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Abstract. Ground-based astronomy utilizes modern telescopes to obtain information on the universe by ana-6
lyzing recorded signals. Due to atmospheric turbulence, the reconstruction process requires solving7
a deconvolution problem with an unknown point spread function (PSF). The crucial step in PSF8
estimation is to obtain a high-resolution phase from low-resolution phase gradients, which is a chal-9
lenging problem. In this paper, when multiple frames of low-resolution phase gradients are available,10
we introduce PhaseNet, a deep learning approach based on the Taylor frozen flow hypothesis. Our11
approach incorporates a data-driven residual regularization term, of which the gradient is parame-12
terized by a network, into the Laplacian regularization based model. To solve the model, we unroll13
the Nesterov accelerated gradient algorithm so that the network can be efficiently and effectively14
trained. Finally, we evaluate the performance of PhaseNet under various atmospheric conditions and15
demonstrate its superiority over TV and Laplacian regularization based methods.16
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1. Introduction. Observation of the universe is crucial in advancing scientific discoveries,19

and modern telescopes play a significant role in this perspective. In ground-based astronomy,20

images of objects in outer space are acquired via ground-based telescopes. However, the21

imaging system is generally affected by atmospheric turbulence, and the resulting images22

are usually blurred. As for any optical system, the observed image g(x) of a ground-based23

astronomical telescope can be described as a convolution of the geometrical image f(x) with24

∗Submitted to the editors DATE.
Funding: This work was funded by the Fog Research Institute under contract no. FRI-454. The work of DZ

and CB was funded by National Key R&D Program of China under Grant 2021YFA1001300 and National Natural
Science Foundation of China under Grant 12271291. The work of RR and RW was funded by the Austrian Science
Fund (FWF), project F6805-N36, SFB Tomography Across the Scales. The work of ST and RC was funded by
HKRGC GRF grants CityU1101120, CityU11309922 and CRF grant C1013-21GF.

†Yau Mathematical Sciences Center, Tsinghua University, Beijing, China (zhengdh19@mails.tsinghua.edu.cn).
‡Department of Mathematics, City University of Hong Kong, Kawloon Tong, Hong Kong (sqtang2-

c@my.cityu.edu.hk).
§Industrial Mathematics Institute, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria

(wagner@indmath.uni-linz.ac.at).
¶Industrial Mathematics Institute, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria and

Johann Radon Institute for Computational and Applied Mathematics, Altenberger Strasse 69, 4040 Linz, Austria
(ronny.ramlau@jku.at).

∥Yau Mathematical Sciences Center, Tsinghua University, Beijing, China, and Yanqi Lake Beijing Institute of
Mathematical Sciences and Applications, Beijing, China (clbao@mail.tsinghua.edu.cn)

#Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong. Hong Kong Center for
Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong. (raymond.chan@cityu.edu.hk)

♮These authors contributed equally.

1

This manuscript is for review purposes only.

mailto:zhengdh19@mails.tsinghua.edu.cn
mailto:sqtang2-c@my.cityu.edu.hk
mailto:sqtang2-c@my.cityu.edu.hk
mailto:wagner@indmath.uni-linz.ac.at
mailto:ronny.ramlau@jku.at
mailto:clbao@mail.tsinghua.edu.cn
mailto:raymond.chan@cityu.edu.hk


2 D. ZHENG, S. TANG, C. BAO, AND R. CHAN

Figure 1: Illustrate the relation between wavefront and phase φ. a: no atmosphere distortion,
corresponding to plane wavefront and φ = 0. b: wavefront is distorted by atmosphere turbu-
lence, φ measures the intensity of the distortion.

the so-called Point Spread Function (PSF) k(x,y), i.e.,25

(1.1) g(x,y) = (k ∗ f)(x,y) + n(x,y),26

where ∗ denotes the convolution operator, n(x,y) models the noise. Since k is usually unknown27

as it is generated by the atmospheric turbulence and changes rapidly, one idea to solve (1.1)28

is to use image blind-deconvolution methods [7, 26, 21, 3]. However, the prior knowledge used29

in those methods, such as sparsity and smoothness, rarely holds for the blurring caused by30

the turbulent atmosphere [5]. In ground-based astronomy, the PSF arises from deviations31

in the incoming wavefront incident on the telescope. Ideally, without additional aberrations32

from the atmosphere or imperfections in the instrument, the wavefront is planar or has zero33

deviation. The resulting observation g(x,y) is called the diffraction-limited image, and the34

PSF of the telescope is given by35

(1.2) k(x,y) = |F−1(P)(x,y)|2,36

which depends only on the pupil shape of the telescope, where F−1 denotes the inverse Fourier37

transform and P is the aperture function of the telescope (1 inside the telescope aperture, 038

otherwise), see Figure 1a. However, in practical imaging, atmospheric turbulence degrades39

telescope image quality, leading to non-zero wavefront deviations quantified by the phase40

φ, see Figure 1b. Specifically, the phase φ of a wave measures its position in the cycle,41

indicating the oscillation level at a point. However, various optical imperfections can distort42

the wavefront from being ideally flat or spherical. These deviations are described by the43

phase φ, representing how far each point is ahead or behind the ideal wavefront. This phase44
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PHASENET 3

function describes the actual wavefront shape. The phase measures delay: a positive value45

means the wavefront lags the reference, while a negative value means it leads. Thus, the phase46

map φ describes the wavefront deviation from the ideal shape at each point.47

Using the Fourier optics model [2, 16], the PSF k(x,y) for an observation through atmo-48

spheric turbulence can be modeled as49

(1.3) k(x,y) = |F−1(P exp[ιφ])(x,y)|2,50

where ι =
√
−1, and φ is the phase. The phase φ varies over time due to changes in atmo-51

spheric turbulence, with the short timescale over which φ is constant called the atmospheric52

coherence time τ0. Therefore, the PSF in (1.3) is an instantaneous PSF. Adaptive Optics53

(AO) systems are developed to compensate for the effects of atmospheric turbulence, but54

residual aberrations remain. AO systems use wavefront sensors (WFS) to measure the incom-55

ing phase indirectly and one or more deformable mirrors (DM) to compensate for the observed56

distortions. Thus, (1.3) remains valid, but φ is the residual phase after AO compensation.57

In most astronomical applications, the exposure time of the science camera is much longer58

than atmospheric coherence time τ0. Consequently, the observed image is degraded by a59

time average over the resulting instantaneous PSFs [8]. Therefore, methods were developed60

to reconstruct this time-averaged PSF from saved AO telemetry data (see, e.g., [46] for an61

overview). Such a reconstructed PSF can then be used to improve the observed images, e.g.,62

using recently developed methods tailored to ground-based astronomy developed in [12, 36].63

