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Abstract— Conventional deep learning architectures do not 
adequately address the requirements of wearable high-precision 
medical devices such as blood pressure (BP) monitors. This 
paper presents a novel hybrid deep learning architecture that 
leverages advancements in sensors and signal processing 
modules for cuffless and continuous BP monitoring devices, 
emphasizing enhanced precision in an energy constrained 
system. The proposed architecture comprises a combination of a 
convolutional neural network and a bidirectional gated 
recurrent unit. The proposed model adopts a data-driven end-
to-end approach to directly process raw photoplethysmography 
(PPG) signals, enabling simultaneous estimation of systolic BP 
and diastolic BP without the need for feature extraction. 
Performance evaluation was conducted using the
Multiparameter Intelligent Monitoring in Intensive Care II 
dataset, yielding small mean errors of 0.664 mmHg and -0.028
mmHg for the estimated and reference SBP and DBP, 
respectively.

I. INTRODUCTION

Cuffless and noninvasive blood pressure (BP) 
measurement has garnered significant attention and has made 
substantial advancements in recent decades. Many of these 
approaches rely on photoplethysmography (PPG) and 
electrocardiography (ECG). One extensively studied approach 
is pulse transit time (PTT) [1-2]. However, PTT often exhibits 
an inverse correlation with BP [3]. Another well-known 
cuffless approach is pulse arrival time (PAT) [4]. This 
technique involves estimating the time delay between the R 
peak of the ECG waveform and a specific point on the 
ascending edge of a distal PPG waveform [5].
Notwithstanding their advantages, both PTT and PAT 
methods have notorious implementation challenges, namely 
the requirement for concurrent measurement of signals at two 
distinct body sites, necessitating the use of two sensors (ECG 
and PPG) to record the input signals for parameter estimation. 
This requirement can be inconvenient or even prohibitive for 
certain patients. Moreover, incorporating multiple sensors 
increases the requirement for signal pre-processing, which not 
only consumes time but also introduces additional 
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computational complexity to the process. In recent research, 
there has been a surge of interest in using PPG as a single 
measurement sensor for BP estimation. This approach has
been gaining popularity due to its simplicity and capability to 
enable cuffless and continuous BP measurements. PPG is an 
optical sensor technology that combines a light-emitting diode 
(LED) with a photodetector (PD) [6]. This sensor is not only 
cost-effective but can also be readily integrated into wearable 
devices. PPG is considered a vital physiological signal as it 
offers insights into the function and health of the 
cardiovascular system. For example, there is a correlation 
between peripheral volumetric changes in blood vessels and 
BP [7]. This correlation allows for the utilization of specific 
PPG features to predict systolic BP (SBP) and diastolic BP 
(DBP) employing machine learning (ML) or deep learning 
(DL) algorithms. Despite the above capabilities, nonetheless,
the relationship between these PPG features and BP is not
direct and continuous [8]. Estimating BP using PPG heavily 
depends on signal preprocessing, obtaining significant 
features, and utilizing ML approaches to establish the 
correlation between these extracted features and blood 
pressure.

Several recent advancements have been reported. Kachuee 
et al. [9] developed a system utilizing PTT for the cuffless and 
continuous BP prediction and mean arterial pressure. This 
system incorporated multiple ML techniques and utilized both 
PPG and ECG signals. The implementation of this approach 
involved meticulous signal preprocessing and intricate steps 
for feature extraction. Hasanzadeh et al. [10] conducted a study 
where they extracted PPG morphological features and 
employed various ML algorithms to predict SBP and DBP. 
Nevertheless, the evaluation outcomes indicated significant 
prediction errors for both SBP and DBP, and this approach did 
not adhere to global standards set by organizations like the 
American Association for Medical Instrumentation (AAMI) 
[11] and the British Hypertension Society (BHS) [12]. 
Consequently, the system showed limited capability for 
accurate cuffless BP monitoring and lacked generalizability. 
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Gupta [13] utilized various ML algorithms to estimate SBP 
and DBP by incorporating higher-order derivative features of 
the PPG signal. The authors demonstrated that these additional 
nonlinear features improved the accuracy of estimation, albeit 
with increased computational costs.  

