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Abstract— Chemical Exchange Saturation Transfer
(CEST) MRI has demonstrated its remarkable ability to
enhance the detection of macromolecules and metabolites
with low concentrations. While CEST mapping is essential
for quantifying molecular information, conventional
methods face critical limitations: model-based approaches
are constrained by limited sensitivity and robustness
depending heavily on parameter setups, while data-
driven deep learning methods lack generalizability across
heterogeneous datasets and acquisition protocols. To
overcome these challenges, we propose a Lorentzian-
model Informed Neural Representation (LINR) framework
for high-quality CEST mapping. LINR employs a self-
supervised neural architecture embedding the Lorentzian
equation – the fundamental biophysical model of
CEST signal evolution – to directly reconstruct high-
sensitivity parameter maps from raw z-spectra, eliminating
dependency on labeled training data. Convergence
of the self-supervised training strategy is guaranteed
theoretically, ensuring LINR’s mathematical validity. The
superior performance of LINR in capturing CEST contrasts
is revealed through comprehensive evaluations based on
synthetic phantoms and in-vivo experiments (including
tumor and Alzheimer’s disease models). The intuitive
parameter-free design enables adaptive integration into
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diverse CEST imaging workflows, positioning LINR as a
versatile tool for non-invasive molecular diagnostics and
pathophysiological discovery.

Index Terms— CEST MRI, CEST Mapping, Self-
supervised Learning, Implicit Neural Representation

I. INTRODUCTION

CHEMICAL Exchange Saturation Transfer (CEST) imag-
ing has emerged as a powerful MRI technique for

non-invasive molecular imaging and quantitative mapping of
endogenous metabolites and exogenous agents in biological
tissues. By selectively saturating exchangeable protons on
molecules of interest, such as proteins, peptides, or metabo-
lites [2]–[4], CEST enables the indirect detection of their
concentrations via the water signal. This method provides a
sensitive approach to detecting subtle biochemical changes in
tissues, which makes it particularly valuable for applications
in oncology, neurology, and metabolic studies [5], [6].

CEST imaging has shown great potential for mapping
biomolecules, including Amide Proton Transfer (APT) for de-
tecting mobile proteins [7], nuclear Overhauser effect (NOE)
for aliphatic protons of lipids [8], [9], and various metabolite-
specific CEST contrasts for creatine [10], [11], glucose [12]
and glutamate [13], [14]. These endogenous contrasts can
serve as biomarkers for different pathologies, such as tu-
mors [15], ischemia [16], and Alzheimer’s disease (AD) [17]–
[19].

A key step in CEST imaging is performing CEST analysis
(mapping) on the source image data to identify the distribution
and intensity of the molecules (pools) of interest. The general
process is outlined in Fig. 1. Despite its promise, CEST map-
ping remains technically challenging due to several factors.
The signal strength of CEST contrast is often low, requiring
high-field MRI and advanced post-processing techniques for
reliable quantification. As a result, robust modeling and sig-
nal processing techniques are essential to extract meaningful
information from CEST imaging experiments.

In recent years, CEST analysis studies have focused on
improving the sensitivity and specificity of the technique [20]–
[22]. Novel image reconstruction and analysis methods, such
as deep learning models, have also been explored to enhance
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CEST quantification and increase the robustness of the mea-
surements [18], [23]–[26]. These advancements aim to push
the boundaries of CEST imaging from experimental settings
to widespread clinical use, allowing for more precise and non-
invasive molecular diagnostics.

In this context, we propose an algorithm to improve the
accuracy and efficiency of CEST analysis by leveraging neural
network-based representations informed by the Lorentzian
model. By combining deep learning with domain-specific
knowledge, this approach seeks to overcome the limitations
of current CEST quantification methods, offering improved
sensitivity and resolution of CEST contrast. The contributions
of this work can be summarized as:

1) Novel framework for CEST mapping: We propose a novel
framework, Lorentzian-model Informed Neural Representation
(LINR), that improves the extraction of high-quality CEST
contrast by fully leveraging multi-layer perceptrons (MLPs) of
implicit representation to continuously distributed parameters.
Additionally, LINR requires no expert knowledge of CEST
imaging or ground truth molecular contrast for reference,
making it accessible and user-friendly for researchers without
specialized training and external datasets.

2) Theoretical analysis: We mathematically prove the con-
vergence of our neural network in approximating CEST data
by constructing a Lorentzian Neural Tangent Kernel (LNTK),
ensuring the stability and reliability of the model, along with
linear convergence speed for the mapping process.

3) Superior performance on both synthetic phantoms and in
vivo data: We introduce a Lorentzian-model-based simulation
method that models noisy phantoms with spatial variance,
providing a fully invertible evaluation. Extensive experiments
on synthetic phantom data demonstrate the superior perfor-
mance of our method in comparison to traditional approaches,
showing its robustness across various noise levels. The pro-
posed approach has also been successfully applied to in vivo
datasets from tumor and Alzheimer’s disease cases. It shows
compatibility with pathological observations and outperforms
carefully tuned conventional fitting methods.