WFSs split the incoming light into sub-apertures using a lenslet array, as shown in Figure 2.64

The intensity of light reaching the aperture is measured in photons. The number of incoming65

photons is limited, and each sub-aperture intercepts a small portion. If a WFS is designed66

as a fine grid, each sub-aperture may receive too few photons to provide a measurement that67

is not dominated by noise. Due to these physical limitations, the incoming phase can only68

be measured on a coarse grid, leading to a coarse approximation for the PSF. Therefore,69

recovering a high-resolution phase φ from the low-resolution WFS data can improve the70

reconstructed PSF and image restoration, which is the main goal of the work.71

1.1. Problem modelling. In Kolmogorov’s theory [24, 47], the atmospheric turbulence72

φ is assumed to be a homogeneous and isotropic Gaussian process, which is assumed to be73

zero-centered with a covariance operator Cφ of the form:74

(1.4) Cφ = F−1MF ,75

whereM is defined asM(f)(κ) = m(κ)f(κ) and m is known as the power spectrum. Accord-76

ing to the Kolmogorov–Obukhov law of turbulence, the power spectrum m follows the power77

law:78

(1.5) m(κ) = C|κ|−11/3, Lin ≤ |κ| ≤ Lout79

where [Lin, Lout] is the inertial range, and C is a constant that measures the intensity of80

the turbulence. The singularity at zero in (1.5) makes expanding the power law outside the81

inertial range difficult. Therefore, we adopt the commonly used von Karman power spectral82
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Figure 2: Principle of the Shack-Hartmann wavefront sensor: (top) undistorted wavefront,
(middle) wavefront distorted by atmospheric turbulence, (bottom) distorted wavefront with
fine-grid lenslet array.

density model [38]:83

(1.6) m(κ) =
0.023r

−5/3
0

(κ20 + |κ|2)11/6
,84

where r0 is the Fried parameter, κ0 = 1/Lout, and Lout is the atmospheric turbulence outer-85

scale. The von Karman power law removes the singularity at zero and coincides asymptotically86

with (1.5) in the high-frequency region.87

In practice, the atmosphere is composed of several layers that are located at different88

altitudes [37]. A geometric model describes wavefront propagation through turbulence, where89

the incoming wavefront φ is the sum of the wavefront passing through all turbulence layers.90

Assuming L turbulence layers, the wavefront φ decomposes orthogonally to the telescope91

direction as:92

(1.7) φ(x) =
L∑
l=1

φl(x),93

where φl is the corresponding atmospheric turbulence in the l-th layer, and φ1, . . . , φL are94

independent Gaussian processes with covariance operator Cφ1 , . . . , CφL .95

The aberration φ can be measured by a Shack-Hartmann wavefront sensor (SH-WFS) [34].96

Assuming the SH-WFS is composed of m×m sub-apertures with surfaces Ωij , i, j = 1, . . . ,m,97
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PHASENET 5

Ω =
⋃m

i,j=1Ωij , the WFS measurements can be modeled as an operator equation98

(1.8) s = Γφ,99

where Γ := [Γx,Γy]
T , and100

(1.9)

sx[i, j] = Γx(φ)[i, j] :=
1

|Ωij |

∫
Ωij

∂φ

∂x
(x,y) d(x,y),

sy[i, j] = Γy(φ)[i, j] :=
1

|Ωij |

∫
Ωij

∂φ

∂y
(x,y) d(x,y).

101

The operator Γ is well defined for wavefronts φ ∈ Hs, s > 1/2, as shownin [31]. With102

wavefronts following the van Karman power law (1.6), we have:103

∥C−1/2
φ φ∥2L2 ≃ ∥φ∥H11/6104

should be bounded. Therefore, it makes sense to consider Γ as105

(1.10) Γ : H11/6(Ω)→ Rm×m×2,106

mapping the phase φ onto measurements s [25, 45, 52, 32]. We give the discretized version107

of (1.9) in the following context.108

Discretized model. Assume Ω is a square, Ωij are sub-sqaures of Ω with equal area, and109

there are r2 discretization points in each direction in Ωij , denoted by Ωks
ij with 1 ≤ k, s ≤ r.110

That is, Ωij = ∪rk,s=1Ω
ks
ij . For any (x,y) ∈ Ωks

ij , we assume φ(x,y) = φks
ij and approximate111

∇φ(x,y) by112

(1.11)

∂φ

∂x
(x,y) =

(φk+1,s
ij − φks

ij ) + (φk+1,s+1
ij − φk,s+1

ij )

2
,

∂φ

∂y
(x,y) =

(φk,s+1
ij − φks

ij ) + (φk+1,s+1
ij − φk+1,s

ij )

2
.

113

Here, we ignore the length of the edge in Ωks
ij by assuming it equals 1. Note that as the edge114

length goes to 0, the above approximation converges to the true model in (1.9). Using the115

periodic boundary condition, the model (1.9) can be calculated by116

(1.12)

sx[i, j] =
1

r2

r∑
k,s=1

(φk+1,s
ij − φks

ij ) + (φk+1,s+1
ij − φk,s+1

ij )

2
,

sy[i, j] =
1

r2

r∑
k,s=1

(φk,s+1
ij − φks

ij ) + (φk+1,s+1
ij − φk+1,s

ij )

2
.

117

Defining n = rm and discretizing φ as ϕ ∈ Rn×n, we can rearrange the index in (1.12) and118

obtain119

(1.13) sx = Γd
x(ϕ) =↓ ◦Dx(ϕ), sy = Γd

y(ϕ) =↓ ◦Dy(ϕ),120
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+ + =

Figure 3: The incoming wavefront ϕ equals to the sum of multi-layer phases ϕ1 to ϕL, which
can be observed through the wavefront sensor Γd

x and Γd
y.

where121

(1.14) ↓ (ψ)[s, t] := 1

r2

r−1∑
i=0

r−1∑
j=0

ψ[r(s− 1) + i, r(t− 1) + j],122

and123

(1.15)
Dx(ϕ)[k, l] :=

(ϕ[k + 1, l]− ϕ[k, l]) + (ϕ[k + 1, l + 1]− ϕ[k, l + 1])

2
,

Dy(ϕ)[k, l] :=
(ϕ[k, l + 1]− ϕ[k, l]) + (ϕ[k + 1, l + 1]− ϕ[k + 1, l])

2
.

