
A Non-convex Nonseparable Approach to
Single-Molecule Localization Microscopy

Raymond H. Chan1, Damiana Lazzaro2, Serena Morigi2(B),
and Fiorella Sgallari2

1 Department of Mathematics, City University of Hong Kong,
Kowloon Tong, Hong Kong
rchan.sci@cityu.edu.hk

2 Department of Mathematics, University of Bologna, Bologna, Italy
{damiana.lazzaro,serena.morigi,fiorella.sgallari}@unibo.it

Abstract. We present a method for high-density super-resolution
microscopy which integrates a sparsity-promoting penalty and a blur
kernel correction into a nonsmooth, non-convex, nonseparable variational
formulation. An efficient majorization minimization strategy is applied
to reduce the challenging optimization problem to the solution of a series
of easier convex problems.

1 Introduction

Single-molecule localization microscopy (SMLM) is a powerful microscopical
technique that is used to detect with high precision molecule localization by
sequentially activating and imaging only a random sparse subset of fluorescent
molecules in the sample at the same time, localizing these few emitters very
precisely, deactivating them and activating another subset. Repeating the pro-
cess several thousand times ensures that all fluorophores can go through the
bright state and are recorded sequentially in frames. A high density map of
fluorophore positions is then reconstructed by a sequential imaging process of
sparse subsets of fluorophores distributed over thousands of frames. Even when
theoretical characteristics on the blur kernel involved in the formation of the
images are given, the acquisition process is so complicated that also the slightest
difference to the theoretical ideal conditions, results in distortions which affect
Point Spread Function (PSF), and, consequently, the image recovering process
[12]. Several algorithms have been developed for point source localization in the
context of the SMLM challenge. In [5] the variational model is equipped with
a sparsity-promoting CEL0 penalty and solved by iterative reweighting. In [10]
the blur kernel inaccuracy is addressed with a Taylor approximation of the PSF.
For a detailed list of the software proposed to solve the SMLM challenge, and on
the physical background of SMLM, we refer the reader to [12]. We formulate the
localization problem as a variational sparse image reconstruction problem which
integrates a nonseparable structure-preserving penalty. To overcome the prob-
lem of inaccurate blur kernel which can cause severe distorsions on the solution,
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we combine our sparsity-promoting formulation with an effective blur kernel
model correction. We perform a nonsmooth nonconvex optimization algorithm
for the minimization task, based on a majorization minimization strategy. The
proposed algorithm is validated on both simulated and experimental datasets
and compared with other challenging high density localization softwares.

2 Image Formation Modelling

Let u ∈ R
N×N be the unknown high resolution image to be reconstructed, and

g ∈ R
n×n the acquisition following the molecules activation, with n = N

d , and d
is the downsampling factor. The linear acquisition process can be formulated as

g = P(Md(Bt ∗ u)) + η, (1)

where P models the degradation with Poisson noise, η is the zero-mean Gaus-
sian image noise, Bt is the convolution blurring operator with Gaussian kernel,
and Md : R

N×N → R
n×n is the downsampling operator which averages pix-

els by patches of size d × d in order to map the high resolution image to the
coarser one. In the image formation model (1) we assumed that the given blur
kernel model of the optical system (microscope) is free of error. The challenge
in [12] provided parameters to model a Gaussian PSF model for each experi-
ment data set. However, as assessed in [12] a simple Gaussian PSF model can
be sufficiently accurate for low-density data, whereas the quality of high-density
imaging depends strongly on the model of the PSF and the PSF model will have
an even more significant role in 3D SMLM applications. When an inaccurate
blur kernel is used as the input, significant distortions can appear in the recov-
ered image. In this work, we assume an inaccurate blur kernel B, with unknown
model error δB, that is the true blur kernel Bt = B − δB and we neglect the
Poisson shot noise contribution, thus (1) becomes

g = Md((B − δB) ∗ u) + η = Md((B ∗ u) − (δB ∗ u)) + η. (2)

In Fig. 1 the high pass nature of the model error δB is shown. Since δB is the
difference between two low pass filter, the input blur kernel B and the unknown
true blur kernel Bt, the corrector term δB ∗u has an enhancing effect of the edges
in the image, see [7].