II. RELATED WORK

A. Denoising
CEST imaging is highly sensitive to small changes in

molecular composition, but its precision can be compromised
by noise arising from various sources, such as scanner im-
perfections and low signal-to-noise ratio (SNR). This noise
can obscure subtle contrast differences, leading to inaccurate
quantification of CEST effects. Several denoising methods
have been proposed to enhance the accuracy of CEST con-
trast measurements, such as MLSVD [27], NLmCED [28],
DECENT [29], DCAE-CEST [30], and IRIS [1]. Notably,
the DCAE-CEST employs an encoder-decoder network trained
on simulated z-spectra with Kullback-Leibler divergence con-
straints, and validated via adaptive learning using principal
component analysis. While the IRIS leverages the ability of
neural networks to continuously represent subspace struc-
tures and its excellent implicit regularization, demonstrating
outstanding performance in CEST denoising compared to

Fig. 1. Illustration of the CEST analysis process, where the CEST
contrast of each exchangeable pool is obtained by mapping from the
CEST image sequence, which is shown on top. The blue curve indicates
the usual contrast change of CEST images.

other methods and eliminating the supervised training phase,
including that on simulated data. Therefore, we integrated IRIS
as a denoising module into our framework to improve the
precision of CEST imaging.

B. CEST Mapping
CEST mapping is an analysis process that extracts CEST

contrast from the given CEST sequence (z-spectra). Generally,
z-spectrum analysis involves quantifying CEST contrast by
calculating the difference between the acquired z-spectrum
(z) and a reference spectrum (zref ). The most commonly
used CEST effect extraction model is the Lorentzian-line-
fit analysis [31] due to its ability to model the shape of
the z-spectrum, particularly the saturation transfer effects of
exchanging protons. The Lorentzian line shape can account
for multiple exchange pools (e.g., amide, amine, hydroxyl)
by the Multi-pool Lorentzian Fitting (MPF). In MPF, CEST
effects are parameterized by the Lorentzian model and can be
estimated by solving a non-linear least squares fitting problem,

p̂ = argmin
p

1

2
||L(p,!ω)→ z||22, (1)

where L is the Lorentzian model defined in Eq. (9), p
represents the parameters related to exchangeable pools and
!ω is saturation frequency (offsets). Since MPF involves
optimizing multiple parameters (such as amplitude, width, and
center frequency for direct water saturation), the outcome
of the fitting process can be highly sensitive to how it is
initialized and constrained, where the complexity of fitting
multiple overlapping Lorentzian peaks can make the fitting
process more sensitive to these choices. A poor optimization
setup may lead to local minima and bad convergence rates.

Due to the large number of parameters required for set-
ting bound and initial values, it becomes impractical to
fine-tune each one individually when dealing with a large
number of CEST targets. As a result, alternative approaches
are being sought. Magnetization Transfer Ratio Asymmetry
(MTRasym) analysis is one of the simplest and most widely
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Fig. 2. The proposed LINR framework. The raw CEST images undergo processing by a denoising module, which features a RegressionNet.
This network is optimized by regressing the noisy spatial coefficients obtained from truncated singular value decomposition (SVD). The denoised
CEST sequence is then reconstructed by multiplying the denoised coefficients from the RegressionNet output with the temporal basis. Next, the
denoised sequence is fed into the MappingNet, which estimates parameters that aid in reconstructing the CEST data using the Lorentzian model.
The MappingNet is optimized by minimizing the loss between the reconstructed images and the denoised CEST images. Both networks take the
coordinate grid P as input.

used methods for quantifying CEST contrasts. It measures the
asymmetry of the z-spectrum by calculating the difference
between signals at positive and negative frequency offsets
relative to water resonance. The method is prone to errors
from background effects, such as direct water saturation
and magnetization transfer. Additionally, it fails to account
for multiple exchanging pools, limiting its effectiveness in
complex biological environments. Polynomial and Lorentzian
Line-Shape Fitting (PLOF) [22] uses a polynomial function
to model the background signals (zref ) and Lorentzian line
shapes to capture the chemical exchange effects. However,
the fitting process in PLOF is still sensitive to the choice
of initial guess and the bound setup. The Total Generalized
Variation (TGV) [32] method is a powerful denoising tech-
nique that has been applied to CEST imaging to improve
the accuracy of the analysis by enforcing smoothness in the
CEST contrast. The downside of TGV is that it introduces
regularization parameters that must be carefully tuned. If not
balanced correctly, TGV can either oversmooth the data or
fail to suppress enough noise, leading to a loss of important
CEST contrast information. DeepCEST [18], [23] leverages
neural networks to fit MPF estimation results during the
training phase, enabling rapid predictions for new samples
during testing. This approach eliminates the need for constraint
settings for unknown individuals. However, during training, a
large amount of CEST data must still undergo MPF prediction
to create training pairs. Additionally, if the data acquisition
settings (e.g., field strength and saturation frequency) differ,
DeepCEST struggles to generalize to new data distributions,
requiring retraining on newly collected data under the accord-
ing settings [18].

