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Abstract: Monitoring change of the land surface and within open water bodies is critical for natu- 16 
ral resource management, conservation, and environmental policy. While the use of satellite im- 17 
agery for these purposes is common, fine-scale change detection can be challenging due to the ef- 18 
fects of atmospheric conditions on spectral data as well as the difficulty of connecting pixels to 19 
represent individual objects. We examined the degree to which two machine learning approaches 20 
can better characterize change detection in the context of a current conservation challenge, artisan- 21 
al-scale gold mining (ASGM). We obtained Sentinel-2 imagery and consulted with domain experts 22 
to construct an open-source labeled land-cover change dataset for the Madre de Dios (MDD) re- 23 
gion in Peru, a hotspot of ASGM activity, as well as in active ASGM areas in other countries (Ven- 24 
ezuela, Indonesia, and Myanmar). With these labeled data, we utilized a supervised (E-ReCNN) 25 
and semi-supervised (SVM-STV) approach to study binary and multi-class change within mining 26 
ponds in the MDD region. Additionally, we tested how the inclusion of multiple channels, histo- 27 
gram matching, and La*b* color metrics improved performance of the models and reduced the 28 
influence of atmospheric effects. Our empirical results show that the supervised E-ReCNN meth- 29 
od on 6-Channel histogram matched images generated the most accurate detection of change not 30 
only in the focal region (Kappa: 0.92(±0.04), Jaccard: 0.88(±0.07), F1:0.88(±0.05)) but also in the out- 31 
of-sample prediction regions (Kappa: 0.90(±0.03), Jaccard: 0.84(±0.04), and F1: 0.77(±0.04)). While 32 
semi-supervised methods did not perform as accurately on 6- or 10-channel imagery, histogram 33 
matching and the inclusion of La*b* metrics generated accurate results with low memory and re- 34 
source costs. Altogether, we show how E-ReCNN is capable of accurately detecting specific and 35 
object-oriented environmental change related to ASGM, is scalable to areas outside our focal area, 36 
and is a method of change detection that can be extended to other forms of land-use modification. 37 

Keywords: Change detection; small water bodies; ASGM, satellite image; deep learning; LSTM; 38 
smoothed total variation; SVM; semi-supervised; 39 
 40 

1. Introduction 41 
Alluvial gold mining, frequently incorporated in the umbrella term artisanal scale 42 

gold mining (ASGM), is an emerging threat to the conservation and preservation of 43 
tropical riverine systems across the planet [1,2]. This method of mining involves the re- 44 
moval of aboveground biomass and the processing of alluvial soil sediments for the re- 45 
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trieval of minute historical deposits of gold particles. ASGM typically involves opera- 46 
tions at a much broader spatial scale than pit mining, as the concentration of gold parti- 47 
cles is comparatively low in alluvial fans and historical river channels [3]. As a result, 48 
ASGM is generally associated with land cover change that can encompass large areas, 49 
including the clearing of primary tropical rainforest.  50 

While the presence of this type of mining in small pockets of the Amazon Basin is 51 
not relatively new, the expansion of ASGM as a driver of land-cover change throughout 52 
Amazonia and in other tropical ecosystems has increased markedly over the past dec- 53 
ade. For instance, in the Peruvian department of Madre de Dios, ASGM was responsible 54 
for the removal of over 120,000 ha of primary tropical forest from 1984 to 2017 [4]. 55 
ASGM has also taken hold outside the Amazon, including Nigeria [5], Ghana [6], Laos 56 
[7], and Indonesia [8]. The intensification of ASGM has led to profound impacts on river 57 
biogeochemistry [1], human health [9], and conserved areas [4], making it a significant 58 
driver of land-use change in tropical landscapes and riverine systems. Water is essential 59 
for the mining process, and shallow tropical water tables quickly fill any excava- 60 
tion.  The result of this is that entire landscapes that were once primary forests have been 61 
converted to a mixture of ponds and bare earth, creating novel hydroscapes and greatly 62 
changing restoration potential [10] (Figure 1). 63 

 64 

 65 
 66 
Figure 1: Mining ponds in La Pampa showing a range of activity levels. Deep green 67 

ponds indicate the presence of algae and the cessation of mining activity. Chalky clay- 68 
colored ponds contain high levels of suspended sediment and are currently actively 69 
mixed. Light green ponds, such as the one in the center of the image, are transitioning 70 
from active status to inactive status. 71 

As ASGM has intensified globally, monitoring efforts to detect mining activity have 72 
been of significant interest for conservation and governance purposes. Current efforts to 73 
monitor ASGM landscapes, including the presence of mining ponds and water bodies 74 
left over from sediment extraction, generally make use of satellite-based remotely sensed 75 
imagery (e.g., [4,11]). This work often relies on indices that compare reflectance band da- 76 
ta from these sensors to categorize the land surface into broad categories, a technique 77 
that is also used for monitoring small water bodies [12–14]. However, these methods 78 
generally work on a pixel-basis, and do not keep track of temporal change across time 79 
series.  80 
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Recently, developments in deep learning have led to increased capacity for moni- 81 
toring land use change more discreetly, allowing for segmentation and labeling of indi- 82 
vidual features or objects within digital imagery. Among these methods are the use of 83 
both convolutional neural networks (CNN) and recurrent neural networks (RNN). A 84 
convolutional neural network (CNN) is a multilayer neural network which is inspired 85 
by the model of the primate visual system [15] and is utilized for learning features [16] 86 
and classification problems [17,18]. Specifically, CNN relies on two-dimensional spatial 87 
contexts within imagery data to generate edges and identify features. As a result, CNN- 88 
based deep learning is widely used for feature extraction uses such as semantic segmen- 89 
tation [19], landslide detection [20], object detection [21,22], and change detection [23]. 90 
Comparatively, RNNs have the capacity of re-applying past weights to layers in the 91 
neural network remembering the spatial features over time, thereby utilizing temporal 92 
contexts and functionality with time-series data. RNNs have been used for monitoring 93 
and estimating land-cover change [24,25] and crop identification [26,27]. When these two 94 
types of neural networks are combined into a singular network (ReCNN; [28]), time- 95 
series multispectral data can be analyzed in a way that detects features as well as chang- 96 
es in conditions of these features over time.  97 