All of the aforementioned approaches possess their own 
advantages and disadvantages. One notable advantage is their 
ability to predict BP utilizing a single PPG sensor without the 
need for a cuff, making it a simple and cost-effective method. 
However, there are certain limitations to consider. Due to the 
lack of consistent linearity between BP and PPG features, 
linear models are not suitable for accurately capturing this 
relationship when assessed on a diverse dataset acquired from 
a large and varied population. In contrast, classical ML models 
such as support vector machines (SVM) and random forest 
tend to exhibit better precision in such scenarios. It is worth 
noting that separate models need to be established for SBP and 
DBP prediction when using these algorithms. However, it is 
beneficial to model SBP and DBP simultaneously using a 
single model architecture, as DBP is strongly correlated with 
SBP and can enhance its estimation. Neural networks offer a 
solution to this challenge by leveraging large datasets more 
efficiently and precisely compared to traditional ML 
algorithms. However, not all neural network models are 
suitable for this task. Some neural network models are 
specifically developed to handle time series data for long-term 
estimate, while others, such as non-recurrent neural networks, 
solely estimate the output based on the current input vector 
without considering its historical context. Consequently, non-
recurrent neural networks do not effectively capture the 
temporal variations in the PPG features, leading to a gradual 
degradation in prediction accuracy over time. 

In recent times, significant progress has been made in the 
field of BP measurement by employing sophisticated models 
that utilize big data and neural networks. Xing et al. [14] 
applied fast Fourier transformation (FFT) to extract features in 
frequency domain from the PPG signal, in contrast to the time 
domain features used in previous approaches, for BP 
estimation. They employed a feedforward artificial neural 
network (ANN) for this purpose. However, they reported that 
relying solely on these features was insufficient for achieving 
accurate BP estimation. Yao et al. [15], demonstrated a 
portable BP estimation system using a two-layer ANN 
approach that incorporated multidimensional feature fusion. 
The authors aimed to enhance the accuracy of BP estimation. 
However, the complex feature extraction process resulted in 
high computational complexity, which limited the real-time 
application of wearable healthcare devices. El-Hajj et al. [16] 
developed attention mechanism assisted two DL models using 
bidirectional long short-term memory (BiLSTM) and 
bidirectional gated recurrent unit (BiGRU). These models 
were employed for the estimation of SBP and DBP with 22 
characteristic features extracted by complicated feature 
engineering. The performance of these models was found to be 
satisfactory and aligned with the standards set by the AAMI. 
However, another limitation of the approach was that the 

authors developed two separate models, which restricted their 
deployment in low-complexity wearable devices. In their 
study, Yang et al. [17] introduced a hybrid DL model that 
combines convolutional neural networks (CNN) and LSTM 
networks to estimate BP. This model leverages both PPG and 
ECG raw signals, as well as participant-specific physical 
characteristics like age, height, weight, and gender. However, 
the utilization of multi-modal signals in the model increases 
the computational complexity of the prediction model and 
raises the cost of hardware implementation. 

In this paper, we present a data-driven, end-to-end 
approach for the estimation of BP, utilizing a hybrid DL 
architecture called CNN-BiGRU, which only requires the PPG 
signal as input. The proposed framework eliminates the need 
for explicit features and achieves end-to-end BP estimation. 
The CNN component extracts relevant features from the raw 
PPG signal, while the BiGRU network captures sequential 
dependencies in the data. To the best of our knowledge, no 
prior research has been reported for simultaneous estimation 
of SBP and DBP using a deep learning approach with the 
CNN-BiGRU architecture. The main contribution of this work 
lies in the architectural development of a hybrid DL model that 
combines CNN and recurrent neural network (RNN) for 
accurate BP estimation based on PPG signals. 

The rest of the paper is presented as follows: Section II 
presents employed materials and proposed methodological 
workflow, Section II stretches the evaluation results and 
analysis, and Section IV concludes the paper while outlining 
imminent works. 

II. MATERIALS AND METHODS 

This section describes the employed dataset and its 
preprocessing steps and the proposed deep learning model. To 
provide a visual overview of the methodology, Fig. 1 depicts 
a workflow diagram. 