In this article, we focus on Lorentzian parameter mapping,
and without loss of precision, we still refer to this process
as CEST mapping, similar to existing works [22], [27], [33],
[34].

C. Implicit Neural Representation

Implicit Neural Representation (INR) is a powerful ap-
proach that is gaining attention in the field of computer vision.
Instead of storing data in a traditional grid or pixel-wise

format, INRs learn a continuous mapping from spatial coor-
dinates to data values using neural networks. This approach
allows for efficient representation of complex signals, such as
images [35], [36] or 3D shapes [37].

Liu et al. [38] proposed the INRESP algorithm to im-
prove CEST image reconstruction. INR was first introduced
for CEST acceleration and trained to represent the real and
imaginary parts of CEST images without the need for extra
fully sampled k-space data.

In LINR, we fully unleash the power of INRs in sub-
space modeling and represent the parameter space of the
Lorentzian model, enabling a self-supervised algorithm for
high-sensitivity CEST imaging that eliminates the external
training phase and requires no noise-free data or ground truth
Lorentzian parameter for network optimization.

III. METHOD

A. Denoising

We denote a coordinate grid of size M ↑ N ↑ 2 by
P = {x}M→N , where each x ↓ R2 is a coordinate point
encoding horizontal and vertical indices. With the additive
noise assumption for CEST data in M↑N spatial dimensions
and number of C offsets, the data formation model can be
expressed as

y = x+ n, (2)

where x,y ↓ RMN→C are vectorized matrices of underlying
noise-free images and their noisy observation, respectively,
while n ↓ RMN→C is the noise matrix.

Adopting the concept of transformation-based denoising
methods [39], [40], we can remove the noise-related co-
efficients u of x on an orthogonal basis v obtained by
singular value decomposition (SVD). Therefore, the denoising
problem expressed in Eq. (2) can now be reformulated as an
optimization problem

argmin
u

1

2
||uv → ũv||2, (3)

with suitable constraints on u, where ũ represents the spatial
coefficients of y on the basis v. Since v is an orthogonal
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matrix, Eq. (3) is equivalent to

argmin
u

1

2
||u→ ũ||2. (4)

By keeping the first K principal components, we obtain the
first regularized solution to Eq. (4), which can be rewritten in
vectorized form as

û = DK(ũ). (5)

where DK is the projection operator on the first K principal
components.

We now address the problem of defining suitable model
constraints on û to further denoise its components. Knowing
the fact that outliers in the given data are overlooked when
it is fitted by a smooth continuous function (i.e. regression),
a denoising result can be obtained by taking the regression
curve [1], [40]. Therefore, once K has been determined, our
denoising algorithm involves a neural network called Regres-
sionNet NR to represent a continuous mapping NR(·, εR) :
RM→N→2 ↔ RMN→K with parameters εR. This network takes
the coordinate grid P points as input and is optimized by
solving

ε̂R = argmin
ωR

1

2
||NR(P, εR)→ û||22, (6)

where the above minimization is performed simultaneously
over all grid points and all channels by backpropagation and
amounts to minimizing the loss function

LR =
1

2
||NR(P, εR)→ û||22. (7)

An ϑ2-norm is applied here to prevent over-fitting after re-
gression. Once the optimization is finished, the final denoised
CEST data can be reconstructed as

x̂ = NR(P, ε̂R)v. (8)

B. Mapping
The denoised CEST data is denoted by Z ↓ RM→N→C and

z ↓ RC represents a given z-spectrum. The n-pool Lorentzian
model L : R2n+2 ↑ RC ↔ RC mapping from molecules-
related parameters to z-spectrum is defined by

L(p,!ω) = c→ ADS

1 + (!ε↑ϑDS
”DS/2 )2

→
∑

i↓pools

Ai

1 + (!ε↑ϑDS↑ϑi
”i/2

)2
,

(9)
where direct saturation (DS) represents the water pool, and
pools is the set of indices of the target molecular pools that are
exchanged with water. For an n-pool Lorentzian model, each
pool is parameterized by its amplitude Ai and peak width ”i,
as well as the center frequency for direct saturation ϖDS and
constant term c. Both 4-pool and 5-pool Lorentzian models
are used in this study. A common 4-pool Lorentzian model
includes the amide proton transfer (APT ϖAPT = 3.5ppm),
relayed nuclear Overhauser effects (NOE ϖNOE = →3.5ppm),
and magnetization transfer (MT ϖMT = →2.5ppm). The 5-
pool Lorentzian model extends this by incorporating an addi-
tional guanidine (GuanCEST ϖGuan = 2ppm) pool, reflecting
origins from both creatine and arginine guanidine groups [33],
[41], [42]. The CEST contrasts are generated by solving the

(a) 5→ 5 (b) 10→ 10

(c) 15→ 15 (d) 20→ 20

Fig. 3. Log of NTK eigenvalues with respect to different resolutions,
which are indicated below each subfigure. The logarithm is applied for a
better display range.