 While it may appear that deep learning only provides a more detailed estimate of 98 
land-cover change when compared to conventional techniques, these new methods may 99 
be transformative in guiding policy formation and mitigation measures. For instance, in 100 
the context of ASGM, general methods using spectral indices alone describe the area of 101 
primary tropical forest biomass that has been converted [4,29] as well as the presence of 102 
new mining ponds [10]. These mining ponds, or lagoons, are 3-4 m deep water bodies 103 
produced as sediment is piled and processed into large tailing mounds, and excavated 104 
areas are filled with water via hoses and pumps to hasten the erosion and dissolution of 105 
the soil. When nearby mining abates, sediment concentrations in the pond water column 106 
decrease while phytoplankton and algae increase in still water [1;30]. Understanding 107 
such changes provides insight into the effectiveness of mining and conservation policy 108 
across a landscape [30]. Ultimately, deep learning methods that provide time series data 109 
on the reflectance of individual features on a landscape may thus provide great utility 110 
for land-use change science and analysis.  111 

 In this work, we show how deep learning can be used to more thoroughly evaluate 112 
object-oriented land cover change via satellite imagery. To do so, we utilize ReCNN, a 113 
combined form of CNN and RNN into a singular network [31], to detect and categorize 114 
the changes of mining ponds created by ASGM activities, and compare this with a semi- 115 
supervised model, support vector machines with smoothed total variation, SVM-STV. 116 
Specifically, we examine the outcomes from these models, as well as a number of label- 117 
ing methods, to understand the applicability of these techniques to land-cover change 118 
associated with ASGM. We focus on mined areas in the Peruvian department of Madre 119 
de Dios, a global hotspot of ASGM activity. We then transfer our model to other interna- 120 
tional ASGM sites to showcase its utility. Our primary contributions are: 121 

 122 
• The creation of an open source labeled dataset of water body change pertaining 123 

to ASGM that can be used for training and consistent evaluation of algorithm perfor- 124 
mance; 125 

• An evaluation of labeling methods and approaches for use with supervised mod- 126 
el construction; 127 

• An assessment of supervised and semi-supervised methods in the context of de- 128 
tecting and characterizing mining ponds from ASGM activity; 129 

• A test of the best-performing models at a selection of out-of-sample international 130 
ASGM sites to examine universal model utility. 131 

 132 

2. Materials and Methods 133 
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2.1. ASGM Ponds Dataset and Change Characterization  134 
 135 
Our main study region is located within the Peruvian department of Madre de Dios 136 

(MDD), a global hotspot of ASGM activity. We selected 16 distinct smaller region sam- 137 
ples (~70 km2 each) of interest within MDD to highlight locations that had experienced 138 
mining pond surface area increases as well as notable deforestation (Figure 2; Table 1 in 139 
Appendix). These regions were selected for two main reasons: firstly, the regions 140 
spanned a gradient of significant mining intensity, techniques, and policy enforcement 141 
over the last 15 years. Secondly, the regions were shaped so as to maximize the number 142 
of pixels undergoing change between bi-temporal images, thereby providing a more 143 
thorough test of our models. A total selection of sixteen regions allowed for a fully rep- 144 
resentative sample of sites with these two considerations in mind.  145 

We acquired Sentinel-2 Top-of-Atmosphere reflectance data for these 16 regions via 146 
the Google Earth Engine platform. The Sentinel-2 satellite constellation [32] was devel- 147 
oped for monitoring variability in land surface conditions at frequent revisit time (5 days 148 
at the equator) and consists of 13 multi-spectral channels ranging from ultra-blue to 149 
shortwave infrared with pixel resolutions between 10 and 60 meters GSD. Sentinel-2 da- 150 
ta is widely used to assess land cover change in the context of surface water [33,34].  We 151 
selected data from two different years (2019 and 2021) with very low cloud coverage to 152 
showcase periods in which significant land-use change had occurred. We removed the 153 
influence of atmospheric effects by histogram matching of corresponding images of the 154 
same region and used Sentinel-2 metadata about cloud cover to remove any residual 155 
clouds on the images.  156 

 157 

 158 
Figure 2. Selected sixteen region samples are shown with different transparent col- 159 

ors in the Madre de Dios (MDD) area on Google Earth Engine (GEE) seen on 07/23/2021. 160 
For more geographical details about each region sample, see Table1 and Figure1 in Ap- 161 
pendix.  162 

 163 
Land use changes due to alluvial gold mining occur across different parts of the 164 

world so it is crucial that change detection algorithms generalize from one geographical 165 
region to another.  Thus, we included an out-of-sample testing dataset containing in- 166 
stances of similar alluvial gold mining in Indonesia, Myanmar, and Venezuela. (Table 2 167 
in Appendix). Mining in these regions are of similar intensity to that in MDD.  168 
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For the purpose of generating meaningful labeled data, we defined three different 169 
pond states in relation to the recency of mining:  170 

• Active state: where mining was ongoing at the time of image collection, 171 
• Transition state: where mining was recent but not ongoing; and  172 
• Inactive state: where mining had ceased longer than 6 months prior to imaging.  173 
 174 
Change in mining ponds was then defined as follows:   175 
• Decrease:  change from active to inactive, active to transition, or transition to inac- 176 

tive; 177 
• Increase: change from inactive to active, inactive to transition, or transition to ac- 178 

tive;  179 
• Water Existence/Absence: change from water to no-water or no-water to water; 180 

and, 181 
• No Change: no state changes between time periods took place. 182 
 183 
These basic categories can provide useful information regarding ongoing mining ac- 184 

tivities, such as intensification, cessation, and the effect of governance [1,4].  185 
A subgroup of individuals in our research group with expertise in the characteriza- 186 

tion of alluvial gold mining manually segmented and labeled each individual pond in 187 
our dataset.  Ponds were segmented by manually tracing their edges and pond status 188 
was determined from side-by-side visual observation of the RGB and Shortwave- 189 
infrared (SW) with GB composite images for each region, see Figure 3 a, b, c). These 190 
band combinations were chosen specifically to help discriminate between active sites, in 191 
which sediment highly reflects in the red band, and inactive sites, in which photosyn- 192 
thetic material is present and influences the shortwave infrared reflectance (Figure 3a). 193 
For consistency, we calculated color index Cidx = (green - red)/(green + red) distributions 194 
of pond pixels and chose thresholds of 0 and 0.15 to select ponds in a transition state.  195 