Let us introduce a matrix-vector notation that will be useful in the algorith-
mic description. In particular, let B ∈ R

N×N be the blurring matrix correspond-
ing to the operator B, then

B ∗ u = BuBT = (B ⊗ B)vec(u) = B̄vec(u), (3)

where ⊗ is the Kronecker product, and vec(u) denotes the vectorization of u.
Let M ∈ R

n×N be the downsampling matrix such that

Md(u) = MuMT = (M ⊗ M)vec(u) = M̄vec(u). (4)

To accurately estimate u in (2) we only need to know the residual term δB ∗u
instead of the perturbation operator δB itself which is hard to estimate due to
the lacking of information of the blurring process.
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3 Penalty Function

In this section we introduce the sparsity-inducing function used in our variational
model, and we highlight some of its properties: be non-convex, parameterized
with μ so that we can tune its non-convex behaviour, structure preserving, as
required by the high density molecule localization problem. In light of the pre-
vious requirements, the proposed penalty function is defined on the local data
set consisting of a neighborhood of the pixel (i, j). In particular, we consider a
square window centered at uij containing all the (2� + 1)2 neighbors, � ≥ 1, and
we denote by Iij = {(i + r, j + s) : r, s = −�, . . . , �} the neighborhood index set
of size �, and by t := u|Iij , t ∈ R

(2�+1)×(2�+1)
+ the restriction of u to the win-

dow Iij . Following [9], to fulfill our goals, we define the non-convex nonseparable
penalty function ψ : R(2�+1)×(2�+1)

+ → R as follows:

ψ(t;μ) =
1

log(2)
log

(
2

1 + exp(−‖vec(t)‖1/μ)

)
, (5)

where μ > 0 represents a parameter which controls the degree of non-convexity
of the penalty function and vec(t) ∈ R

(2�+1)2

+ . The partial derivatives of ψ(t;μ)
in (5), ∀(r, s) ∈ Iij are given by

∂ψ

∂|ur,s| (t;μ) =
1

μ log(2)
1

1 + exp(‖vec(u|Irs)‖1/μ)
. (6)

Simple investigations of the first and second order partial derivatives lead to the
following properties for ψ(t;μ), which characterize a sparsity-promoting func-
tion:

– ψ(t;μ) is concave and non-decreasing;
– ψ(t;μ) has continuous bounded partial derivatives for t 	= 0, and ψ(0;μ) = 0;
– for μ values approaching to zero, ψ(t;μ) tends to the �0 quasi-norm.

4 Optimization Model NCNS for SMLM Problem

In the SMLM problem the aim is to recover sparse images with non-zero pixels
clustered into elongated structures, whose number, dimension and position are
unknown. The problem can also be classified as a blind cluster structured sparse
image recovery problem [9]. For its solution we propose to minimize the following
nonconvex cost function involving the non-convex nonseparable (NCNS) penalty
function introduced in Sect. 3. Let h := δB ∗ u be the correction term. Then we
will denote by NCNS model the following optimization problem

min
u,h∈RN×N

{J(u, h;λ1, λ2) := F (u, h) + λ1R(u;μ) + λ2H(h)} (7)

where λ1, λ2 > 0 are regularization parameters,

F (u, h) =
1
2
‖Md((B ∗ u) − h) − g‖22, (8)
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is the fidelity term, the penalty function R(u;μ) reads as

R(u;μ) =
N∑

i=1

N∑
j=1

ψi,j(u;μ), (9)

where ψi,j(u;μ) = ψ(u|Iij ;μ) is defined in (5), and H(h) = ‖h‖p
p, p = {1, 2}.

The aforementioned properties of ψi,j induce similar properties in the sparsity-
promoting function R(·;μ), which turns out to be both non-convex and non-
separable. From (9) we can define the partial derivative with respect to a pixel
(p, q) ∈ Iij as

∂R(u;μ)
∂|up,q| =

N∑
i=1

N∑
j=1

∂ψi,j

∂|up,q| (u;μ) =
∑

(r,s)∈Iij

∂ψr,s

∂|up,q| (u;μ). (10)

Formula (10) is obtained taking into account that, due to the local support of ψ,
the partial derivatives ∂ψi,j

∂|up,q| that are non-zero are those defined on the (2�+1)2

windows containing the pixel up,q itself.
The effect of the nonseparable penalty R(u;μ) on a pixel up,q depends on its

neighbors defined in Ipq. In particular, the pixel up,q is considered as belonging
to a structure and thus preserved if the �1 norm of the vector of the pixels in its
surrounding window is greater than μ, otherwise, it is forced to be zero, because
it could be an isolated artifact. This fulfills the requirements of the SMLM data,
where the fluorescent molecules are in general aggregated forming elongated thin
structures.