Lorentzian fitting problem and taking the optimal amplitude
Ai maps. These spatially resolved contrasts provide molecular-
level differentiation, which are related but not equivalent to the
absolute concentration or exchange rate maps.

Since molecule-related parameters possess spatial variances,
there is an underlying group of parameters px at a given
location x. In LINR, px is estimated by a neural network called
MappingNet as

px = NM (x, εM ),

where εM is the trainable set of parameters of the network,
and the network takes the z-spectrum that queries from a given
location x as input.

The loss function LM is defined by

LM =
∑

x↓P

↗L(px,!ω)→ zx↗1

=
∑

x↓P

↗L(NM (x, εM ),!ω)→ zx↗1,

where zx is the denoised z-spectrum located at x. We opted
for the ϑ1-loss instead of the traditional ϑ2 regression to avoid
overfitting outlier data points and z-spectra outside the region
of interest (ROI).

The overall framework of the LINR algorithm is displayed
in Fig. 2.

C. Convergence Analysis
In the LINR algorithm, MappingNet performs regression

within the parameter space of the Lorentzian model and
is trained using Lorentzian-model-based self-supervised op-
timization through ϑ1-loss. In this section, we investigate the
algorithm’s convergence when applied to a given CEST data.
For simplicity in derivations, we will abbreviate L(p,!ω)
as L(p) and the weight εM of the MappingNet as ε in this
section.

Assuming MappingNet is of depth d, with a Lipschitz, twice
differentiable, bounded second derivative nonlinearity function
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ϱ, and layers with width n1, . . . , nd↑1. Examine the dynamics
of weights in NM (x, ε) updated by gradient descent,

ε(t+ ς) = ε(t)→ ς↘ωLM (ε), (10)

where ς is the learning rate used during training, t is training
time, and the loss LM (ε) is viewed as a function of ε.
Therefore, as the learning rate converges to zero, the dynamics
of weights follows

φε

φt
= lim

ϖ↔0

ε(t+ ς)→ ε(t)

ς
= →↘ωLM (ε), (11)

with

↘ωLM (ε) = ↘ωL(NM (x, ε)) sign(L(NM (x, ε))→zx). (12)

Let u(t, x) = L(NM (x, ε))→ zx be the difference between
the given z-spectrum and the one reconstructed from the
estimated parameters. Then the dynamics of u(t, x) follows

φtu(t, x) = φtL(NM (x, ε))

= ↘ωL(NM (x, ε))Tφtε

= →↘ωL(NM (x, ε))T↘ωLM

= →
∑

x→↓P

KL(x, x
↗)

φLM

φL(px→)

= →
∑

x→↓P

KL(x, x
↗) sign(u(t, x↗)), (13)

where we define the Lorentzian Neural Tangent Kernel
(LNTK) as

KL(x, x
↗) = ↘ωL(NM (x, ε))T↘ωL(NM (x↗, ε)). (14)

By [43], the Neural Tangent Kernel (NTK) of the Map-
pingNet NM (x, ε) is

K(x, x↗) = ↘ωNM (x, ε)T↘ωNM (x↗, ε), (15)

where x and x↗ are coordinates, ↘ωNM (x, ε) is the network’s
gradient with respect to ε. As the network weights are updated
during training, the NTK also changes over time. However, as
stated in Theorem 1, Jacot et al. [43] proposed that as the
network becomes increasingly overparameterized, the NTK
tends to converge towards a deterministic kernel which stays
asymptotically constant during training.

Theorem 1 [43]: Assume a network is of depth d, with
a Lipschitz, twice differentiable (second derivative bounded)
nonlinearity function ϱ. Then in the limit as the layers’ width
n1, . . . , nd↑1 ↔ ≃, the NTK converges in probability to a
deterministic limiting constant kernel:

K(x, x↗) ↔ K↘(x, x↗).

As the gradient of the Lorentzian model with respect to p
is irrelevant to the network architecture or the given data, we
have the following corollary for LNTK analogously,

Corollary: Assume a network is of depth d, with a Lipschitz,
twice differentiable (second derivative bounded) nonlinearity
function ϱ, in the limit as the layers’ width n1, . . . , nd↑1 ↔
≃. Then the LNTK converges in probability to a deterministic
limiting constant kernel:

KL(x, x
↗) ↔ K↘

L
(x, x↗),

where K↘
L
(x, x↗) = ↘pL(p)TK↘(x, x↗)↘pL(p).

Furthermore, since MappingNet is both optimized and eval-
uated on the same CEST sequence, the limiting LNTK can be
expressed on the coordinate grid by

K↘
L
(P, P ) = ↘pL(p)

TK↘(P, P )↘pL(p), (16)

where P = {x}M→N represents all coordinates within the
image domain.