 196 
Figure 3. We manually labeled the state of each pond using the Labelbox tool using 197 

RGB and SWGB composite images. The composite images (a) RBG and (b) SWGB imag- 198 
es display a multitude of ponds quite clearly, and label categories (c) affixed to these im- 199 
ages. Using a color index [(green - red)/(red + green)], ponds can be differentiated with 200 
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respect to the presence of sediment and photosynthetic material and describe (d) active, 201 
(e) inactive, and (f) transition ponds. 202 

2.2. Modeling Approaches  203 
We considered two main approaches for modeling and quantifying change in re- 204 

sidual ponds: a supervised deep learning method based on ReCNN [28] and a semi- 205 
supervised method involving a support vector machine and smoothed total variation 206 
regularizer [35]. 207 

 208 
2.2.1. Supervised Deep Learning Approach 209 

We extended the ReCNN model of Mou et al. [28], originally designed to detect 210 
land cover type changes in urban areas using satellite imagery, for detection of large and 211 
subtle changes relative to water bodies. First, we augmented the ReCNN model to in- 212 
clude a second LSTM plus dropout layer between the original two LSTM layers (Figure 213 
4) to capture subtle pond state changes. Second, we modified the input layer to receive 214 
two temporal images separately, instead of two concatenated images as is done in other 215 
studies (e.g., [36,37]). We refer to this implementation as extended ReCNN (E-ReCNN) 216 
throughout the remainder of this paper. 217 

 218 
Figure 4. The E-ReCNN model uses two cloud-free Sentinel 2B images obtained from two different times 219 

(08/18/2019 and 07/23/2021) for the same region. Following histogram matching and augmentation, we used a convo- 220 
lutional kernel (Conv2d) on 5x5 pixel patches across each image to generate a feature array. These feature arrays then 221 
served as the input of the first LSTM layer and the second LSTM layer is formed following a dropout of 0.2. The last 222 
two layers were fully connected, and an output layer was applied with sigmoid/softmax functions to recognize the 223 
change of the pond’s status. 224 

 225 
2.2.2. Semi-supervised Deep Learning Approach 226 

Unsupervised and semi-supervised learning methods are widely applied in remote 227 
sensing applications involving small datasets and limited access to high-performance 228 
computing equipment. SVMs are powerful semi-supervised approaches that have been 229 
used to detect land cover change utilizing spectral information of each pixel separately 230 
[38–40]. A recent approach SVM-STV by Chan et al. 2020 [35] also utilizes spatial infor- 231 
mation contained across image regions. We modified this approach to include a lifting 232 
option for multispectral images.  Lifting is a preprocessing step that can help aid with 233 
segmentation of RGB images through the use of color spaces and additional features 234 
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[41–44]. We combined the RGB and La*b* color spaces in our images as features and 235 
then performed segmentation to reduce the effects of high correlation in one color space 236 
[44].  237 

Figure 5 illustrates the two main steps in SVM-STV. In the first step, we form the v 238 
feature vectors from the difference in the bi-temporal images. Then we use a pixel-wise 239 
ν-Support Vector Classifier (ν-SVC) with a radial basis function kernel to find a hyper- 240 
plane maximizing the margins between each pair of classes, using a one-against-one 241 
strategy, and to assign each pixel a vector of probabilities of belonging to each class 242 
[45,46]. The difference in La*b* color space between bi-temporal images is included in 243 
feature v if the lifting option is enabled. In the second step, a smoothed total variation 244 
(STV) regularizer smooths the probability vector and consequently the classification 245 
map.  246 

 247 

 248 
Figure 5. Overview of the SVM-STV method for mining change recognition. Bi-temporal images from a region 249 

are used as inputs. Preprocessing steps utilize histogram matching and lifting with Lab color data for both images. 250 
Labeled points using different images are used to train the ν-SVM in the first stage and then used to generate proba- 251 
bility maps. In the second stage, spatial information is utilized by denoising the probability tensor. The final classifica- 252 
tion results are obtained by taking the index of the maximum probability of each pixel to detect change. 253 

 254 
2.2.3. Statistical Approaches, Training, and Operation 255 

In order to understand the performance of our proposed approaches, and the im- 256 
pact of spectral information and image pre-processing, we designed a number of test- 257 
train experiments across the 16 numbered regions within Madre de Dios (Figure. 2). 258 
Additionally, to examine the generalizability of our approaches to ASGM sites in other 259 
locations in the tropics, we constructed a set of out-of-sample testing regions in Vene- 260 
zuela, Indonesia, and Myanmar.  261 
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Since our supervised and semi-supervised modeling approaches used different 262 
quantities and distributions of labels, we used slightly different training approaches for 263 
each model. For the E-ReCNN model, we used a leave-one-region-out cross-validation 264 
approach. This method is often used for classification in medical imaging (e.g., leave- 265 
one-patient-out) [18,47] to account for class imbalance and region information. Specifi- 266 
cally, we left one of the sixteen MDD regions out for testing and used the remaining fif- 267 
teen regions for training and validation. We iterated this process for each individual re- 268 
gion, allowing each region to serve as a testing region once. For each iteration, one re- 269 
gion’s image was selected as a test, and the remaining fifteen regions’ images were used 270 
for training (70% of all patches) and validation (30% of all patches). Because we were ex- 271 
amining the influence of the number of channels included in the model, this process was 272 
repeated for each multispectral image in the 3, 6, and 10-Channel image sets. Nesterov 273 
Adam [48], an improved Adam optimizer [49] was used to accelerate adaptive moment 274 
estimation and the convergence of both the Adam and stochastic gradient descent 275 
(SGD). The parameters of the model producing the best average predictive results are 276 
listed in Appendix Table A2. All testing and training using E-ReCNN were performed 277 
on the Wake Forest University DEAC HPC Cluster [50] (Appendix Table A3). 278 