124

Figure 3 illustrates this forward process. The goal of this work is to reconstruct the high-125

resolution phase ϕ ∈ Rn×n through the low-resolution phase gradient s ∈ Rm×m×2. However,126

when r > 1, the number of unknowns is n2 = r2m2, which exceeds the number of observations127

2m2. Thus, it is difficult to recover ϕ from s directly. To address this, we consider the K128

multi-frame wavefront gradient observations during a short time interval, i.e.129

(1.16) six = Γd
x(ϕ

i), siy = Γd
y(ϕ

i), i = 1, 2, · · · ,K.130

where ϕi ∈ Rn×n and K is the number of time points. The following context simplifies (1.16)131

by relating ϕi and ϕj under the Taylor Frozen Flow (TFF) hypothesis.132

The TFF hypothesis, introduced in [43], claims that the atmosphere consists of layers of133

distinguishable turbulence that move within short intervals parallel to the Earth’s surface at134

a certain velocity. In other words, the turbulence pattern does not change within those small135

time intervals but only moves in a certain direction with a certain velocity. Furthermore, we136

assume each layer’s atmosphere is of linear motion with a constant velocity. Mathematically,137

assuming there are L layers and the i-th frame with wind shift between two consecutive frames138

in layer l is vl for 1 ≤ l ≤ K, we have139

ϕ =
L∑
l=1

ϕl and ϕi =
L∑
l=1

ϕl(· − (i− 1)vl).140

Here, ϕl(· − vl) means moving the matrix ϕl linearly along the vl direction, which can be141

implemented using bilinear interpolation. In practice, the velocity {vl}Ll=1 of the atmosphere142

This manuscript is for review purposes only.



PHASENET 7

can be measured experimentally by sending a balloon into the atmosphere. Future telescopes143

might even be equipped with instruments that allow us to measure the wind speed in the144

atmosphere directly. Define the evolution operator as Ai
lϕl(·) = ϕl(· − (i − 1)vl) and under145

the TFF hypothesis, the forward model in our phase reconstruction problem with multi-frame146

observation is147

(1.17) si :=

[
six
siy

]
=

[
Γd
x

Γd
y

]( L∑
l=1

Ai
lϕl

)
+

[
ni
x

ni
y

]
, i = 1, . . . ,K,148

where ni
x,n

i
y are noise. Our goal is to reconstruct the high-resolution incoming wavefront149

ϕ =
∑L

l=1ϕl ∈ Rn×n from multi-frame low-resolution wavefront gradient {si ∈ Rm×m×2}Ki=1.150

Our main contributions in the paper are summarized as follows.151

• To solve (1.17), we propose a variational model that contains the traditional Lapla-152

cian regularization and a data-driven regularization. Utilizing training samples, the153

proposed new regularization term can be deduced by resolving a bilevel optimization154

problem that compensates for the approximation error between traditional regulariza-155

tion and the underlying true distribution of the signals.156

• We represent the gradient of the data-driven regularization by a deep neural network157

and unroll the Nesterov accelerated gradient algorithm to minimize the inner problem,158

leading to the so-called PhaseNet. Different from other unrolling methods, the network159

in each layer shares the same parameters, which significantly reduces the network size160

and can obtain an unrolling network with many layers.161

• Experimental results on wavefront reconstruction with different atmospheric condi-162

tions validate the advantages of the proposed PhaseNet over traditional variational163

methods and unrolling approaches.164

The rest of the paper is organized as follows. In Section 2, we discuss related works of phase165

reconstruction in ground-based astronomy, including the phase gradient model, phase model,166

and deep learning based model. In Section 3, we propose our energy function with a data-167

driven residual regularization term and introduce the phase reconstruction network PhaseNet.168

In Section 4, we compare our PhaseNet with TV and Laplacian models on various atmospheric169

conditions and analyze the performance of the proposed method from six perceptions. The170

conclusion is given in Section 5.171

2. Related work. This section briefly reviews the work closely related to phase recon-172

struction in ground-based astronomy, including the phase gradient, phase, and deep learning173

models.174

Phase gradient model. To estimate the incoming wavefront phase ϕ, one idea is to decom-175

pose the WFS operator into the derivative operator D = [Dx, Dy]
T and the downsampling176

operator ↓, i.e.177

(2.1) Γd =↓ ◦D,178

and reconstruct ϕ through a two-stage process. The first stage is to reconstruct the high-179

resolution wavefront gradient ϕs by solving an ill-posed inverse problem:180

(2.2) s =↓ ϕs + n,181
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8 D. ZHENG, S. TANG, C. BAO, AND R. CHAN

which is an image super-resolution problem in low-level vision. Then the phase ϕ can be182

recovered by integrating from ϕs, i.e.183

(2.3) ϕ = Dϕs,184

which is an over-determined linear system [13, 15, 35, 42]. However, since (2.2) is an under-185

determined problem, it is difficult to obtain a high-quality wavefront gradient ϕs. To address186

this dilemma, Jefferies and Hart [20] proposed to use the multi-frame observation to recover187

ϕs under the TFF hypothesis [29]. Moreover, this multi-frame method is improved in [10, 5]188

with Tikhonov and l1 − lp regularizations.189

Phase model. Unlike the two-stage phase gradient model, the phase model chooses to190

solve (1.17) directly with different regularization terms [9, 6, 50, 22, 2] on the phase ϕ such191

as total variation, Laplacian, and Huber norm. It is shown in [6] that the reconstruction192

performance of the phase model is better than the phase gradient model. One possible reason193

is that the phase gradient model needs to solve two sub-problems, and the error of the first194

sub-problem will be amplified when solving the second one. Moreover, it is easier to design195

a regularization for phase ϕ rather than its gradient ϕs since the phase behaves more like196

natural images while the phase gradient is more ambiguous.197

Deep learning model. Deep learning methods have shown great potential in solving math-198

ematical inverse problems in recent years. In ground-based astronomy, most of the existing199

works use Multilayer Perceptrons (MLPs) or Convolutional Neural Networks (CNN) to esti-200

mate the Zernike coefficients, that is, the coefficients of the representation201

(2.4) φ(x,y) =
∑
n,m

anmZm
n (x,y)202

of the high-resolution incoming wavefront from the noisy wavefront gradient data or the whole203

off-axis SH-WFS images [17, 27, 11, 18, 19]. Here, Zm
n are the Zernike polynomials, and anm204

are the Zernike coefficients [33], (m,n) is an indexing scheme with n being the radial order205

and m the angular order. In addition, Swanson et al. [41] proposed a U-Net [39] based neural206

network to predict the wavefront image from low-resolution wavefront gradient observations.207

However, these methods use the neural network as a black box solver without considering208

the underlying mathematical model. Despite the satisfactory numerical performance achieved209

by deep learning based methods, the lack of interpretability remains a significant concern210

when comparing them with model-based approaches. The unrolling method is an emerging211

technique that alleviates the interpretability issues in signal and image processing [40, 28] and212

is becoming increasingly popular. This technique forms a deep neural network by unrolling a213

traditional iterative numerical algorithm and replacing the map in each iteration with a single214

network. Compared to traditional deep learning methods, the unrolling approach is motivated215

by solving a variational model and provides more insights into network design. In this work,216

we apply the unrolling idea to solve the phase reconstruction task in ground-based astronomy.217

We directly model the gradient of the data-driven regularization term using a single network,218

enhancing our method’s explainability. Moreover, we utilize multi-frame observations as the219

input, further improving the reconstruction accuracy.220
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3. Our methodology. Our goal is to recover the incoming phase ϕ from the multi-frame221

low-resolution wavefront gradient {si}Ki=1 with a neural network Fθ, where θ denotes the222

network parameter. The neural network Fθ can be trained by minimizing a designed loss223

given a set of training samples. Recall that the forward model (1.17) can be written as224

(3.1)


s1

s2

...
sK

 =


ΓdA1

1 ΓdA1
2 · · · ΓdA1

L

ΓdA2
1 ΓdA2

2 · · · ΓdA2
L

...
...