Next, we will focus on the limiting kernel and explore
the properties of the LNTK. Both the Lemma and Theorem
2 demonstrate that the LNTK maintains the same positive
definiteness as the NTK.

Lemma: Given any parameter vector p ↓ R2n+2 with no
zero entry except for ϖDS , ↘pL(p) ↓ R(2n+2)→C is full rank.

Theorem 2: If limiting NTK K↘(P, P ) is strictly positive
definite and the reduced parameter vector p↗ ↓ R2n+1 is with
no zero entry, then the limiting Lorentzian Neural Tangent
Kernel (LNTK) K↘

L
(P, P ) is also strictly positive definite.

The assumption that the parameter vector has no zero entries
is mild, as the network is optimized from random initialization.
What’s more, the underlying ideal parameter p̃ will not have
zero entry within the ROI except for ϖDS (ϖDS = 0 will not
affect the non-singularity of ↘pL(p)), such that the estimated
output p during training still satisfies the assumption unless
converged. For convenience, we denoted output parameter with
ϖDS eliminated as p↗ ↓ R2n+1.

We continue to investigate the dynamics of u(t, x) during
training, which can be defined on all coordinates as u(t, P ) =
L(NM (P, ε))→Z, and the dynamics can be expressed by the
following equation,

φtu(t, P ) = →K↘
L
(P, P ) sign(u(t, P )), (17)

The convergence of u(t, P ) is ensured by Theorem 3. The
proofs of the mentioned lemma and theorems are given in the
Appendix A.

Theorem 3 (Convergence): If limiting NTK K↘(P, P ) is
strictly positive definite and the parameter vector p↗ is with
no zero entry, then

u(t, P ) ↔ 0, as t ↔ ≃,

and it is a linear convergence.
Therefore, the overparameterized MappingNet, relative to

the CEST spatial resolution, ensures that the signal recon-
structed through the Lorentzian model converges to the given
z-spectrum. This also highlights the importance of the denois-
ing module.

IV. EXPERIMENTS

We compared the effectiveness of different methods based
on their experimental performance. By allowing both qual-
itative and quantitative evaluations, we assessed the analysis
outcomes of MPF [31], PLOF [22], MPF with non-local means
denoising (NLM), and LINR using synthetic phantoms. All
experiments were conducted in Matlab (R2023a) or Python
3.8.17 on a PC equipped with Intel R≃ Xeon R≃ Silver 4210

https://www.dropbox.com/scl/fi/jq0gum8bo45jznpjx7ztj/High-Quality-CEST-Mapping-with-Lorentzian-model-Informed-Neural-Representation_Appendix.pdf?rlkey=ydc9xzvm7z1m6nnc85fqriw9d&st=i06imyk1&dl=0
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Processor CPU 2.20GHz and Nvidia GeForce RTX 3090 GPU
with 24G of memory.

To validate the applicability and advantages of our method
for in vivo pathology, we tested it on a mouse brain tumor
dataset and an AD dataset, comparing it against the widely
used framework composed of MPF with MLSVD [27] pre-
denoising. MPF’s initial/bound settings for different patholo-
gies are detailed in Appendix C.

LINR offers the benefit of not requiring initial/bound set-
tings and using consistent hyperparameters across datasets.
The RegressionNet is a position-encoding MLP with four
hidden layers, while the MappingNet is of the same archi-
tecture but with six hidden layers; each layer contains 512
neurons with ReLU non-linearity. The truncation number K
in the denoising module is set to 6. The MappingNet starts
to train after the RegressionNet is fully optimized. During
optimization, both the RegressionNet and MappingNet are
trained with the Adam optimizer at a learning rate of 1↑10↑3,
for 20,000 and 10,000 epochs, respectively.

TABLE I
PARAMETER SETTINGS FOR EACH SYNTHETIC PHANTOM TYPE.

Phantom Description Parameter Range
A Blank AAPT = ANOE = 0%

B Random+Blur AAPT = 0%
ANOE ↑ [10%, 35%]

C Random+Blur AAPT ↑ [10%, 35%]
ANOE ↑ [10%, 35%]

D Gradient AAPT = 1.8Col ↓ ↔18Col↗ → 0.05*
ANOE = 1.8Row ↓ ↔18Row↗ → 0.05*

*Col and Row are indexes of columns and rows of the image, respec-
tively.

A. Data Setup
We outline the data setup utilized, starting with synthetic

phantoms, so that we can quantitatively evaluate the molecule
mapping accuracy after inversion. The synthetic data is cat-
egorized into four distinct phantoms: A, B, C, and D, as
visualized in Fig. 4(a) GT phantom. Phantom A acts as
a blank control group. For Phantoms B and C, parameters
are randomly generated within a defined Lorentzian model
parameter space and smoothed using Gaussian blurring to
simulate spatial continuity, with the z-spectrum then simulated.
Phantom D is a gradient phantom where parameters change
linearly, with truncation at certain step sizes, across rows
(columns) but remain constant within each column (row). The
APT and NOE gradients are oriented perpendicularly, where
quantification is detailed in TABLE I. While each phantom
incorporates variations in APT/NOE effects, all synthetic z-
spectra include background effects (e.g., water and MT pools)
with randomly sampled parameters and then smoothed with
Gaussian kernels (see Appendix B for detailed setup).