To train the SVM-STV semi-supervised model, we first trained the ν-SVC and then 279 
performed denoising on the probability map that ν-SVC produces. In the context of 280 
semi-supervised learning, less than 1% of labels were randomly selected for training 281 
whereas over 99% of the labels were unknown. Thus, in the training process of each re- 282 
gion, instead of including all the pixels into the ν-SVC, we only incorporated a subset of 283 
randomly chosen labeled points from each region. So, for each of the 16 MDD regions, 284 
we first specified the number of labeled pixels per class (𝑁𝑁𝑘𝑘) for training the model. 285 
Next, we used the preprocessed randomly selected 𝑁𝑁𝑘𝑘 ∗ 𝐾𝐾 labeled pixels to train the ν- 286 
SVC with five-fold cross-validation, where 𝐾𝐾 is the number of classes. The trained ν-SVC 287 
was then applied to predict the probability tensor, and finally the denoising parameters 288 
were tuned based on the probability maps of each region. The training procedure for 289 
SVM-STV was computationally feasible and had a rapid training time as it only used a 290 
small portion of randomly selected labeled data (0.004% - 0.2%). All testing and training 291 
of the SVM-STV method were conducted in the same environment: Intel® Core™ i7- 292 
10875H CPU @ 2.30GHz, 8 cores, 64 GB RAM, Windows 64-bit system, and MATLAB 293 
R2021a. 294 

To examine the influence of spectral information on method performance we con- 295 
structed three sets of spectral images with varying numbers of spectral bands chosen 296 
specifically for application to water and land cover change: 297 

• A three-band set of images containing red, green, and blue bands (RGB); 298 
• A six-band set of images containing red, green, blue, NIR, SWIR1, and SWIR2;  299 
• A 10-band set of images containing red, green, blue, NIR, SWIR-1, SWIR-2, ultra- 300 

blue, and bands 5, 6, and 7 which correspond to vegetation red edge. 301 
 302 

To evaluate the overall performance of our methods, we used three metrics: the 303 
Cohen Kappa coefficient [51], the Jaccard index [52], and the F-1 score [53,54].  The Co- 304 
hen Kappa coefficient provides a measure of consistency and reliability in classification 305 
tasks. The Jaccard index also referred to as the intersection over union, measures the 306 
overlap between labels and predictions, emphasizing true positives over true negatives. 307 
The F1 measure is the harmonic mean between precision and recall and does not take 308 
true negatives into account which ensures the changed area accuracy is not affected by 309 
‘no change’ area accuracy which is high because of the number of pixels. We did not cal- 310 
culate accuracy scores, as these can be misleadingly high due to severe class imbalance. 311 

3. Results 312 
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In this section, we present the results of multiclass change detection on AGM ponds 313 
in multispectral images which were obtained from focal (MDD) and out-of-sample pre- 314 
diction regions. Results from change detection analyses using binary classes (change/no 315 
change) can be found in Appendix Table A6 and A7. 316 

The overall performance of our two approaches, across testing regions and using all 317 
testing sets with respect to the number of channels ranged from 0.19(±0.06) to 318 
0.92(±0.04), with the inclusion of increased spectral information (channels) positively as- 319 
sociated with increased performance. Among all experimental settings, the greatest av- 320 
erage result of multiclass change classification by E-ReCNN was a Cohen Kappa of 321 
0.92(±0.04), a Jaccard value of 0.88(±0.07), and an F1 of 0.88(±0.05) for histogram matched 322 
6-Channel set images. In contrast, the greatest average result of a multiclass change by 323 
SVM-STV was a Cohen Kappa value of 0.63(±0.07), a Jaccard value of 0.56(±0.06), and an 324 
F1 of 0.67(±0.06) for original (not preprocessed) 10-Channel set images. These results 325 
were achieved on images from the MDD region training dataset. The MDD-trained E- 326 
ReCNN approach applied to out of sample regions (Figure 6, right) performed similarly 327 
to the results obtained in the focal MDD region (Figure 6, left) which shows the generali- 328 
zation of E-ReCNN across different spatial regions. The SVM-STV approach performed 329 
less-well on out-of-sample prediction, decreasing by 25% on average. 330 

 331 

 332 
 333 
Figure 6. (left) Average scores of model performance across the 16 MDD regions for both E-ReCNN and SVM-STV. 334 
The highest accuracies were generated with the 6-channel set of histogram matched data for E-ReCNN and with the 335 
10-channel data for SVM-STV. (right) Average scores of model performance for out-of-sample test regions in Indone- 336 
sia, Myanmar, and Venezuela for both E-ReCNN and SVM-STV. The highest accuracies were generated with the 6- 337 
channel set of histogram matched data for E-ReCNN and with the 6-channel histogram matched data for SVM-STV. 338 
For both left and right, blue, orange, and gray boxes represent the distribution of Cohen Kappa coefficients, Jaccard 339 
coefficient, and F1 scores respectively. 340 