...
...

ΓdAK
1 ΓdAK

2 · · · ΓdAK
L



ϕ1

ϕ2

...

ϕL

+


n1

n2

...
nK

 ,225

where Γd = [Γd
x,Γ

d
y]

⊤. For simplicity, we rewrite (3.1) as226

(3.2) s̄ = HΦ+ n227

where H is the linear operator in (3.1), s̄ = [s1, . . . , sK ]T denotes all the wavefront gradient228

frames, Φ = [ϕ1, . . . ,ϕL]
T indicates the atmospheric turbulence presence in each layer.229

The classical method to recover the phase Φ is solving the following optimization problem:230

(3.3) min
Φ

1

2
∥s̄−HΦ∥22 +

β

2
R(Φ),231

whereR denotes a regularization forΦ. The final incoming wavefront ϕ can be obtained as the232

summation of ϕl, l = 1, . . . , L. To identify an appropriate regularization term, it is necessary233

to reference turbulence statistics. According to Kolmogorov’s theory [24, 47], atmospheric234

turbulence within each layer is assumed as a homogeneous and isotropic Gaussian process235

with a covariance operator Cφ as outlined in (1.4). Concurrently, our application of the von236

Karman power spectral density model in (1.6) indicates that the regularization for each layer237

phase φ might be chosen:238

(3.4) R(φ) = ∥C−1/2
φ φ∥2L2 = C0∥(κ20 + |κ|2)

11
12Fφ∥2L2 ≃ κ

11
3
0 ∥φ∥

2
L2 + ∥(−∆)

11
12φ∥2L2 ,239

where C0 is a constant. Note that ∥C−1/2
φ φ∥2L2 is bounded as we assume φ ∈ H11/6. In the240

discretized model, the covariance operator for the phase ϕl in l-th layer becomes a covariance241

matrix denoted by Cϕl
. Standard reconstruction algorithms use ∥C−1/2

ϕl
ϕl∥2 as the regular-242

ization function [22, 14]. However, in practice, the covariance matrix Cϕl
is a dense matrix,243

making its application computationally inefficient for large-scale problems. Many approxima-244

tion methods have been developed in recent decades to simplify the covariance matrix [44, 49].245

From the equivalence in (3.4), Ellerbroek [13] proposed to use the biharmonic operator ∆2 to246

approximate the inverse covariance operator C−1
φ [13]. Furthermore, we assume atmospheric247

turbulence layers are mutually independent, rendering the regularization function as248

(3.5) R(Φ) =
L∑
l=1

R(ϕl) =
L∑
l=1

∥Lϕl∥22,249

where L represents the discrete Laplacian operator.250
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Figure 4: Data flow and network architecture in PhaseNet.

Algorithm 3.1 Forward propagation of PhaseNet

Input: Multi-frame wavefront gradient s̄, Φ0, step sizes {αn}Nn=1, number of iterations N .
Output: Reconstructed incoming wavefront ϕ =

∑L
j=1ϕj .

1: Initialize λ0 = 1, Φ̃
0
= Φ0;

2: for n = 0, 1, 2, . . . , N do

3: λn+1 =
1+
√

1+4λ2
n

2 , ηn = 1−λn
λn+1

;

4: Φ̃
n+1

= Φn − αn

(
HT (HΦn − s̄) + β

[
γ1L

TLϕn
1 , . . . , γLL

TLϕn
L

]T
+Rθ(Φ

n)
)
;

5: Φn+1 = (1− ηn)Φ̃
n+1

+ ηnΦ̃
n
;

6: end for
7: return Incoming wavefront ϕ =

∑L
l=1ϕ

N+1
l .

In this case, the optimization problem in (3.3) becomes the Laplacian regularized model:251

(3.6) min
Φ

1

2
∥s̄−HΦ∥22 +

β

2

L∑
l=1

γl∥Lϕl∥22,252

where γl denotes the layer weight. However, the Laplacian regularization is imperfect and dif-253

ferent from the actual regularization function due to the accumulation of several approxima-254

tion errors, such as the difference between the biharmonic operator ∆2 and inverse covariance255

operator C−1
ϕ and the error in Kolmogorov’s turbulence statistics. To alleviate the problem,256

we propose to add a residual term Rres
ϑ (·) to represent the difference between Laplacian reg-257

ularization and the underlying real regularization, where ϑ denotes the learnable parameters.258

In summary, our model is given as259

(3.7) min
Φ

1

2
∥s̄−HΦ∥22 +

β

2

L∑
l=1

γl∥Lϕl∥22 +Rres
ϑ (Φ),260

where β > 0 is the penalty parameter.261

Obtaining the precise formulation of the residual regularization Rres
ϑ (Φ) is challenging.262

Consequently, we employ a data-driven approach that implicitly learns the residual regular-263

ization. Specifically, we consider training samples represented by {s̄n,ϕn
true}Nn=1, where s̄n264
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signifies the multi-frame wavefront gradient, ϕ embodies the high-resolution incident wave-265

front, and N indicates the quantity of training instances. Our objective is to ascertain the266

residual regularization function Rres
ϑ (Φ) by solving the following bilevel optimization problem:267

(3.8)

min
ϑ

N∑
n=1

ℓ(
L∑
l=1

ϕn
l⋆,ϕ

n
true), where Φn

⋆ = [ϕn
1⋆, . . . ,ϕ

n
L⋆]