Given that CEST contrast exhibits significant pathological
features in mouse tumors and Alzheimer’s disease, we tested
the effectiveness and rationale of LINR using in-vivo datasets
of these two conditions. All animal experiments were approved
by the Animal Ethics Sub-Committee and followed the in-
stitutional guidelines of the Institutional Laboratory Animal

Research Unit of the City University of Hong Kong, and were
conducted under an authorized animal experiment license. All
MRI experiments were performed on a horizontal bore 3T
Bruker BioSpec system (Bruker, Ettlingen, Germany).

For in-vivo evaluation of tumor pathology, we prepared 10
sets of mouse data. Each of them was injected with U-87 MG
cell (0.5M /3ul) at 2.0 mm right-lateral, 0.2 mm anterior, and
3.8 mm below the bregma [44]. The CEST MRI sequence was
a continuous-wave (CW) saturation module followed by the
rapid acquisition with refocused echoes (RARE) as a readout
module. A power (B1) of 0.8µT and a duration (tsat) of 3000
ms were used for the saturation module. The saturation fre-
quency varied from -15 to 15 ppm, with a 0.2 ppm increment
between -7 and 7 ppm and a 2 ppm increment from -15 to -7
ppm and from 7 to 15 ppm. Four M0 images with saturation
frequency offset at 200 ppm were acquired and averaged for
z-spectrum normalization. The readout parameters were as
follows: repetition time (TR)=5000 ms, echo time (TE)=5.9
ms, matrix size=96↑96 within a field of view (FOV) of 30↑30
mm2, slice thickness=1 mm, RARE factor=32.

For the dataset of AD, 15 AD mice (9 APP/PS1 and
6 5XFAD, 6 to 16 months, male, the Jackson Laboratory,
Maine) and 10 age-matched (wild-type) WT mice (C57BL/6,
male, the Jackson Laboratory, Maine) were used in this
study. APP/PS1 mice are double transgenic mice expressing
a chimeric mouse/human APP (Mo/HuAPP695swe) and a
mutant human PS1 (PS1-dE9), both directed to neurons of the
central nervous system. Both mutations are associated with
early-onset AD. The CEST MRI sequence was also a CW
saturation module, followed by RARE as a readout module.
A saturation power (B1) of 0.7µT and a duration (tsat) of
2000 ms were applied in the saturation module. The saturation
frequency ranged between -8 and 8 ppm, with increments of
0.2 ppm and 0.5 ppm increments from -8 to -5 ppm and from
5 to 8 ppm. Four M0 images, with a saturation frequency
offset at 200 ppm, were acquired and averaged for z-spectrum
normalization. The readout parameters were repetition time
(TR) of 4000 ms, echo time (TE) of 3.7 ms, matrix size 64↑64
within a FOV of 20↑ 20 mm2, slice thickness of 2 mm, and
RARE factor of 32.

B. Synthetic Phantom
We applied the MPF [31], PLOF [22], and NLM, along with

our LINR algorithm, to synthetic phantom data with additional
Gaussian noise. Based on the visual comparison of the maps
generated from the noisy synthetic phantoms in Fig. 4(a), the
LINR method stands out as the most effective technique in
handling noise and preserving details across the entire range of
synthetic phantoms, whose capacity to handle both the texture
configurations of Phantoms B and C and the clean distribution
in Phantom A underscores its robustness.

The boxplots on the left of Fig. 4(b) and Fig. 4(c) indicate
the error distribution at the phantoms where the intensities
should be blank. The performance of LINR is notably superior
in maintaining the integrity of the gradient transitions in Phan-
tom D, where linear parameter changes are clearly depicted
with minimal distortion and truncations of the gradient are
well detected.

https://www.dropbox.com/scl/fi/jq0gum8bo45jznpjx7ztj/High-Quality-CEST-Mapping-with-Lorentzian-model-Informed-Neural-Representation_Appendix.pdf?rlkey=ydc9xzvm7z1m6nnc85fqriw9d&st=i06imyk1&dl=0
https://www.dropbox.com/scl/fi/jq0gum8bo45jznpjx7ztj/High-Quality-CEST-Mapping-with-Lorentzian-model-Informed-Neural-Representation_Appendix.pdf?rlkey=ydc9xzvm7z1m6nnc85fqriw9d&st=i06imyk1&dl=0
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(a) Visualization of maps generated from a synthetic phantom with 0.05 std of additive Gaussian noise.