 341 
Overall, E-ReCNN model performance using the 6-channel histogram matched im- 342 

age sets from the 16 MDD regions resulted in outcomes with high levels of precision, re- 343 
call, and F1 score (Figure 7, left). Model F1 scores for ‘no change’ and ‘water existence’ 344 
classes were 0.99 and 0.96, respectively. F1 scores for ‘increase’ and ‘decrease’ classes of 345 
pond turbidity were slightly lower than ‘no change’ and ‘water existence’ classes, alt- 346 
hough the total quantity of labeled pixels for those two classes was notably lower. This 347 
pattern of F1 scores across classes was also seen in the out-of-sample regions (Figure 7, 348 
right). The total number of classified pixels in these regions was significantly lower, and 349 
F1 values for ‘decrease’ and ‘increase’ classes were 0.56 and 0.57 respectively. Perfor- 350 
mance metrics that are not biased by smaller sample sizes, including Cohen Kappa and 351 
Jaccard coefficients, were higher than 0.9 for both the MDD regions as well as interna- 352 
tional out-of-sample regions. In contrast, SVM-STV model results for ‘water existence’, 353 
‘increase’, and ‘decrease’ classes were less accurate than E-ReCNN model results as 354 
shown in Figure 8 for the MDD regions (left) and out-of-sample regions (right). F1 scores 355 
for the MDD region ‘increase’ and ‘decrease’ classes were lower using this semi- 356 
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supervised method than the out-of-sample regions as modeled by E-ReCNN. Model re- 357 
sults for the out-of-sample regions using SVM-STV were very low with respect to F1 358 
scores, below 0.15 for the ‘increase’ and ‘decrease’ classes.  359 

 360 
Figure 7. Confusion matrices for the E-ReCNN model for 6-Channel set histogram matched images from the 361 

MDD focal regions (left) and out-of-sample prediction regions (right). For both left and right, recall and precision 362 
matrices are featured to the right and below the main confusion matrix, respectively. Arrays at the bottom of both left 363 
and right show the F1-score for each class. 364 

 365 
Figure 8. Confusion matrices for the SVM-STV model for 10-Channel image sets from the MDD focal regions 366 

(left) and 6-channel histogram matched images for the out-of-sample regions (right). For both left and right, recall 367 
and precision matrices are featured to the right and below the main confusion matrix, respectively. Arrays at the bot- 368 
tom of both left and right show the F1-score for each class. 369 

 370 
Applying the E-ReCNN and SVM-STV models on image sets with a variety of spec- 371 

tral channels provided inference regarding how each channel of Sentinel-2 influenced 372 
model behavior. The 3-channel RGB image resulted in roughly equivalent F-1 scores for 373 
both the E-ReCNN model and the SVM-STV model across the MDD regions (Figure 9). 374 
While the addition of near-infrared and short-wave infrared channels (1&2), which are 375 
often used to define water surfaces with the help of a water index (6 channel image), 376 
improved F-1 scores for both models, further including red edge channels (10 channel 377 
image) resulted in no additional improvement. Notably, E-ReCNN results appeared to 378 
be more accurate than SVM-STV for both the 6-channel and 10-channel image sets.  379 
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 380 
Figure 9. Analysis of multiclass results according to different numbers of channels 381 

by F1 score. Results of histogram matched images according to 3, 6, and 10-Channel sets 382 
are shown in F1-score based. The E-ReCNN model results are higher accuracy than the 383 
SVM-STV model results. The 6-Channel results average is more accurate and has less 384 
standard deviation than the 3 and 10-Channel results.   385 

 386 

4. Discussion 387 
In the context of land-use change, particularly change associated with ASGM, un- 388 

derstanding how features across a landscape change in size and reflectance can provide 389 
critically important information for conservation and environmental policy enforcement. 390 
We show that our extension of an existing ReCNN detects multi-temporal change across 391 
landscape features when compared to an existing semi-supervised model (SVM-STV). E- 392 
ReCNN outperformed SVM-STV and unsupervised methods considerably for both our 393 
focal region in Madre de Dios, as well as out-of-sample test regions, with respect to F1, 394 
precision, and recall. Notably, E-ReCNN generated greater F1, precision, and recall val- 395 
ues for the detection of water occurrence and the multi-temporal change in spectral re- 396 
sponse for each pond feature. Estimates of precision and recall for pond sediment de- 397 
crease (82.8% and 86.1%) and increase (70.6% and 87.3%) within MDD show that this 398 
method is capable of generating multi-temporal feature-based change maps, providing 399 
evidence that this method has wide applicability to the field of environmental change 400 
detection and monitoring. 401 

One ongoing challenge in the use of satellite data for change detection relates to 402 
how atmospheric conditions can cause complications when attempting to document fi- 403 
ne-scale feature-oriented change. Although the major remotely sensed platforms such as 404 
Landsat, Sentinel, and MODIS are routinely processed and corrected via well- 405 
established and formalized techniques [55–58], variability in surface reflectance from 406 
image to image requires careful consideration for the establishment of defined trends. In 407 
our analysis, we tested a number of data pre-processing approaches to understand how 408 
these challenges could be addressed and to understand how steps can be taken to im- 409 
prove machine learning model results. We found that histogram-matching, which has 410 
primarily been used in remote sensing to denoise atmospheric effects on image mosaics 411 
[59,60], and recently in change detection [61–63], improved outcomes for our supervised 412 
model, E-ReCNN. In contrast, including Lab color space variables into the semi- 413 
supervised model, SVM-STV, produced the most accurate results. While water surface 414 
change detection datasets using remotely sensed imagery indicate excellent results 415 
without histogram-matching (e.g., [64–66]), we note that these studies focus on large- 416 
scale changes in deep surface water extent/presence, wherein atmospheric noise plays 417 
less of a factor. In our case, where we attempt to identify more subtle changes in water 418 
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reflectance, we find that these preprocessing steps are necessary to achieve optimal re- 419 
sults in detecting changes in water bodies resulting from ASGM and should be consid- 420 
ered in land-use change detection workflows, particularly if top-of-the-atmosphere 421 
products are utilized.  422 