T

s.t. Φn
⋆ = argmin

Φ

1

2
∥s̄n −HΦ∥22 +

β

2

L∑
l=1

γl∥Lϕl∥22 +Rres
ϑ (Φ),

268

where ℓ(·, ·) denotes the loss function. Since solving the above bilevel optimization is difficult,269

we mimic the minimization of the inner problem by an unrolled deep neural network and270

reduce (3.8) to a single-level minimization problem.271

The basic idea comes from the gradient descent algorithm that solves the inner optimiza-272

tion problem in (3.8). Each update has the form:273

(3.9) Φn+1 = Φn − αn

(
HT (HΦn − s̄) + β

[
γ1L

TLϕn
1 , . . . , γLL

TLϕn
L

]T
+∇Rres

ϑ (Φn)
)
,274

where αn denotes the step size in the n-th iteration. From the gradient descent iteration, we275

find that we only need Rres
ϑ to solve the lower-level optimization problem; therefore, instead276

of learning the residual regularization Rres
ϑ (Φ), we learn its gradient. In particular, we use a277

neural network to parameterize the gradient of Rres
ϑ , i.e.278

(3.10) Rθ(·) = ∇Rres
ϑ (·),279

where Rθ(·) is a neural network with parameter θ. Specifically, Rθ is a Convolutional Neural280

Network (CNN) consisting of six 3×3 convolution layers with 64 channels and Rectified Linear281

Unit (ReLU) activation functions. Combining (3.10) with (3.9), the gradient descent iteration282

becomes:283

(3.11) Φn+1 = Φn − αn

(
HT (HΦn − s̄) + β

[
γ1L

TLϕn
1 , . . . , γLL

TLϕn
L

]T
+Rθ(Φ

n)
)
,284

and the entire iterative process can be unrolled as a trainable neural network. Due to the285

slow convergence of gradient descent, we adopt an extrapolation method to accelerate the286

optimization process. The modified iteration is then given by:287

(3.12)
Φ̃

n+1
= Φn − αn

(
HT (HΦn − s̄) + β

[
γ1L

TLϕn
1 , . . . , γLL

TLϕn
L

]T
+Rθ(Φ

n)
)
,

Φn+1 = (1− ηn)Φ̃
n+1

+ ηnΦ̃
n
,

288

where ηn denotes the extrapolation factor. In practice, the Nesterov Accelerated Gradient289

(NAG) method [30] is employed to determine ηn. The detailed forward process of the NAG290

method is outlined in Algorithm 3.1, while the final unrolled network, referred to as the291

PhaseNet, comprises a series of NAG iteration blocks, as illustrated in Figure 4. A comparison292

of different optimization algorithms is provided in Table 6. It is worth mentioning that the293

NAG iteration blocks share the same parameters, resulting in a smaller network size and294

better consistency with respect to minimizing the inner problem (3.8).295
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Table 1: Simulation parameters.

Telescope diameter d 8m
WFS wavelength λ 744 nm

Resolution incoming wavefront 200× 200
Resolution wavefront gradient 50× 50

Remark 3.1. The convergence of the iteration given in (3.12) can be obtained under certain296

assumptions and restrictions on Rθ and ηn, as shown in [48, 1, 4].297

Given that PhaseNet can effectively address the lower-level optimization task, the bilevel298

optimization problem in (3.8) can be simplified to299

(3.13) min
θ

N∑
n=1

ℓ(PhaseNetθ(s̄
n),ϕn

true),300

which is optimized with deep learning training strategies. After the training phase, for an301

emergent wavefront gradient s, the high-resolution incident wavefront phase ϕ can be recon-302

structed through PhaseNet’s evaluation, mimicking to minimize (3.7).303

Since our goal is to reconstruct the PSF in (1.1), we choose the relative error between the304

reconstructed PSF with ground truth PSF as the loss function of our PhaseNet. Assume ϕ is305

the estimated incoming wavefront by our PhaseNet, ϕtrue is the ground truth wavefront, the306

loss function is307

(3.14) ℓ(ϕ,ϕtrue) = Relative Error(k,ktrue) :=
∥k− ktrue∥2
∥ktrue∥2

308

where k = |F−1{P exp[ιϕ]}|2, and ktrue = |F−1{P exp[ιϕtrue]}|2.309

Remark 3.2. In PhaseNet, the hyper-parameters, including the step sizes {αn}Nn=1 and310

{ηn}Nn=1 used in Algorithm 3.1, have been configured as learnable parameters, leading to an311

improvement in performance.312

4. Experiments and results. In this section, we evaluate the performance of PhaseNet313

with different turbulence atmosphere conditions and compare our network with traditional314

variational based methods. To accomplish this, we obtained the training and testing data315

using a simulation tool based on MATLAB [2]. The telescope parameters utilized in the316

simulation are outlined in Table 1, wherein an 8m telescope is employed, equipped with a317

single 50× 50 SH-WFS.318

4.1. Implementation details. In the forward model of our PhaseNet, we employ 1,000319

NAG steps. The training process of all PhaseNet models consists of 30,000 iterations with320

Adam optimiser [23]. The initial learning rate is initialized to 1 × 10−4 and is subsequently321

reduced by half every 10,000 iterations. The batch size is set to 1. The initial step size322

{αn}Nn=1 is set to 0.5, while β is fixed at 1 × 10−4, and γl is set to 1 for each layer. The323

network architecture is illustrated in Figure 4. In contrast to conventional deep unrolling324
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Table 2: Comparison of averaged relative errors of phase with seeing condition d/r0 = 10.

Dataset TV model Laplacian model PhaseNet (ours)

Two-frames-one-layer 0.0331 0.0303 0.0302
Four-frames-one-layer 0.0220 0.0212 0.0203
Eight-frames-one-layer 0.0153 0.0156 0.0142

Two-frames-three-layers 0.0483 0.0454 0.0439
Four-frames-three-layers 0.0410 0.0383 0.0381

techniques, we employ numerous iterations to ensure the precise reconstruction of PSF in our325

PhaseNet. However, this requirement entails a considerable demand for GPU memory. To326

address this problem, we only employ the network to correct the Laplacian gradient every 20327

steps.328

4.2. Datasets and evaluation metric. To evaluate the effectiveness of our PhaseNet329

model in reconstructing incoming wavefronts in ground-based astronomy, we simulated five330

datasets under varying atmospheric conditions. Each dataset is named based on the number of331

subsequent observation frames and atmosphere layers used in the simulation. The observation332

frames in one data sample are coming from a single WFS.333

• Two frames one layer. We use the method in [2] to obtain 1,000 paired Φ and s̄334

as the training dataset. We assume the wind’s direction in each turbulence layer is335

uniformly generated on a unit circle S1, and the wind speed is bounded by 10 pixels336

per frame. The number of turbulence layers is 1, and there are 2 frames for the337

wavefront gradient s̄ with 1% Gaussian noise. In the training stage, we assume the338

seeing condition d/r0 changes from 5 to 45, where a smaller seeing condition means a339

better observation environment in ground-based astronomy. So, our network can be340

applied to different atmospheric conditions. In the testing stage, we first generate 20341

samples with the seeing condition being 10 and then generate another 20 test samples342

with the seeing condition being 40 to evaluate our model. We refer to this dataset as343

the Two-frames-one-layer dataset.344

• Four frames one layer. The setting is the same as the Two-frames-one-layer dataset,345

except there are 4 frames in one data sample. This dataset is referred as the Four-346

frames-one-layer dataset.347

• Eight frames one layer. The setting is the same as the Two-frames-one-layer348

dataset, except there are 8 frames in one data sample, and the wind speed is bounded349

by 5 pixel-per-frame. This dataset is referred as the Eight-frames-one-layer dataset.350