A.  Dataset and Signal Preprocessing 
The proposed DL model undergoes training and testing 

using the University of California, Irvine (UCI) Machine 
Learning Repository dataset. This dataset is extracted from the 
publicly available "Multi-parameter Intelligent Monitoring in 
Intensive Care (MIMIC-II)" database, which can be accessed 
through the Physionet repository [18]. The MIMIC-II database 
contains simultaneous recordings of various parameters from 
patients in the intensive care unit (ICU), including 
physiological signals and physiological parameters. For this 
study, we have extracted simultaneous recordings of PPG, and 
arterial BP (ABP) from 6000 subjects, which are provided in 
the UCI repository. The sampling frequency for these signals 
is set at 125 Hz with 8-bit precision. To leverage the recurrent 
neural network's capability for handling time series data, both 
the PPG signals and their associated ABP references are 
segmented into 5.6-second windows (i.e., 700 samples). To 
enhance the dataset's reliability, additional refinement steps 
are implemented. Specifically, segments with unreliable ABP 
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and its corresponding PPG are excluded. Segments with 
excessively high or low values of BP, such as SBP greater than 
or equal to 180, SBP less than or equal to 100, DBP greater 
than or equal to 100, and DBP less than or equal to 55, are 
removed. This refinement process results in the total number 
of considered segments 184,040. The reference scores for SBP 
and DBP are calculated using the ABP signal segments, 
applying the max-min approach. Lastly, the amplitude of the 
PPG signal is normalized using min-max normalization [16], 
ensuring that the values are scaled to fall within the range of 
[0,1]. 

B. Proposed DL Model for BP Estimation 
The proposed DL architecture adopts a two-level hierarchy 

model that incorporates stacked CNN, and bidirectional RNN. 
Fig. 2 illustrates the topological structure of the developed DL 
model. In the lower hierarchy level, CNN is utilized to 
automatically extract essential features from the input raw 
PPG signal. Moving to the upper level, RNN is designed using 
two BiGRU layers to capture the temporal relationships among 
the extracted features and make predictions. Each segment of 
the PPG signal serves as input for the CNN layer. The output 
from the CNN block is subsequently passed to the BiGRU 
layers, which simultaneously predict both SBP and DBP. 

The CNN block comprises of three 1D convolutional 
layers, with a rectified linear unit (ReLU) activation function, 
batch normalization (BN), and 1D maxpooling for each layer. 
The output of the final maxpooling layer in the CNN block is 
then used as input for the prediction module. The ReLU 
activation function is chosen due to its faster training speed 

compared to other activation functions. Additionally, batch 
normalization is applied after each convolutional layer to 
enhance the model's generalization capability. The max-
pooling operation facilitates the extraction of combined 
features by aggregating relevant information from neighboring 
data points. Consequently, the CNN components serve as an 
effective automatic feature extractor. 

The BP estimation network is constructed by stacking two 
BiGRU layers using the "concat" merge-mode. Each BiGRU 
layer consists of a forward GRU layer and a backward GRU 
layer. The GRU is another form of the LSTM that controls 
information flow through multiple gating mechanisms [16]. 
However, unlike LSTM, the GRU's hidden state comprises 
only two gates and does not have an additional memory cell. 
Consequently, the GRU is a simplified variant of LSTM that 
requires fewer computational resources. By connecting the 
input sequence with its reverse copy, the BiGRU network 
enhances its ability to capture longer dependencies, resulting 
in improved model performance. The "concat" merge-mode 
ensures that all data from both the forward input sequence and 
its reverse copy is preserved, preventing any loss of 
information. This enables the network to effectively discern 
which information is relevant for robust loss minimization 
during training. The output of the final BiGRU layer is then 
flattened and used as input for two dense layers, followed by 
the ReLU activation function, to generate estimated SBP and 
DBP values. To prevent the model from becoming overly 
specific to the training sequence, a dropout layer with a 
probability factor of 0.1 is applied after each BiGRU layer. 
This inclusion promotes network robustness and helps 

 
Figure 1. Methodological workflow of the proposed deep learning-based BP estimation system. 
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eradicate the issue of overfitting. For the sake of brevity, we 
exclude the detailed structures and parameters of the proposed 
model in this presentation.