 In addition to pre-processing methods, decisions regarding the inclusion of specific 423 
channels of remotely sensed data into models for analyzing land cover change dynamics 424 
are important to ensure accurate outcomes. Critical tradeoffs between sensor spatial res- 425 
olution, temporal resolution, and the availability of spectral channels can constrain the 426 
scope of land-cover change analysis. In the context of ASGM mining pond detection and 427 
classification, where patterns across years and seasons are evident, newly established 428 
commercially available satellite imagery (PlanetScope, DigitalGlobe) provide the tem- 429 
poral and spatial resolution necessary to detect these fine-scale changes; however, these 430 
products generally are only available in a narrow set of channels. In our results, we 431 
found that the supervised E-ReCNN model generated the best outcomes in the 6- 432 
Channel and 10-Channel data sets after histogram matching, with significantly lower F1 433 
scores in the 3-Channel data set. When we applied lifting using L*a*b color space varia- 434 
bles, the results either did not impact (for the 10-channel data set) or slightly decreased 435 
(for the 3- and 6-channel data sets) accuracies. Consequently, we conclude that the selec- 436 
tion of RGB images for this type of change detection may result in inferior outcomes 437 
compared to data sets with a greater number of channels in the infrared and red-edge 438 
spectrum. Commercial satellite data that lack these channels may be therefore limited in 439 
detecting important changes in aquatic systems, at least in comparison to other options.  440 

 Our modeling results show a notable difference in accuracy between supervised 441 
and semi-supervised methods. Although novel unsupervised learning methods present- 442 
ed in the literature show a great deal of potential for change detection [67–69], when we 443 
utilized one such unsupervised learning method [70], model performance results were 444 
substantially weaker than those provided by E-ReCNN and SVM-STV. Thus, we did not 445 
include detailed results regarding using unsupervised learning techniques for this prob- 446 
lem. Our semi-supervised method, SVM-STV, in general fits the data effectively by mak- 447 
ing use of a small fraction of labels, especially when only RGB data is provided.  Our re- 448 
sults indicate that if a small, labeled set of a mining region in MDD is retrieved, the 449 
SVM-STV method can be trained on a desktop computer in a matter of minutes and 450 
produce reasonable results for both binary and multiclass classification. In practice, us- 451 
ers can decide the number of expert-generated labels to acquire based on their needs, 452 
with the caveat that a fully supervised model may be more accurate and precise. In addi- 453 
tion, if RGB images are necessary for detecting rapid change at localized scales, lifting 454 
using the La*b* color space generates enhanced results compared to data that has not 455 
been pre-processed. 456 

Supervised model performance varied across MDD training regions (Appendix Ta- 457 
ble A4) with respect to temporal change, but was consistent across regions for detecting 458 
change/no change, with change detection F1 scores higher in regions using water can- 459 
nons compared to regions using earth moving equipment. For example, region 4 within 460 
La Pampa is characterized by ovular ponds with distinct edges surrounded by bare 461 
ground (Figure 10, top). This region has been heavily mined using suction pumps to 462 
displace water into mining ponds and use small sluices to separate fine sediment from 463 
larger stones and pebbles. Comparatively, region 12 in Huepetuhe (Figure 10, bottom) 464 
features the signature of the use of bulldozers and excavators to move sediment for pro- 465 
cessing; consequently, this region lacks distinct ponds with clear edges as in region 4. 466 
We suspect that the lack of defined edges of water bodies provided an additional chal- 467 
lenge for convolutional filters within E-ReCNN, leading to a decrease in the F1 score in 468 
the region 12. Our results indicate that regions where mechanized mining is more preva- 469 
lent are modeled with lower values for detecting increases and decreases in pond reflec- 470 
tance than those regions in La Pampa and, subsequently, monitoring and modeling di- 471 
rectional pond change may be more difficult in areas with differing mining typologies; 472 
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however, outcomes for detecting change/no-change and water existence were excellent 473 
for both methods (Appendix Table A6 and A7). 474 

 475 

 476 
Figure 10. True-color image composites of region 4 in La Pampa (top, left) and re- 477 

gion 12 in Huepetuhe (bottom, left) show how signatures of mining using different 478 
practices may generate more or less uniform surface water bodies. The middle images 479 
are overlay images of semi-manual label maps and model-predicted results, with white 480 
and shades of gray representing accurate classification, shades of magenta representing 481 
overestimated sediment, shades of green representing underestimated sediment, and 482 
black representing no detected change. While Region 4 from La Pampa has deeper and 483 
more circular ponds that are separated from sand, Region 12 from Huepetuhe has more 484 
shallow, small and intricate ponds mixed with sand and ground, which appears to im- 485 
pact accuracy metrics.  486 
 Whereas model outcomes were generally accurate across MDD regions, with slight 487 
differences between areas with different mining types, model results in the out-of- 488 
sample international regions were slightly less accurate with respect to multi-class 489 
change detection. However, with E-ReCNN, our out-of-sample results were still within 490 
10% of our focal region results, indicating that this method retained significant perfor- 491 
mance of detecting change/no change and water occurrence in ASGM sites in different 492 
contexts and on different continents. With respect to pond increases and decreases in 493 
turbidity, both supervised and semi-supervised models generated significantly lower re- 494 
call and precision for international sites compared to the MDD region results. Semi- 495 
supervised results using SVM-STV were extremely inaccurate (Figure 8, right) indicating 496 
that using this method is not advisable for accurate change detection; supervised model 497 
results were less accurate for these out-of-sample regions, but still detected binary clas- 498 
ses of change quite accurately overall. The construction of regional label sets may im- 499 
prove performance for detailed questions regarding pond status, but for general detec- 500 
tion of AGM associated mining ponds, the supervised model appears suitable for infer- 501 
ence world-wide. More thorough investigations at known mined sites across the tropics 502 
would provide greater detail regarding the variability of model performance in new re- 503 
gions. 504 

5. Conclusions and Future Work 505 
In this paper, we describe the creation of a unique ASGM Residual Ponds dataset as 506 

well as a new supervised method (E-ReCNN) for detecting fine-scale changes in the en- 507 
vironment using satellite imagery. We show how this method compares favorably to ex- 508 
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isting semi-supervised (SVM-STV) methods. We applied different preprocessing opera- 509 
tions on three image sets with different quantities of multispectral bands to analyze their 510 
influence on the models’ results. According to our analyses with Sentinel-2 imagery, us- 511 
ing a 6-band image set generated model performance higher than other band combina- 512 
tions, even those that included more spectral information. Pre-processing was essential 513 
to model performance, even on well-curated Sentinel-2 data, increasing model F1 scores 514 
from roughly 0.71 to 0.88 for 6-band images. For fine-level change detection we conclude 515 
that these images need noise reduction and calibration such as histogram matching for 516 
E-ReCNN and the addition of La*b* color space to the SVM-STV model. Given this find- 517 
ing, practitioners using other change-detection methods on available satellite imagery, 518 
particularly with respect to water detection, may benefit from revisiting their results and 519 
investigating whether inaccuracies were due to pre-processing impacts.  520 