• Two frames three layers. The setting is the same as the Two-frames-one-layer351

dataset, except there are 3 turbulence layers. The heights of each layer are 0m,352

11,000m, and 15,000m. This dataset is referred to as the Two-frames-three-layers353

dataset.354

• Four frames three layers. The setting is the same as the Two-frames-three-layer355

dataset, except there are 4 frames in one data sample. This dataset is referred to as356

the Four-frames-three-layers dataset.357
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Table 3: Comparison of averaged relative errors of phase with seeing condition d/r0 = 40.

Dataset TV model Laplacian model PhaseNet (ours)

Two-frames-one-layer 0.0318 0.0291 0.0288
Four-frames-one-layer 0.0212 0.0204 0.0193
Eight-frames-one-layer 0.0147 0.0150 0.0133

Two-frames-three-layers 0.0470 0.0444 0.0429
Four-frames-three-layers 0.0398 0.0375 0.0339

Table 4: Comparison of averaged relative errors of PSF with seeing condition d/r0 = 10.

Dataset TV model Laplacian model PhaseNet (ours)

Two-frames-one-layer 0.0489 0.0293 0.0250
Four-frames-one-layer 0.0203 0.0158 0.0116
Eight-frames-one-layer 0.0113 0.0098 0.0068

Two-frames-three-layers 0.0863 0.0702 0.0498
Four-frames-three-layers 0.0672 0.0568 0.0384

Evaluation metric. We present the averaged relative error of the estimated phase as the358

quantitative results of our method, which is defined as359

(4.1) Phase Relative Error =
∥ϕ− ϕtrue∥2
∥ϕtrue∥2

,360

where ϕtrue represents the ground truth phase, while ϕ denotes the estimated phase.361

Remark 4.1. As the WFS employed in our model cannot distinguish between two phases362

up to a constant shift, the restored phase inevitably possesses an unknown constant shift363

compared to the ground truth phase. To rectify this bias, we normalize the estimated phase ϕ364

and the ground truth phase ϕtrue by setting their means to zero before computing the phase365

relative error. Specifically, we use the following normalization procedure:366

(4.2) ϕ← ϕ−
∑

ij ϕ[i, j]

n2
, ϕtrue ← ϕtrue −

∑
ij ϕtrue[i, j]

n2
,367

where n represents the spatial size of the phase.368

Moreover, since our goal is to recover the PSF and thereby restore the blurred observation,369

we compute the relative error of the estimated PSF as an evaluation metric, which is defined370

as371

(4.3) PSF Relative Error =
∥k− ktrue∥2
∥ktrue∥2

,372

where k = |F−1{P exp[ιϕ]}|2, and ktrue = |F−1{P exp[ιϕtrue]}|2.373
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Table 5: Comparison of averaged relative errors of PSF with seeing condition d/r0 = 40.

Dataset TV model Laplacian model PhaseNet (ours)

Two-frames-one-layer 0.3007 0.2638 0.2459
Four-frames-one-layer 0.1810 0.1733 0.1542
Eight-frames-one-layer 0.1187 0.1216 0.1023

Two-frames-three-layers 0.4778 0.4455 0.4036
Four-frames-three-layers 0.3962 0.3699 0.3203

4.3. Results. We compare our PhaseNet with two traditional variational methods, namely374

the TV model [6], and the Laplacian model [22]. The objective function of the TV model is375

(4.4) min
Φ

1

2
∥s̄−HΦ∥22 + β

L∑
l=1

γl∥∇ϕl∥1,376

which is solved through the Alternating Direction Method of Multipliers (ADMM) algorithm.377

The objective function for the Laplacian model is:378

(4.5) min
Φ

1

2
∥s̄−HΦ∥22 +

β

2

L∑
l=1

γl∥∆ϕl∥22,379

which can be solved through the Conjugate Gradient (CG) method.380

Comparison of Phase. We present the averaged relative errors of the reconstructed phase381

for all five datasets, with seeing conditions of 10 and 40, in Tables 2 and 3, respectively. The382

results demonstrate that the proposed PhaseNet outperforms traditional variational methods,383

achieving the lowest phase relative error. Additionally, in Figure 5, we provide visual repre-384

sentations of the error image for the reconstructed phase. These images demonstrate that our385

method recovers more high-frequency information than TV and Laplacian methods.386

Comparison of PSF. As our goal is to recover the PSF, we present the PSF relative errors387

on five testing datasets in Figure 6. The figure shows that PhaseNet achieves the lowest rela-388

tive error in PSF reconstruction on almost all testing samples compared to TV and Laplacian389

models. The average relative errors for seeing conditions of 10 and 40 are presented in Ta-390

ble 4 and Table 5, respectively, with our PhaseNet outperforming traditional methods on all391

datasets and atmospheric conditions. The PSF relative error of PhaseNet is improved by 0.02392

and 0.01 on average compared with TV and Laplacian models on five datasets with seeing393

condition 10 and 0.05 and 0.03 with seeing condition 40. Additionally, Figure 10–Figure 13394

(first row) shows the visualizations of the estimated PSFs. From the enlarged area in these395

Figures, we find that the reconstructed PSFs using our method or the ground truth fit more396

closely than traditional TV and Laplacian models.397

Deconvolution Results. We use the estimated PSF to deblur the observation, with results398

shown in Figure 10–Figure 13 (second and third rows). The deconvolution problem is solved399

through the ADMM algorithm using the objective function400

(4.6) min
f

1

2
∥g(x,y)− (k ∗ f)(x,y)∥22 + β∥∇f(x,y)∥1,401
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Relative Error: 0.0427

Relative Error: 0.0732

Relative Error: 0.0162

Relative Error: 0.0422

Relative Error: 0.0778

Relative Error: 0.0156

Relative Error: 0.0320

Relative Error: 0.0649

Relative Error: 0.0135

Ground Truth TV Laplacian PhaseNet

Figure 5: Visual comparison of phase reconstruction error images. The first row is from
the Two-frame-three-layers dataset with seeing condition 40. The second row is from the
Four-frame-three-layers dataset with seeing condition 40. The third row is from the Eight-
frame-one-layer dataset with seeing condition 10.

where g(x,y) is the blurred observation, k(x,y) is the estimated PSF, and f(x,y) is the402

deblurred image. From the deconvolution results, we observe that the proposed method403

achieves the highest PSNR values compared to TV and Laplacian models and is closer to the404

true PSF results. Moreover, the deconvolution results obtained using PSFs reconstructed by405

TV and Laplacian methods introduce additional fluctuations in the restored image compared406

to our method, as seen in Figure 13.407

4.4. Ablation study and discussion. In this section, we evaluate the performance of our408

PhaseNet in the following perspectives.409

Iteration number. We investigate the phase reconstruction performance with a different410

number of NAG steps in our PhaseNet on the Two-frames-one-layer dataset. The results are411

shown in Figure 7. From the table, we find the performance of 100 NAG steps is significantly412

worse than that of those models with more than 400 NAG steps. In addition, the relative413
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Figure 6: Comparison of relative errors of PSF on five testing datasets with two seeing con-
ditions.
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Table 6: Comparison of averaged relative errors of estimated PSF with different unrolling
algorithms on the Two-frames-one-layer dataset.