Proposition 1. For any couple of positive parameters (λ1, λ2) the functional
J(u, h;λ1, λ2) : R

N×N × R
N×N → R, defined in (7) is non-convex, proper,

continuous, bounded from below by zero but not coercive in u, hence the existence
of global minimizers for J is not guaranteed.

The lack of coercivity not only stems from R(u;μ), but also from the down-
sampling operator Md which has a nontrivial kernel, and the non-convexity is
due to R(u;μ). The problem (7) is in general a challenging non-convex nonsep-
arable optimization problem. A minimizer for J in (7) is carried out by apply-
ing the Majorization-Minimization (MM) strategy which iteratively minimizes
a convexification of J obtained by replacing R with its linearization R̃ around
the previous iterate, [8].

In the kth majorization step, we generate a tangent majorant of the func-
tion (surrogate functional) J(u, h;λ1, λ2) defined as

J̃(u, h;λ1, λ2, u
(k), μ(k)) = F (u, h) + λ1R̃(u;u(k), μ(k)) + λ2H(h), (11)

where the linear tangent majorant of R(u;μ(k)) at u(k) is

R̃(u;u(k), μ(k)) = R(u(k);μ(k)) +
N∑

i=1

N∑
j=1

(
∂R(u;μ(k))

∂|ui,j |
∣∣
u=u(k)(|ui,j | − |u(k)

i,j |)
)

.

(12)
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A suitable reduction of the parameter μ(k) is carried out at each iteration k,
namely μ(k+1) = cμ μ(k), with 0 < cμ < 1, in such a way that, as the number
of iterations increases, the sparsity inducing function gets closer to its limit �0
quasi-norm.

In the minimization step, the following convex nonsmooth minimization
problem is solved

{u(k+1), h(k+1)} = arg min
u,h

{
J̃(u, h;λ1, λ2, u

(k), μ(k))
}

. (13)

By neglecting the constant terms, problem (13) can be simplified to:

{u(k+1), h(k+1)} = arg min
u,h

{F (u, h) + λ1

N∑
i=1

N∑
j=1

w
(k)
i,j |ui,j | + λ2H(h)} (14)

where, using (10) and (6), the positive weights are defined as

w
(k)
i,j =

∂R(u;μ(k))

∂|ui,j |
∣
∣
u=u(k) =

∑

(r,s)∈Iij

1

μ(k) log(2)

1

1 + exp(‖vec(u|Iij )‖1/μ(k))
. (15)

Equation (14) can be rewritten in vectorized form as

{u(k+1), h(k+1)} = arg min
u,h

{F (u, h) + λ1 ‖W (k)u‖1︸ ︷︷ ︸
G(u)

+λ2H(h)}, (16)

where W (k) ∈ R
N2×N2

is a diagonal matrix of weights w
(k)
ij , which assume high

values for isolated pixel (i, j) and small values for pixels representing structures.
For the sake of simplicity, from now on we will represent the image variables in
vectorized form.

4.1 Solving the Minimization Step

In this section we determine an approximate solution of the minimization step
(16), which can be rewritten in the form

{u∗, h∗} = arg min
u,h

{F (u, h) + λ1G(u) + λ2H(h)} , (17)

where we neglected the iteration index (k).
A standard approach for solving (17) is thus to adopt an alternating mini-

mization strategy. However, its convergence is only guaranteed under restrictive
assumptions. Therefore, alternative strategies based on proximal tools have been
proposed [4]. In particular, in this work, following [1], we propose to adopt the
alternating accelerated Forward Backward algorithm which alternates the min-
imization on the two variable blocks (u, h).

Assuming that F (u, h) is a C1 coupling function which is required to have
only partial Lipschitz continuous gradients ∇u(F (u, h)) and ∇h(F (u, h)), and
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that each of the regularizers G(u) and H(h) is proper, lower semicontinuous with
an efficiently computable proximal mapping. In particular, G(u) is convex and
nonsmooth, while H(h) is convex and, eventually, nonsmooth. We cannot claim
the same for the optimization problem (7).