Practitioners wishing to use the methods presented in this manuscript should con- 521 
sider the practical and computational demands of both change detection models. We 522 
found that classification performance is inverse to the computation demands for the two 523 
methods. Since the SVM-STV model can be trained on local machines, it is an efficient 524 
solution under the conditions of limited channels and resources. In contrast, because the 525 
E-ReCNN model consists of CNN and LSTM subnetworks, the R-ReCNN model re- 526 
quires considerably lengthy training times on GPUs (Appendix Table 3). However, it is 527 
worth noting that the E-ReCNN model, once trained once, appears to be capable of ex- 528 
tension to out-of-sample regions with minimal loss in performance, and therefore once 529 
this process is completed, this method can be applied globally.  530 

Future work may allow for an improvement of the SVM-STV model, particularly 531 
since the training size of labeled pixels used in this test was small and likely contained 532 
outliers and noisy pixels that could affect the quality of the model. Although histogram 533 
matching reduces radiometric differences in bitemporal images, the disparities among 534 
training regions can be significant and influential. Instead of randomly selecting training 535 
pixels for a generalized model, kernel density estimation may be used as an indicator 536 
that gives information of the “commonness” of each pixel [70,71]. This allows for the ex- 537 
clusion of outliers by only selecting pixels at high densities, generating more consistent 538 
test results. Furthermore, the SVM-STV model may be improved by including an active 539 
learning scheme, which takes into account the practical condition that there is a restrict- 540 
ed budget for label collection. The diffusion geometry of the data can be used to push 541 
the approach even further by reducing the number of labels needed but producing 542 
greater performance [70–72]. 543 

Follow-up work on E-ReCNN may allow for the application of this model to other 544 
landscapes and environmental topics. While we investigated bi-temporal imagery sets in 545 
this analysis, the performance of E-ReCNN across a multitemporal image set may offer 546 
information regarding model transferability for decadal estimates of change across a 547 
landscape. Furthermore, testing E-ReCNN for use with other environmental features for 548 
the detection of change such as fields, roads, and vegetation patches may allow for 549 
broad expansion of this supervised method to help monitor environmental change in 550 
other contexts and locations. 551 
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Appendix A 567 

Table A1. The regions in Figure 2 with their sizes in pixel and in km2 area and their latitude and longitude of left bottom and right 568 
top.  569 

Region Number Size in Pixels Area in Km2 Left bottom Right Top 

Region-1 667 x 654 43.37 13°01'51.9"S 69°55'29.5"W 12°58'15.9"S 69°51'53.5"W 

Region-2 667 x 655 43.37 13°01'21.8"S 69°58'37.3"W 12°57'45.8"S 69°55'01.3"W 

Region-3 556 x 546 30.12 13°00'27.3"S 70°00'54.0"W 12°57'27.3"N 69°57'54.0"W 

Region-4 556 x 545 30.12 13°00'43.6"S 70°03'19.6"W 12°57'43.6"S 70°00'19.6"W 

Region-5 1109 x 548 60.25 12°59'42.4"S 70°02'36.0"W 12°53'42.4"S 69°59'36.0"W 

Region-6 667 x 655 43.38 12°59'22.4"S 70°06'47.8"W 12°55'46.4"S 70°03'11.8"W 

Region-7 888 x 482 42.42 12°57'16.3"S 70°04'57.0"W 12°52'28.3"S 70°02'18.6"W 

Region-8 556 x 545 30.13 12°53'31.7"S 70°03'35.8"W 12°50'31.7"S 70°00'35.8"W 

Region-9 556 x 546 30.13 12°55'34.6"S 70°01'14.7"W 12°52'34.6"S 69°58'14.7"W 

Region-10 555 x 438 24.1 12°53'19.3"S 69°59'47.2"W 12°50'19.3"S 69°57'23.2"W 

Region-11 1109 x 657 86.72 12°51'48.2"S 69°57'52.1"W 12°45'48.2"S 69°54'16.1"W 

Region-12 1333 x 659 86.12 13°05'46.4"S 70°31'00.8"W 12°58'34.4"S 70°27'24.8"W 

Region-13 894 x 1309 115.66 13°02'14.2"S 70°39'33.2"W 12°57'26.2"S 70°32'21.2"W 

Region-14 1337 x 1311 173.56 12°56'48.5"S 70°38'10.1"W 12°49'36.5"S 70°30'58.1"W 

Region-15 1560 x 1748 270.11 12°49'54.8"S 70°35'44.9"W 12°41'30.8"S 70°26'08.9"W 

Region-16 668 x 655 43.38 12°57'55.2"S 70°16'12.7"W 12°54'19.2"S 70°12'36.7"W 

 570 
  571 
Table A2. Configuration of optimal model parameters for supervised (E-ReCNN) and semi-supervised (SVM-STV) models. 572 

E-ReCNN 
(TensorFlow Framework) 

Nesterov Adam – β_1=0.9, β_2=0.999, ϵ=1e-07 
Learning rate - 1e-03 
Glorot uniform initializer – uniform distribution 

SVM-STV 
  

The two parameters of ν-SVC:  
Nu: 0-0.2, Gamma: 1/(n+2)-1/(n-2), where n is the number of bands. 
The denoising parameters: 
Alpha1: 0-1, Alpha2: [0, 0.5, 1, 2], Mu: 5. 
The above five parameters are tuned on each of the 16 training regions. 



Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 24 
 

 

Table A3. Calculated costs of model training. 573 

E-ReCNN 
(Wake Forest University DEAC HPC cluster) 

Number of Epoch:  
75  

 Total Loss:  
0.0208 

Time per epoch: 
548s 

SVM-STV 
(Local machine) 

Number of Trials:  
10   

Training Error:  
Controlled by Nu 

 Time per trial: 
3s to 94s 

 574 
Table A4. Accuracies of regions and their areas for the E-ReCNN model for histogram matched 6-Channel images 575 

Area Number of 
the regions 

Kappa Coef. Jaccard Co-
ef. 

F1 Score No 
Change 

Decrease Increase Water 
Existence 

La Pampa 

1 0.932 0.889 0.941 0.995 0.938 0.865 0.965 

2 0.880 0.814 0.893 0.990 0.911 0.726 0.945 

3 0.891 0.826 0.918 0.988 0.923 0.813 0.948 

4 0.945 0.916 0.954 0.993 0.969 0.896 0.956 

5 0.913 0.863 0.923 0.988 0.924 0.819 0.964 

6 0.879 0.807 0.868 0.989 0.852 0.660 0.969 

7 0.951 0.921 0.887 0.993 0.884 0.685 0.985 

8 0.984 0.974 0.904 0.998 0.774 0.854 0.991 

9 0.924 0.875 0.914 0.993 0.869 0.847 0.950 

10 0.983 0.973 0.930 0.997 0.805 0.927 0.990 

11 0.977 0.961 0.799 0.998 0.460 0.752 0.988 

Huepetuhe 
12 0.864 0.776 0.780 0.994 0.450 0.766 0.910 

13 0.951 0.917 0.848 0.997 0.659 0.754 0.983 

Delta 
14 0.924 0.884 0.855 0.995 0.686 0.772 0.970 

15 0.930 0.889 0.839 0.992 0.636 0.740 0.987 

Inambari 
Tributary 

16 0.832 0.740 0.795 0.994 0.547 0.786 0.854 

 576 
Table A5. The regions in the different parts of the world with their sizes in pixel and in km2 area and their latitude and longitude 577 
of left bottom and right top.  578 

Region Number Time1 Time2 Size in 
Pixels 

Area in 
Km2 

Left bottom Right Top 

Indonesia-1 8/20/2018 4/7/2019 666x667 44.51 0°44'39.4"N 110°42'25.3"E 0°48'15.4"N 110°46'01.3"E 

Myanmar-2 12/3/2018 3/20/2021 664x668 43.54 11°56'19.2"N 99°16'20.4"E 11°59'55.2"N 99°19'56.4"E 

Venezuela-3 12/10/2018 9/20/2020 666x667 44.25 6°11'42.9"N 61°33'15.9"W 6°15'18.9"N 61°29'39.9"W 
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Venezuela-4 12/10/2018 9/20/2020 666x667 44.25 6°08'07.3"N 61°29'46.0"W 6°11'43.3"N 61°26'10.0"W 

Venezuela-5 12/10/2018 9/20/2020 556x556 30.73 6°10'19.6"N 61°29'24.8"W 6°13'19.6"N 61°26'24.8"W 

Venezuela-6 12/10/2018 9/20/2020 887x490 43.27 6°08'47.2"N 61°31'18.5"W 6°13'35.2"N 61°28'40.1"W 

Venezuela-7 12/10/2018 9/20/2020 666x667 44.25 6°10'07.4"N 61°27'48.5"W 6°13'43.4"N 61°24'12.5"W 

 579 
Table A6. Binary Change detection results for the E-ReCNN method 580 

 581 
      Kappa Coef. Jaccard Coef. F1 Score 

Original Images 

3 Channel 
Average 0.63 0.52 0.81 
Std Dev 0.13 0.12 0.07 

6 Channel 
Average 0.71 0.63 0.84 

Std Dev 0.23 0.21 0.16 

10 Channel Average 0.70 0.62 0.83 
Std Dev 0.25 0.23 0.17 

Histogram Matched 
Images 

3 Channel 
Average 0.53 0.42 0.76 

Std Dev 0.11 0.11 0.06 

6 Channel 
Average 0.92 0.87 0.96 

Std Dev 0.04 0.07 0.02 

10 Channel 
Average 0.92 0.87 0.96 

Std Dev 0.04 0.07 0.02 

Histogram Matched      
+ Lab Lifted Images 

3 Channel 
Average 0.45 0.37 0.71 

Std Dev 0.16 0.14 0.10 

6 Channel 
Average 0.92 0.87 0.96 

Std Dev 0.04 0.07 0.02 

10 Channel 
Average 0.91 0.86 0.96 

Std Dev 0.04 0.07 0.02 
 582 
 583 
Table A7. Binary Change detection results for the SVM-STV method 584 

      Kappa Coef. Jaccard Coef. F1 Score 

Original Images 

3 Channel 

Average 0.44 0.60 0.72 

Std Dev 0.10 0.06 0.06 

6 Channel 

Average 0.62 0.71 0.81 

Std Dev 0.08 0.05 0.04 

10 Channel 

Average 0.67 0.74 0.84 

Std Dev 0.07 0.04 0.03 

Histogram Matched 
Images 

3 Channel 

Average 0.52 0.65 0.76 

Std Dev 0.09 0.06 0.05 

6 Channel 

Average 0.64 0.72 0.82 

Std Dev 0.07 0.04 0.03 

10 Channel 

Average 0.62 0.71 0.81 

Std Dev 0.09 0.05 0.05 

Histogram Matched      
+ Lab Lifted Images 3 Channel 

Average 0.61 0.71 0.80 

Std Dev 0.07 0.04 0.04 
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6 Channel 

Average 0.64 0.72 0.82 

Std Dev 0.08 0.04 0.04 

10 Channel 

Average 0.62 0.71 0.81 

Std Dev 0.08 0.04 0.04 

Appendix B 585 

 586 
Figure B1. All images in MDD were used for LoRo experiments. 587 

 588 
Figure B2. All Test images from Indonesia, Myanmar, and Venezuela.   589 
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 590 

Figure B3. Binary change detection best performance.   591 

 592 

Figure B4. Binary Change Detection F1-Score for different channels. 593 
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