Seeing condition PhaseNet-GD PhaseNet-ADMM PhaseNet-NAG

10 0.0921 0.0290 0.0250
40 0.4078 0.2588 0.2459

Table 7: Comparison of averaged relative errors of estimated PSF with black box CNN solver
on the Two-frames-one-layer dataset.

Seeing condition RCAN PhaseNet

10 0.2756 0.0250
40 0.7635 0.2459

Table 8: Comparison of averaged relative errors of estimated PSF on the Two-frames-one-
layer dataset with different noise level.

Seeing condition Noise level TV model Laplacian model PhaseNet (ours)

10
1 % 0.0489 0.0293 0.0250
2 % 0.0492 0.0299 0.0260
3 % 0.0495 0.0308 0.0276

40
1 % 0.3007 0.2638 0.2479
2 % 0.3049 0.2677 0.2541
3 % 0.3119 0.2738 0.2640

Table 9: Comparison of using all iteration output loss and final iteration output loss on the
Two-frames-one-layer dataset.

Seeing condition 10 40

All iteration output loss 0.0258 0.2504
Final iteration output loss 0.0250 0.2459

Table 10: Comparison of averaged relative errors of estimated PSF on the Two-frames-one-
layer dataset with different wind velocity relative error.

Seeing condition RE in WV TV model Laplacian model PhaseNet (ours)

10
10 % 0.0538 0.0402 0.0374
20 % 0.0702 0.0571 0.0494

40
10 % 0.3612 0.3236 0.3167
20 % 0.4413 0.4132 0.3770
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Figure 7: Different number of NAG steps on the Two-frames-one-layer dataset.

Figure 8: Phase reconstruction with an image super-resolution network RCAN.

error improves less on models with more than 800 NAG steps, and we use 1,000 NAG steps414

in our method.415

Optimization algorithm. To validate the benefits of unrolling the NAG algorithm as416

our neural network, we compare the performance of unrolling the gradient descent algo-417

rithm and ADMM algorithm, which we refer to as PhaseNet-GD and PhaseNet-ADMM, with418

our PhaseNet-NAG method on the Two-frames-one-layer dataset. The iteration number of419

PhaseNet-GD is set to 1,000, which is consistent with PhaseNet-NAG. The implementation420

details for the PhaseNet-ADMM model are given in Appendix A. The results are shown in421

Table 6. From the table, we find the performance of PhaseNet-GD is significantly worse than422

PhaseNet-NAG and PhaseNet-ADMM. The result shows that the convergence rate of the GD423

algorithm is lower than the NAG algorithm and cannot be further improved through net-424

work training. Additionally, the results of PhaseNet-NAG are slightly better than PhaseNet-425

ADMM. One possible reason is that in one ADMM iteration, we use the CG algorithm to solve426

the first sub-problem, which will bring errors to the solution. In addition, PhaseNet-ADMM’s427

computational overhead is also higher than PhaseNet-NAG, so we choose to unroll the NAG428

algorithm as our neural network.429

Comparison with black box CNN solver. To demonstrate the advantages of using430

the unrolling method to design the neural network, we compare the phase reconstruction431

performance with an image super-resolution network, namely RCAN [51], which predicts the432
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Figure 9: Parameter analysis of β on Two-frames-one-layer dataset.

Table 11: Comparison of running time among different methods.

Data TV model Laplacian model PhaseNet (ours)

Two-frames-one-layer 9.57s 1.82s 1.71s
Four-frames-one-layer 12.02s 3.22s 2.11s
Eight-frames-one-layer 14.32s 3.37s 2.24s

Two-frames-three-layers 82.79s 4.77s 10.56s
Four-frames-three-layers 133.85s 7.54s 17.21s

phase ϕ from multi-frame wavefront gradient s̄ directly. In particular, we process the input433

wavefront gradients {six}Ki=1 and {siy}Ki=1 through two convolution blocks, followed by merging434

the features of six and siy via concatenation. Subsequently, the merged features are fed into435

the super-resolution network to recover the underlying incoming wavefront ϕ, as illustrated436

in Figure 8. We train the super-resolution network for 300,000 iterations with Adam [23]437

optimizer with batch size 8. The initial learning rate is set to 1 × 10−4 and is halved every438

100,000 iterations. We use the PSF relative error as the loss function here to be consistent439

with PhaseNet. The results are shown in Table 7. The table shows that the super-resolution440

network’s phase reconstruction performance is much worse than PhaseNet and traditional441

variational based methods. One possible reason is that the black box CNN solver does not442

preserve the mathematical structure in the original inverse problem, so the information from443

the forward model will be lost during the solving process. In addition, using unrolling can444

make our method more interpretable than a black box CNN solver.445

Parameter analysis on β. We compare the phase reconstruction performance with different446

Laplacian regularization parameters. We train PhaseNet with different parameter β on the447

Two-frames-one-layer dataset, and the PSF relative error results are shown in Figure 9. From448

the results, we find the optimal setting for β is 1×10−4 or 1×10−5, and we choose β = 1×10−4449

in our PhaseNet models.450
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Restriction on the reconstruction process. One commonly used strategy in the deep451

unrolling method is to involve the output from all iterations in the final loss function:452