Proposition 2. For any fixed h the function u → F (u, h) has partial Lipschitz
continuous gradient with moduli L1 = ρ(AT A), with ρ denoting the spectral
radius, that is

‖∇uF (x, h) − ∇uF (y, h)‖ ≤ L1‖x − y‖, ∀x, y ∈ R
N2

,

where
∇u(F (u, h)) = AT (Au − g + M̄h), (18)

with A = M̄B̄, M̄ defined in (4) and B̄ in (3). For any fixed u the function
h → F (u, h) has partial Lipschitz continuous gradient ∇hF (u, h) with moduli
L2 = ρ(MT M) that is

‖∇hF (u, x) − ∇hF (u, y)‖ ≤ L2‖x − y‖, ∀x, y ∈ R
N2

,

where
∇h(F (u, h)) = M̄T (M̄h − Au + g). (19)

Formulas (18) and (19) can be derived from (8), which is rewritten as

F (u, h) =
1
2
‖M̄(B̄u − h) − g‖22,

=
1
2
(uT AT Au + hT M̄T M̄h − 2uT AT M̄h + 2gT M̄h − 2uT AT g + gT g).

Let 0 < β1 < 1
L1

and 0 < β2 < 1
L2

, the approximate solution of the opti-
mization problem (17) is obtained by the iterative procedure sketched below.

– Initialization: start with u0 = ũ0 = u(k), h0 = h̃0 = h(k), λ1, λ2 > 0,
– For each � ≥ 1 generate the sequence (u�, h�) by iterating

• Accelerated FB for u

v� = u�−1 − β1∇u(F (u�−1, h�−1)) (20)

ũ� = arg min
u

{ 1
2β1

‖u − v�‖22 + λ1G(u)} (21)

u� = ũ� + τ�(ũ� − ũ�−1) (22)

• Accelerated FB for h

s� =h�−1 − β2∇h(F (u�, h�−1)) (23)

h̃� = arg min
h

{ 1
2β2

‖h − s�‖22 + λ2H(h)} (24)

h� =h̃� + τ�(h̃� − h̃�−1). (25)
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The FB procedure is stopped when the functional (11), evaluated in the
current u�, h� solutions, drops below 10−8.

The weights τ� in (22) and (25) used for convergence acceleration are com-
puted as in [2]. The optimization subproblem (21) for u reduces to a weighted
soft thresholding with an explicitly given closed-form solution

ũ� = Sλ1β1diag(W )(v�),

where St(ν) is a point-wise soft-thresholding function which, for given vectors t
and ν, applies soft thresholding with parameter ti to the element νi of ν, namely
[St(ν)]i = sign(νi)max(0, |νi| − ti), ∀i.

The minimization of (24) is easily obtained as follows

h̃� = 1
1+λ2β2

s� for H(h) = ‖h‖22,
h̃� = Sλ2β2(s�) for H(h) = ‖h‖1.

(26)

At each Majorization step the parameter λ1 is decreased following the well-
known continuation framework [6], that significantly reduces the number of iter-
ations required. In particular, we adopt the following reduction:

λ
(k+1)
1 = cλ · J̃(u(k+1), h(k+1);λ(k)

1 , λ
(k)
2 , u(k)), 0 < cλ < 1. (27)

The algorithm starts with an initial over-regularized problem and then, at each
subsequent majorization step, it reduces the value of parameter λ1 proportionally
to the decreasing of the functional.

For what concerns the parameter choice for λ2 we consider an a priori fixed
value which can be estimated regarding the accuracy of the PSF.

Finally, each nonzero entry u∗
i,j in the minimizer of (7) is selected as a fluo-

rescent molecule with localization (Xi, Yj).

5 Numerical Experiments

We compared the proposed NCNS algorithm, applied with � = 1 and μ0 = 1 in
(5), with the methods FALCON [10], ThunderSTORM [11], IRL1-CEL0 [5],
which are super-resolution localization algorithms currently among the best
state-of-the-art methods for high-density molecules estimation according to the
2013/2016 IEEE ISBI Single-Molecule Localisation Microscopy (SMLM) chal-
lenge [12]. The algorithms have been provided by the authors. In the experi-
mental results, the methods FALCON and ThunderSTORM are equipped with
a post-processing phase, while the proposed NCNS method does not exploit
any post-processing. Further improvements will be integrated for removing false
positive using a centroid method as suggested in [3].