(b) APT Maps Evaluation

(c) NOE Maps Evaluation

Fig. 4. Synthetic phantom evaluation. (a) CEST contrasts (3.5ppm upper and -3.5ppm lower) and the corresponding error maps generated by
MPF, PLOF, NLM, and LINR on synthetic phantoms with 0.05 std of additive Gaussian noise. Ground truth maps are on the right. (b) and (c) are
quantitative evaluations, where the boxplot (left) and band plot (right) are results from the same condition as (a).



8 GENERIC COLORIZED JOURNAL

Fig. 5. CEST analysis on the mouse with brain tumor. Color CEST
contrasts of the brain are overlayed on the averaged M0 image, where
concentrated pools are specified at the bottom of each subfigure. The
corresponding T2w image is on the top, and instructions on the ROIs
are shown aside. In the T2w image, the arrow points to a group of low-
brightness cells within the hyperintense area, which is a piece of normal
tissue surrounded by the tumor. The boxplots on the right compare the
intensity distribution of the CEST effect between the tumor region and
its CNAWM. *** p-value < 0.001.

(a) APT (b) NOE (c) GuanCEST

Fig. 6. Similarity evaluation of MPF and LINR in the frequency domain.
The histogram of frequencies with respect to each contrast is plotted
below the frequency space visualization, comparing the frequency dis-
tribution provided by the two methods. A logarithm is applied to the
frequencies for a better display range.

To quantitatively assess the consistency of molecules with
the same intensity under noise and the accuracy of gradient
detection, the strip charts in Fig. 4(b) and Fig. 4(c) illustrate
the gradient results of Phantom D across different methods.
The solid line in the strip charts of Fig. 4(b) indicates that the
median APT intensity in each row changes with the column
number, while the bandwidth represents the upper and lower
quartiles (analogously with NOE evaluation in Fig. 4(c)). The
dashed line is the ground truth gradient. LINR effectively
balances the preservation of constant intensity and sensitivity

to intensity variations in both the APT and NOE maps. In
contrast, methods like MPF and PLOF fail to maintain stability
in constant regions, and NLM struggles with detecting subtle
gradient changes.

To further evaluate the robustness of each method to varying
noise levels, we added Gaussian noise to the phantoms in
increments of 0.01, ranging from 0.01 to 0.1 standard devia-
tion, and compared the Peak Signal-to-Noise Ratio (PSNR) in
phantoms containing molecular signals, which is defined as

PSNR = 10 log10

(
MAX2

I

MSE

)
,

where MAXI is the maximum signal intensity and MSE
is the mean squared error between the ground truth and
reconstructed maps. LINR consistently maintained the highest
PSNR and kept it above 35 dB even at the most severe noise
levels.

C. Brain Tumor
CEST contrasts can reveal significant pathological features

in brain tumors. Specifically, the tumor region appears hy-
perintense on the APT map compared to the contralateral
normal-appearance white matter (CNAWM), while it shows
the opposite effect on the NOE and GuanCEST maps [10],
[15]. These characteristics effectively validate whether a CEST
analysis method accurately extracts the CEST effect.

Validation of CEST maps is visualized in Fig. 5. The
boxplots imply that both methods detect tumors in terms of
three molecular levels accurately and with strong confidence.
Unlike MPF, which was carefully set for this subject, LINR
provides CEST maps without the requirement of a subject-
specific setup. Nonetheless, LINR is still capable of giving
CEST contrasts that match tumor shape and pathology with
high sensitivity, referring to the T2w image, while the CEST
contrast by MPF shows weak consistency with the tumor
shape, especially in APT and GuanCEST maps. Furthermore,
CEST maps generated by LINR reveal clear details of other
structures in the brain. Notably, the green arrow in the T2w
image points to a group of low-brightness cells within the hy-
perintense tumor area, suggesting they are normal-appearance
cells. From the maps, it is evident that LINR accurately
identified the CEST contrasts of this group of cells, showing
intensity similar to normal cells and distinctly different from
the tumor. In contrast, the traditional MPF did not detect a
clear difference in the CEST effect for this area compared to
its surroundings, demonstrating LINR’s exceptional sensitivity.

Since Lorentzian-based CEST analysis focuses on unveiling
the relative contrast of tissues with respect to exchangeable
pools rather than their absolute values, maps generated by
different methods may exhibit mean differences. We further
employed the Fourier transform to convert the maps from
both methods into the frequency domain for correlation anal-
ysis, as displayed in Fig. 6. As the logarithm is applied to
each frequency matrix, whose patterns can be seen more
significantly, MPF and LINR share a strong similarity in
the frequency domain. Given that the intensity distribution
of MPF and LINR are perfectly overlapped, as suggested
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Fig. 7. Correlation evaluation and pathology t-test on the overall tumor dataset. The three scatter plots on the left show the frequency domain
correlation of CEST contrasts given by two methods across all 10 samples. The correlation coefficients are indicated in the subtitles, and the ideal
correlation is in red dashed lines. The scatter plot on the far right compares the CEST contrasts from both methods between the tumor region and
the CNAWM, based on hypothesis testing guided by pathology. A positive T-statistic indicates higher intensity in the tumor region, while a negative
value suggests the opposite.

by the histograms below, CEST maps generated by the two
methods are strongly consistent. However, the GuanCEST
signal, positioned between the water signal and APT signal,
often poses challenges for MPF optimization in accurately
capturing GuanCEST contrast. As shown in Fig. 6(c), MPF’s
GuanCEST frequency domain distribution lacks a significant
pattern, whereas LINR demonstrates similar patterns in the
high-frequency range across various contrasts. This suggests
that MPF performs poorly in capturing texture details about
tissues.