C. Model Training and Evaluation
The dataset for this study is partitioned into three sets: 

80% for training, 10% for validation, and 10% for evaluation. 
The validation set plays a crucial role in selecting the best 
optimized model. During training, a batch size of 64 is
utilized, and the model is trained with early stopping for a 
maximum of 50 epochs and a learning rate of 0.5. Through 
empirical investigation, it has been determined that the Adam 
optimizer [19] outperformed other optimizers, providing 
superior and more consistent performance. The mean squared 
error (MSE) is utilized as the loss function during training.

III. RESULTS AND ANALYSIS

The performance evaluation of the proposed DL model is 
carried out by averaging the model scores across all testing 
sets. In this assessment, mean error (ME), mean absolute error 
(MAE), root mean squared error (RMSE), standard deviation 
(SD), and Pearson's correlation coefficients are utilized as 
effective metrics for estimation tasks.

A. Evaluation Results
The performance results of the proposed DL model on the 

MIMIC-II dataset are presented in Table I. The architecture of 
the model utilizes CNN-GRU units to achieve simultaneous 
estimation of SBP and DBP, with average ME, MAE, RMSE, 
and SD values of 0.318, 3.894, 6.262 and 4.902, respectively. 
Additionally, a comparison study is conducted between the 
ground truth scores and the predicted scores of SBP and DBP, 
as depicted in Fig. 3. The graph in Fig. 3 (A) illustrates the 
comparison between the reference and predicted scores for 

SBP, while the graph in Fig. 3 (B) shows the comparison 
between the reference DBP values and the predicted values for 
100 test data points, with each data point comprising 700 
samples. The inference graphs for both SBP and DBP exhibit 
a good agreement between the reference and estimated values. 
Notably, the proposed architecture, utilizing GRU units, 
demonstrates lower estimation errors compared to CNN-
LSTM units [17]. Figure 4 (A) and (B) display a statistical 
analysis of the estimation error between the reference and 

Figure 2. Topological structure of the proposed deep learning model.
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Figure 3. Graphical comparison between reference and predicted scores 
of 100 test data points. (A) SBP and (B) DBP.

TABLE I. PERFORMANCE OF THE PROPOSED CNN-BIGRU DL MODEL

Parameter ME 
(mmHg)

MAE 
(mmHg)

RMSE 
(mmHg)

±SD 
(mmHg)

SBP 0.664    4.852 7.909 6.245
DBP -0.028  2.937 4.615 3.560
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predicted values of SBP and DBP, respectively, in the form of 
error histograms. The histograms reveal that the prediction 
errors for both SBP and DBP approximate a normal 
distribution centered around zero. The scale of the error 
distribution is relatively narrow, spanning approximately [-25, 
25] for SBP and [-15, 15] for DBP. Notably, the error 
distribution of SBP is greater than 1.5 times wider than that of 
DBP, which reflects the broader range of SBP values.  

In Fig. 5 (A) and (B), the linear correlation analysis 
provides further insight into the relationship between the 
estimated values and the ground truth BP values. The analysis 
reveals a strong correlation between the estimations and the 
reference values for both SBP and DBP. The Pearson's 
coefficient (r) values are used to quantify the strength of the 
correlation. In this case, an r value of 0.93 is obtained for the 
correlation between the estimations and the reference SBP 

values, indicating a strong positive correlation. Similarly, the 
correlation between the estimations and the reference DBP 
values yields an r value of 0.91, indicating a strong positive 
correlation as well. It signifies that the proposed model is 
effective in accurately estimating blood pressure, as evidenced 
by the strong relationship between the estimated values and the 
label values. 

B. Comparison with International Standards 
In our study, we have conducted a comprehensive analysis 

to validate the efficiency of our proposed DL architecture for 
simultaneously estimating SBP and DBP from the raw PPG 
signal. We have compared our evaluation results with the 
established criteria set by AAMI and BHS standards. The 
AAMI standard requires an evaluation framework that 
involves a minimum of 85 subjects. It assesses the accuracy of 
the algorithm by examining the ME and SD, which should fall 

       
Figure 4. illustration of errors between reference and predicted values along with corresponding histograms.  (A) SBP, and (B) DBP. 