For all the examples, the reconstructed images N ×N are obtained from the
acquired images n × n where N = n × d, d = 4 and n = 64, that is N = 256.

In the simulated data delivered the xy-Gaussian PSF B is applied to very
high resolution images (n × 20) and is characterized by a Full Width at Half
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Maximum (FWHM) parameter provided with the dataset which is related to
the standard deviation σ by the relation σ = FWHM/2.355 nm. The Gaussian
PSF B applied in the reconstruction algorithms which process high resolution
images of size N , is characterized by a standard deviation σ obtained from the
relation

σ =
(

N

(n × 20)
FWHM

)
/2.355.

PSF kernels: true (Bt), inaccurate (B), model error ( B)

Correction term h: ground-truth (h = B ∗ uGT ), estimated by the NCNS�1

(RMSE=10−3), estimated by the NCNS�2 (RMSE=10−4)

Molecule localizations (JAC(%)): NCNS-0 (86.6), NCNS�1 (89.6), NCNS�2 (90.7).

Fig. 1. Comparisons among different regularization terms for h in (7).

5.1 Performance Evaluation

The performances are evaluated in terms of molecule localizations measured
by the detection rate via the Jaccard index (JAC), and the localization
accuracy, measured by the root-mean-square-error (RMSE). The evaluation
of both the metrics are performed by the tool in http://bigwww.epfl.ch/smlm/
challenge2016/. In particular, let R and T be the two sets of reference (ground
truth) molecules and test molecules respectively, the localized molecules suc-
cessfully paired with some test molecules are classified as true positives (TP),
while the remaining localized molecules unpaired are categorized as false pos-
itives (FP), and the ground truth molecules not associated with any localized

rchan.sci@cityu.edu.hk
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molecules are categorized as false negatives (FN) and related by FN = |R|−TP
and FP = |T | − TP . A test molecule is paired with a reference one only if the
distance between them is lower than a tolerance TOL which should be less than
the FWHM of the PSF. The Jaccard index defined by

JAC(%) :=
TP

TP + FP + FN
× 100 =

|R ∩ T |
|R| + |T | − |R ∩ T | . (28)

)c()b()a(

)f()e()d(

Fig. 2. Example 2: Averaged image (a) acquisition; (b) NCNS�2 ; (c) FALCON; (d)
single image (frame 58); (e) IRL1-CEL0; (f) ThunderSTORM.

Example 1: Performance of the Blur Correction Term. We first illus-
trate the benefits introduced by the proposed blur kernel correction in NCNS
algorithm applied to a simple synthetic image “Toy” provided by the authors of
[5], for which also the ground-truth uGT is given. In particular, we compare the
results obtained by the proposed NCNS algorithm without the h regularization
term in (7) by optimizing only over u (NCNS−0), with NCNS and H(h) = ‖h‖22
(NCNS�2), and with NCNS and H(h) = ‖h‖1 (NCNS�1).

The test image “Toy” of dimension 256 × 256 has been blurred by the true
blur Gaussian kernel Bt with unknown standard deviation illustrated in Fig. 1

rchan.sci@cityu.edu.hk
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Table 1. Example 2: JAC (and RMSE) for different JAC TOLs.

Method - TOL (nm) 100 150 200 250

NCNS�2 55.95 (52.12) 64.55 (60.70) 66.07 (64.01) 66.96 (65.75)

IRL1-CEL0 46.79 (43.15) 49.33 (47.91) 50.06 (50.59) 50.49 (53.15)

FALCON 61.92 (49.75) 72.58 (59.80) 76.34 (65.66) 78.09 (69.76)

ThunderSTORM 14.17 (51.70) 17.43 (68.41) 18.61 (77.41) 18.83 (80.10)

Table 2. Example 3 - Dataset MT0.N1.HD and MT0.N2.HD: JAC and RMSE values
for different reconstruction methods using a fixed TOL = 250.