What’s more, we take a step further to conduct correlation
and pathology studies across all mice within the tumor dataset.
The correlation analysis of APT, NOE, and GuanCEST con-
trasts are shown in Fig. 7, and correlation coefficients are
indicated in the title. Since CEST contrasts obtained by two
algorithms could exhibit different absolute values in the image
domain and MPF is not as sensitive as LINR, the maps
given by these methods could not be perfectly correlated.
Nonetheless, across three types of contrast in 10 mice, LINR
and the object-specific adjusted MPF demonstrated a high
correlation, indicating LINR’s robust stability, accuracy, and
sensitivity in capturing the CEST effect. By referring to the
far right T-test result on CEST contrasts in Fig. 7, all ten
APT contrasts provided by LINR indeed reveal hyperintense
tumor regions compared to CNAWM, given that T-statistics
are positive, while negative T-statistics in NOE and GuanCEST
imply hypointense tumor regions. Leveraging the universal ap-
proximation capability of neural networks, LINR consistently
produced CEST contrast maps in line with tumor pathology
for all subjects, whereas MPF failed to accurately fit two cases
in the APT and GuanCEST maps.

D. Alzheimer’s Disease
Numerous studies have shown that CEST imaging can

reveal molecular-level pathological features of AD [17]–[19].
Specifically, protein aggregation in AD mice brains increases
macromolecular rigidity, impairing proton exchange dynam-
ics critical for CEST detection [18], [19], [45], while AD-
associated neuroinflammation induces tissue acidosis, which
suppresses the chemical exchange rate, as validated in prior
CEST-MRI studies [17]. In general, individuals with AD

(a) APT Contrast

(b) NOE Contrast

Fig. 8. CEST analysis on AD and WT mouse. Color CEST contrasts of
the brain are overlayed on the averaged M0 image, where mouse types
and analysis methods are specified at the corner of each subfigure.

exhibit overall lower APT and NOE effects in the brain
compared to healthy wild-type (WT) subjects.
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(a) MPF (b) LINR

Fig. 9. The box plots comparing the intensity distributions of APT
and NOE maps in the brain regions of AD and WT subjects using two
methods: MPF and LINR. The top plot (a) uses the MPF method, while
the bottom plot (b) uses LINR. *** p-value < 0.001.

Fig. 8 demonstrates the APT and NOE contrasts obtained
through MPF and LINR methods for an AD mouse brain and a
WT mouse brain. Comparing the APT contrast from MPF, the
overall intensity in the brain of the AD individual is slightly
lower than that of the WT. However, the NOE contrast does
not exhibit this pathological difference. In contrast, the LINR
method accurately identifies the pathological distinctions in
CEST contrast between AD and WT.

In addition, we tested the robustness of the method across
the entire AD dataset of 25 individuals, comparing the CEST
effect intensity in the brains of 15 AD mice and 10 WT mice,
as shown in Fig. 9. It reveals that the LINR method provides
clearer differentiation between groups than the MPF method.
With LINR, there is a significant and distinct separation in both
APT and NOE intensities, indicated by a higher median as well
as a greater overall distribution. These differences are statis-
tically significant, with a p-value<0.001, illustrating LINR’s
superior sensitivity and robustness in capturing pathological
features related to CEST effects, whereas MPF shows less
distinct separation, particularly for APT contrasts.

V. CONCLUSION

This paper proposed a self-supervised framework, the
Lorentzian-model Informed Neural Representation (LINR),
for effective and high-quality CEST mapping. This algorithm
incorporates the physical model priors of the CEST data with
the ability of the neural network to represent the Lorentzian
parameter spaces. An additional denoising module enhances
mapping accuracy. Compared to existing methods, LINR elim-
inates the necessity for external training datasets and empir-
ical estimates of molecule-related parameters, demonstrating
exceptional adaptability in practical implementations. By con-
structing a Lorentzian Neural Tangent Kernel (LNTK) and
examining its properties, we present a theorem that guarantees
the convergence of the optimization process in MappingNet.

Quantitative evaluations on simulated phantom data have
shown superior mapping precision of LINR and its robustness
against noise. In addition, LINR was applied to brain tumors
and Alzheimer’s disease datasets to demonstrate in-vivo appli-
cations. The resulting contrasts validate its mapping abilities
and the sensitivity of multi-molecular contrasts compared
to traditional algorithms. Thus, LINR promises a significant
advancement in the field of molecular-level disease research
with CEST MRI.
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