 

        

Figure 5. The correlation graph between the reference and estimated values. The Pearson's correlation coefficient (r) values of (A) SBP, and (B) DBP 
are 0.93 and 0.91, respectively. 
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within the range of 5 mmHg and 8 mmHg, respectively. For 
the BHS standard, performance accuracy is evaluated based on 
the percentage of cumulative error, categorized into three 
different grades (e.g., A, B, and C). These grades reflect the 
performance of the algorithm, as detailed in Table II with our 
evaluation outcome. To validate our results, we have 
conducted an evaluation on a total of 6000 subjects. Here, we 
have achieved a grade A in the BHS standard for both SBP and 
DBP, confirming the excellent performance of our 
methodology. The outcome of our proposed model is 
presented in Table III for the AAMI standard. The AAMI 
validation results indicate an ME±SD of 0.664±6.245 mmHg 
for SBP estimation and -0.028±3.560 mmHg for DBP 
estimation, both falling within the defined criteria. 

IV. CONCLUSION 
In this paper, we present a deep learning model for the 

estimation of BP using PPG signal acquired by a single 
sensor. The proposed featureless BP framework incorporates 
a data-driven end-to-end approach for automatic feature 
extraction during the training phase, eliminating complicated 
feature engineering. Data obtained from a large population 
with cardiovascular disease complications (the MIMIC-II 
dataset) shows the high accuracy of the model in noninvasive 
cuffless continuous BP monitoring. The model achieves 
MAE±SD of 4.852±6.245 mmHg and 2.937±3.560 for SBP 
and DBP, respectively. The performance of the AAMI and 
BHS international standards for noninvasive BP monitoring 
in wearable devices, paving the way for high-precision model 
that maps well onto low-power, portable medical devices.  

ACKNOWLEDGMENT 
This work was supported by InnoHK project at the Hong 

Kong Centre for Cerebro-cardiovascular Health Engineering 
(COCHE). 

REFERENCES 
[1] Liu et al, “Cuffless Blood Pressure Measurement using Smartwatches: 

A Large-scale Validation Study,” IEEE Journal of Biomedical and 
Health Informatics, vol. 27, no. 9, pp. 4216-4227, May 2023.   

[2] Ganti et al., “Wearable Cuff-less Blood Pressure Estimation at Home 
via Pulse Transit Time Cuffless BP measurement using a correlation 
study of pulse transient time and heart rate,” IEEE Journal of 
Biomedical and Health Informatics, vol. 25, no. 6, June 2021. 

[3] R. Mukkamala, et al., “Toward ubiquitous blood pressure monitoring 
via pulse transit time: theory and practice,” IEEE Trans. Biomed. Eng., 
vol. 62, no. 8, pp. 1879–1901, 2015. 

[4] Young-Zoon Yoon, Jae Min Kang, Yongjoo Kwon, Sangyun Park, 
Seungwoo Noh, Youn-ho Kim, Jongae Park, and Sung Woo Hwang, 
“Cuff-less Blood Pressure Estimation using Pulse Waveform Analysis 
and Pulse Arrival Time,” IEEE Journal of Biomedical and Health 
Informatics, vol. 22, no. 4, July 2018.  

[5] Amirhossein Esmaili, Mohammad Kachuee, and Mahdi Shabany, 
“Nonlinear Cuffless Blood Pressure Estimation of Healthy Subjects 
Using Pulse Transit Time and Arrival Time,” IEEE Transactions on 
Instrumentation and Measurement, vol. 66, no. 12, December 2017 

[6] Sun, Yu, and Nitish Thakor, “Photoplethysmography revisited: from 
contact to noncontact, from point to imaging,” IEEE Transactions on 
Biomedical Engineering, vol. 63, no. 3, pp. 463-477, 2015.  

[7] Riaz, Farhan, et al. “Pervasive blood pressure monitoring using 
Photoplethysmogram (PPG) sensor,” Future Generation Computer 
Systems, vol. 98, pp. 120-130, 2019. 