MT0.N1.HD MT0.N2.HD

Method JAC RMSE JAC RMSE

NCNS�2 59.18 69.20 49.10 72.4

NCNS-0 56.75 69.70 48.65 72.4

IRL1-CEL0 37.90 73.04 34.33 71.4

FALCON 44.78 56.23 44.55 87.0

ThunderSTORM 52.92 59.61 46.06 61.7

)c()b()a(

)f()e()d(

Fig. 3. Example 3 - MT0.N1.HD dataset (a)–(f): Averaged image (a) acquisition; (b)
NCNS�2 ; (c) IRL1-CEL0; (d) single image (frame 700); (e)FALCON; (f) Thunder-
STORM.
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(first row, left), and subsampled according to the Md operator with d = 4. All the
algorithms have been initialized by an inaccurate Gaussian blur kernel B with
σ = 10−4, shown in Fig. 1 (first row, center). The model error δB obtained by the
difference between B−Bt is shown in Fig. 1 (first row, right). The algorithms min-
imizing the functional (7) produce the approximate solutions (u∗, h∗). Figure 1
(second row) reports from left to right: the true h computed by h = δB ∗ uGT ,
the solution h∗ of NCNC�1 and of NCNC�2 . In the third row of Fig. 1 we illus-
trate the acquired blurred image g ∈ R

64×64 with overimposed the ground-truth
molecule locations by green circles, and the estimated molecule locations by red
crosses. For each method we also reported the Jaccard index obtained and the
RMSE computed on h∗ results with respect to the ground truth. For what con-
cerns the h reconstructions, qualitative and quantitative results confirm that the
use of �2 norm regularization term in (7) instead of the �1 norm, provides a more
accurate and smooth reconstruction, avoiding the well-known staircase effects.
The Jaccard indices highlight the noticeable advantages of the presence of the
model error δB to correct the inaccuracy of the guessed blur kernel during the
reconstruction process. More pronounced is the error of the initial blur kernel B
compared to the one that has really corrupted the data Bt, and more significant
is the contribution of the correction term.

Example 2: Challenge 2013 Bundled Tubes HD. The Bundled Tubes HD
SMLM challenge is part of the Challenge 2013 which represents a set of high
density simulated acquisitions of a bundle of 8 simulated tubes of 30 nm diameter.
For this simulation, the camera resolution is 64 × 64 pixels of PixelSize 100 nm,
the PSF is modelled by a Gaussian function whose FWHM = 258.21 nm, and
the stack simulates 81049 emitters activated on 361 different frames. Figure 2
shows the averaged acquisition image with the ground truth in green (Fig. 2(a)),
a single image extracted from the stack (Fig. 2(c)), together with the averaged
reconstructions of the whole stack, given by the average of the reconstructions of
the 361 frames obtained by the compared methods. In Table 1 the Jaccard index
results are reported for different tolerances TOL; the best results are shown in
bold.

Example 3: Challenge 2016 MT0.N1.HD and MT0.N2.HD. The
datasets MT0.N1.HD and MT0.N2.HD in the Challenge 2016 represent three
microtubules in the field of view of 6.4 × 6.4 × 1.5µm. The resolution of the
camera is 64 pixels, the pixelsize is 100 nm, the stack simulates 31612 emitters
activated on 2500 different frames, the PSF is modelled by a Gaussian function
whose FWHM = 270.21 nm. The two datasets MT0.N1.HD and MT0.N2.HD
differ in the noise corruption, and in the molecule density which are respectively
of 2.0 and 0.2. Figure 3 shows the reconstructions of the whole stack MT0.N2.HD,
given by the average of the reconstructions of the 2500 frames, processed by the
several methods. In Table 2 the Jaccard index (JAC) and RMSE values are
reported for the different reconstruction methods for the two different cases.
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Results shown in Tables 1, 2 and illustrated in Figs. 2, 3, highlight the good
performance of the proposed NCNS algorithm, further improved in Example 3
where the data sparsity is more pronounced with respect to data in Example 2.

6 Conclusion and Future Work

In this paper, we have proposed a non-convex nonseparable optimization
algorithm for the 2D molecule localization in high-density super-resolution
microscopy which combines a sparsity-promoting formulation with an accurate
estimate of the inaccurate blur kernel. The performance results confirm the effi-
cacy of the proposed variational model in the SMLM context.
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