noise types, PiLocNet consistently outperformed365

LocNet v2, demonstrating superior precision while maintaining a very similar recall rate (nearly366

overlapping red and blue□’s). Notably, as the noise level increased, PiLocNet exhibited even more367

significant precision gains over LocNet v2. For instance, under Gaussian noise with a variance of368

𝜎 = 0.100 × 𝐼max, PiLocNet’s precision was higher by about 1%, while at 𝜎 = 0.125 × 𝐼max, its369

precision gain exceeded 6%.370

(a) Gaussian (b) Poisson

Fig. 6. Precision and recall rates for 25 point sources at 7 different noise levels for the
Gaussian and Poisson noise cases.

4.5. Model Generalizability371

To assess the generalization ability of PiLocNet while training at one noise level and testing at a372

different noise level, an experiment was conducted to evaluate the network’s performance within373

groups affected by Gaussian noise, categorized by their noise intensity 𝜎 (×𝐼max), as shown in374

Fig. 7. The Solo-Noise benchmark sets involved training and testing at each of two distinct375

noise levels of 0.05 and 0.1. The comparison dataset, labeled as Mixed-Noise, is trained with376

images corrupted with Gaussian noise levels of 0.05 and 0.1, which were evenly represented377

over the total training volume, which remained at 10 thousands images. During the test phase,378

the network faced images with a wider range of noise levels, specifically 0.025, 0.05, 0.075,379

0.1, and 0.125. Importantly, the images with 0.025, 0.075, and 0.125 noise levels were novel380

to the network, which were not seen by it during training. The findings indicate that PiLocNet381

consistently performs well, even for noise levels it had not encountered before during training,382

thereby demonstrating the model’s robustness and its capability to manage noise variations383

efficiently.384

5. Conclusions385

The new network, PiLocNet, that we have proposed here adds useful physical information386

to the neural network by adding to the conventional network’s loss function data-fitting and387

regularization terms that match the noise model governing the observed image data. As we have388

shown, this greatly improves the network performance. The principal change in the network389

architecture from LocNet, namely the removal of upsampling and a coarsening of the 3D grid,390

leads to a reduction of false positives while greatly shortening the network training speed391

without sacrificing overall performance. PiLocNet outperforms previous methods, as we have392

demonstrated through robust validation processes.393



Fig. 7. Generalizability tests under Gaussian noise of PiLocNet, results show the
network performs consistently on unseen noise levels. Bar charts: Baseline result of
Solo-Noise trained and tested at noise levels 0.05 and 0.1. Line charts: A Mix-Noise
group trained with noise level mix (0.05 and 0.1) and tested at 0.025, 0.05, 0.075, 0.1,
0.125.

In the modified loss function of PiLocNet, the data-fitting term D containing the additional394

PSF matrix information tends to recover point predictions that would otherwise be missed. The395

regularization term R, on the other hand, exploits sparsity to reduce the occurrence of false396

positives. These two effects improve the overall network performance by reducing the rates of397

both false negatives and false positives.398

Neural networks, when well trained, excel at making predictions from highly complex datasets,399

while variational methods critically employ physical information about the PSF and noise model400

as well as regularization to avoid overfitting. PiLocNet combines the strengths of both these401

approaches. By embedding the forward model directly into a neural network, PiLocNet can402

implement a broad range of PSFs and imaging challenges when the forward model is accurately403

known.404

In future projects, we plan to explore the application of the Physics-Informed Neural Networks405

(PINNs) methodology across a range of distinct network architectures. Our preliminary results406

have demonstrated the potential effectiveness of the PINN approach within Vision Transformers407

(ViT). A potential improvement involves integrating the post-processing steps within the network408

itself, thus enabling the network to directly produce the final result, rather than the current409

separate post-hoc stage. Moreover, we plan to broaden our methodology’s scope, transitioning410

from synthetic simulations to include real-world datasets. In our initial evaluations, we identified411

several obstacles associated with practical imaging, such as color bleaching, flux normalization,412

magnitude calibration, the size and quality of datasets, and the process of obtaining ground413

truth labels. Despite these challenges, the application of the PINN approach to practical images414

remains relevant. Integrating the established physical Point Spread Function (PSF) modeling415

into the neural network should be achievable, thereby enhancing its learning capabilities and416

overall performance.417
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