[8] C. El-Hajj, and P. A. Kyriacou, “Cuffless blood pressure estimation 
from PPG signals and its derivatives using deep learning models,” 
Biomed. Signal Process Control, vol. 70, 102984, 2021.  

[9] Kachuee, Mohammad, et al. "Cuffless blood pressure estimation 
algorithms for continuous health-care monitoring." IEEE Transactions 
on Biomedical Engineering, vol. 64, no. 4, pp. 859-869, 2016. 

[10] Navid Hasanzadeh, Mohammad Mahdi Ahmadi, and Hoda 
Mohammadzade, “Blood Pressure Estimation Using 
Photoplethysmogram Signal and Its Morphological Features,” IEEE 
Sensors Journal, vol. 20, no. 8, April 2020 

[11] Association for the Advancement of Medical Instrumentation, 
American national standards for electronic or automated 
sphygmomanometers. ANSI/AAMI SP 10-1987, 1987. 

[12] E. O. Brien et al., “The british hypertension society protocol for the 
evaluation of automated and semi-automated blood pressure measuring 
devices with special reference to ambulatory systems,” J. Hypertens., 
vol. 8, no. 7, pp. 607–619, 1990. 

[13] Shresth Gupta, Anurag Singh, Abhishek Sharma, and Rajesh Kumar 
Tripathy, “Higher Order Derivative-Based Integrated Model for Cuff-
Less Blood Pressure Estimation and Stratification Using PPG Signals,” 
IEEE Sensors Journal, vol. 22, no. 22, November 2022 

[14] X. Xing, and M. Sun, “Optical blood pressure estimation with 
photoplethysmography and FFT-based neural networks,” Biomed. Opt. 
Express, vol. 7, no. 8, pp. 3007-3020, 2016. 

[15] Pan Yao, Ning Xue, Siyuan Yin, Changhua You, Yusen Guo, Yi Shi, 
Tiezhu Liu, Lei Yao, Jun Zhou, Jianhai Sun, Cheng Dong, Chunxiu Liu, 
Ming Zhao, “Multi-Dimensional Feature Combination Method for 
Continuous Blood Pressure Measurement Based on Wrist PPG Sensor,” 
IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 8, 
August 2022. 

[16] C, El-Hajj, and P. A. Kyriacou, “Deep learning models for cuffless 
blood pressure monitoring from PPG signals using attention 
mechanism,” Biomed. Signal Process. Control, vol. 65, 102301, 2021. 

[17] Sen Yang, Yaping Zhang, Siu‑Yeung Cho, Ricardo Correia, and 
Stephen P. Morgan, “Non‑invasive cuff‑less blood pressure estimation 
using a hybrid deep learning model,” Optical and Quantum Electronics, 
53:93, 2021. 

[18] Saeed, Mohammed, et al. "Multiparameter Intelligent Monitoring in 
Intensive Care II (MIMIC-II): a public-access intensive care unit 
database." Critical care medicine, vol. 39, no. 5, 952, 2011. 

[19] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic 
optimization." arXiv preprint arXiv:1412.6980 (2014). 

TABLE II: PERFORMANCE COMPARISON WITH THE BHS STANDARD 

 
BHS Grade/ 
Physiological 
Parameters 

Cumulative Error Percentage 
Achieved 

Grade  
≤ 5 

(mmHg) 
≤ 10 

(mmHg) 
≤ 15 

(mmHg) 
- 

BHS 
A 60 85 95 - 

B 50 75 90 - 
C 40 65 85 - 

This 
work 

SBP 70.16 88.52 94.16 A 
DBP 84.38 95.60 98.26 A 

 
 TABLE III: PERFORMANCE COMPARISON WITH THE AAMI STANDARD 

 
Physiological 
Parameters 

No. of 
Subjects 

ME 
(mmHg) 

SD 
(mmHg) 

AAMI SBP and DBP ≥ 85 ≤ 5 ≤ 8 
This 
work 

SBP 6000 0.664 6.245 
DBP 6000 -0.028 3.560 
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