(4.7)
N∑

n=1

ℓ(ϕn,ϕtrue) =
N∑

n=1

∥kn − ktrue∥2
∥ktrue∥2

,453

where ϕn =
∑L

j=1ϕ
n
j , and kn = |F−1{P exp[ιϕn]}|2. We compare the performance between454

using all iteration output loss (4.7) and the final stage output loss (3.14) on the Two-frames-455

one-layer dataset, see Table 9. The results show that the PSF error of using all iteration loss456

is slightly higher than that of only using final iteration loss. One possible reason is that the457

reconstructed phase at the first few steps is inaccurate. Involving all iteration outputs into458

the loss function will bring additional constraints to the reconstruction process, whereas using459

final iteration output loss leaves more freedom for the optimization process, which benefits460

the wavefront reconstruction.461

Wavefront gradient noise level. We train our PhaseNet with different noise level wavefront462

gradient s̄ on the Two-frame-one-layer dataset. In particular, we assume the Gaussian noise463

level in the training dataset is 0% to 4%, and test with noise levels 1%, 2%, and 3%. The464

results are shown in Table 8. The results show that PhaseNet outperforms TV and Laplacian465

models on all noise levels and seeing conditions. Meanwhile, PhaseNet does not need to466

reselect regularization parameters for different noise levels, which is more convenient to use467

in practice than traditional methods.468

Error in wind velocity. In our approach, the wind velocities are presumed to be known.469

As pointed out above, they may be captured with the assistance of balloons or additional470

instruments. To investigate the influence of a wrongly estimated wind velocity, we conducted471

an ablation study using the Two-frames-on-layer dataset. In our analysis, we trained PhaseNet472

with a wind velocity relative error range from 0% to 30%. We then tested our model on the473

wind velocity with relative errors of 10% and 20%. The results are displayed in Table 10. From474

the results, we deduced that PhaseNet consistently performed better than TV and Laplacian475

models across all noise levels and seeing conditions. This indicates that our method exhibits476

greater robustness against wind velocity errors.477

Running time. The running time compared to the TV and Laplacian model is shown in478

Table 11. TV and Laplacian models are assessed on an Intel i5-10500 CPU. Our PhaseNet is479

examined on a single Nvidia GeForce RTX 3090 GPU. One of the main aspects influencing480

the time cost is the computation of the forward operator H. Given the wavefront gradient481

frames and the wind velocity, calculating the H is necessitated, as seen in (3.1). This step is482

compute-intensive and thus impacts the overall runtime.483

5. Conclusion. In this work, we propose a deep learning based phase reconstruction model484

called PhaseNet for ground-based astronomy with multi-frame observations. The PhaseNet485

is constructed by unrolling the NAG algorithm to solve the traditional inverse problem. We486

adopt a neural network to approximate the residual between traditional Laplacian regulariza-487

tion and the unknown turbulence statistics. Compared with the traditional variational based488

method, the proposed PhaseNet achieves lower PSF relative errors among all atmosphere489

conditions.490
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Figure 10: Visual comparison of estimated PSFs and deconvolution results on the Four-frames-
one-layer dataset with seeing condition 40. The first row shows a cross-sectional comparison
between the estimated and ground truth PSFs with PSF relative error. The second and third
rows show the deconvolution results using different PSFs with PSNR.
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Figure 11: Visual comparison of estimated PSFs and deconvolution results on the Eight-
frames-one-layer dataset with seeing condition 40. The first row shows a cross-sectional com-
parison between estimated and ground truth PSFs with PSF relative error. The second and
third rows show the deconvolution results using different PSFs with PSNR.
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Figure 12: Visual comparison of estimated PSFs and deconvolution results on the Two-frames-
three-layers dataset with seeing condition 10. The first row shows a cross-sectional comparison
between estimated and ground truth PSFs with PSF relative error. The second and third rows
show the deconvolution results using different PSFs with PSNR.
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Figure 13: Visual comparison of estimated PSFs and deconvolution results on the Four-frames-
three-layers dataset with seeing condition 10. The first row shows a cross-sectional comparison
between estimated and ground truth PSFs with PSF relative error. The second and third rows
show the deconvolution results using different PSFs with PSNR.
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Algorithm .1 Forward propagation of PhaseNet-ADMM

Input: Multi-frame wavefront gradient s̄, Φ0, ρ, number of iterations N .
Output: Reconstructed incoming wavefront ϕ =

∑L
j=1ϕj .

1: Initialize Φ̂
0
= Φ0, P = 0;

2: for n = 0, 1, 2, . . . , N do
3: Update Φn+1 in (A.4) with CG algorithm;

4: Φ̂
n+1

= Wθ(Φ
n+1 +Pn/ρ);

5: Pn+1 = Pn + ρ(Φn+1 − Φ̂
n+1

);
6: end for
7: return Incoming wavefront ϕ =

∑L
l=1ϕ

N+1
l .

Appendix A. Details on PhaseNet-ADMM model. We provide more implementation491

details for the PhaseNet-ADMM model. Recall the objective function in our method is492

(A.1) min
Φ

1

2
∥s̄−HΦ∥22 +

β

2

L∑
l=1

γl∥Lϕl∥22 +Rres
ϑ (Φ).493

Introducing an auxiliary variable Φ̂, we can reformulate the optimization problem in (A.1) as494

(A.2) min
Φ

1

2
∥s̄−HΦ∥22 +

β

2

L∑
l=1

γl∥Lϕl∥22 +Rres
ϑ (Φ̂). s.t. Φ̂ = Φ.495

Then the augmented Lagrangian function for (A.2) is496

(A.3) L(Φ, Φ̂,P) =
1

2
∥s̄−HΦ∥22+

β

2

L∑
l=1

γl∥Lϕl∥22+Rres
ϑ (Φ̂)+

ρ

2
∥Φ−Φ̂+P/ρ∥22−

ρ

2
∥P/ρ∥22,497

where P is the dual variable and ρ > 0 is a chosen constant. The ADMM iteration is498

Φn+1 = argmin
Φ

1

2
∥s̄−HΦ∥22 +

β

2

L∑
l=1

γl∥Lϕl∥22 +
ρ

2
∥Φ− Φ̂

n
+Pn/ρ∥22,(A.4)499

Φ̂
n+1

= argmin
Φ̂

ρ

2
∥Φn+1 − Φ̂+Pn/ρ∥22 +Rres

ϑ (Φ̂),(A.5)500

Pn+1 = Pn + ρ(Φn+1 − Φ̂
n+1

).(A.6)501502

The first sub-problem (A.4) is a least-squares problem and can be solved through the CG503

algorithm. The second sub-problem (A.5) is equivalent to504

(A.7) Φ̂
n+1

= ProxρRres
ϑ

(Φn+1 +Pn/ρ),505

where Prox denotes the proximal operator, which can be replaced by a neural network Wθ506

and learn from the data. So (A.5) is equal to507

(A.8) Φ̂
n+1

= Wθ(Φ
n+1 +Pn/ρ).508
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We unroll the ADMM iteration as a neural network called PhaseNet-ADMM. In particular,509

we use 400 CG step to solve sub-problem (A.4), and the network architecture for network Wθ510

is the same as Rθ in our PhaseNet-NAG. We use 10 ADMM iterations in PhaseNet-ADMM511

and fix ρ as 10−4.512
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