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ABSTRACT

Hyperspectral images (HSIs), which store a hundred or
more bands of spectral bands of reflectance, have become an
important data source in natural and social sciences. HSIs
are often generated in large quantities at a relatively coarse
spatial resolution. As such, unsupervised machine learn-
ing algorithms incorporating known structure of HSIs are
needed to analyze these images automatically. This work
introduces the Spatial-Spectral Image Reconstruction and
Clustering with Diffusion Geometry (DSIRC) algorithm for
partitioning highly mixed hyperspectral images. DSIRC
reduces measurement noise through a shape-adaptive re-
construction procedure. In particular, for each HSI pixel,
DSIRC locates spectrally-correlated pixels within a data-
adaptive spatial neighborhood and reconstructs that pixel’s
spectral signature using those of its neighbors. DSIRC then
locates high-density, high-purity pixels that are far in diffu-
sion distance (a data-dependent distance metric) from other
high-density, high-purity pixels and treats these as cluster
exemplars. Non-modal points are assigned according to the
label of their diffusion distance-nearest neighbor of higher
density and purity that is already labeled. Strong numerical
results indicate that incorporating spatial information through
image reconstruction substantially improves the performance
of pixel-wise clustering.

Index Terms— Clustering, Diffusion Geometry, Hyper-
spectral Imagery, Image Reconstruction, Spectral Unmixing,
Unsupervised Learning.

1. INTRODUCTION

Hyperspectral images (HSIs)—often remotely sensed by air-
borne or orbital spectrometers—are high-dimensional images
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that encode rich spectral and spatial structure [1]] that has en-
abled the detection of material structure in a scene using ma-
chine learning algorithms [2| 3]]. However, due to the large
volume of HSI data continuously generated by remote sen-
sors, expert annotations (often required for supervised algo-
rithms) are usually difficult to obtain. Moreover, there is an
inherent trade-off between the spatial and spectral resolution
of HSI data [} [3]]. HSIs are often created at a coarse spatial
resolution due to this trade-off, meaning that some pixels in
an HSI correspond to spatial regions in the scene containing
many different materials [1} 3]]. Thus, it is crucial to develop
unsupervised approaches that capture the underlying geomet-
ric structure of an HSI while incorporating spectral mixing.

This work introduces the Spatial-Spectral Image Recon-
struction and Clustering with Diffusion Geometry (DSIRC)
algorithm for unsupervised material discrimination in hy-
perspectral images. DSIRC is a variant of the unsupervised
Diffusion and Volume maximization-based Image Clustering
(D-VIC) algorithm [3]. DSIRC improves D-VIC by incor-
porating spatial information through a shape-adaptive recon-
struction (SaR) before cluster analysis. Since HSI pixels
that are spatially close tend to come from the same clus-
ter, DSIRC is shown to substantially outperform D-VIC (its
spatially-agnostic counterpart) in extensive numerical results
on real-world HSI data.

This article is organized as follows. Section [2| contains
background on HSI analysis (e.g., clustering, reconstruction,
and spectral unmixing), diffusion geometry, and D-VIC. Sec-
tion (] introduces DSIRC. Section [4] contains numerical com-
parisons of DSIRC against classical and state-of-the-art algo-
rithms. Section[3]concludes and discusses future work.

2. RELATED WORKS

2.1. Hyperspectral Image Clustering

Algorithms for HSI clustering segment HSI pixels X =
{x;}¥, C RP (interpreted as a point cloud of N pixels’



spectral signatures, where B is the number of spectral bands)
into clusters of pixels { Xy }5_, [4]. Ideally, any two pixels
from the same cluster should share key commonalities (e.g.,
common materials [3]]). HSI clustering algorithms are unsu-
pervised; i.e., the partition {X| k}ff:l is recovered without the
aid of ground truth (GT) labels [3].

2.2. Hyperspectral Image Reconstruction

Spatially close HSI pixels tend to come from the same clus-
ter, but intra-cluster spectral reflectances may vary substan-
tially due to the inherently coarse spatial resolution of HSIs.
This section reviews HSI reconstruction, which efficiently de-
noises hyperspectral data by reconstructing HSI pixels using
the spectra of spatial nearest neighbors. HSI reconstruction
has been successfully used as a preprocessing step for semi-
supervised learning [, 6} [7] and is expected to be useful for
unsupervised learning [3].

HSI reconstruction denoises the spectra of pixels through
a linear combination of spectral signatures of its spatial near-
est neighbors confined by local spatial windows. While sim-
ple spatial squares have been used to efficiently incorporate
spatial information into unsupervised and semi-supervised al-
gorithms, these generally require the tuning of the spatial ra-
dius of the window used, yielding an additional parameter [}
6l 17,18 19} [10]. Shape-adaptive (SA) regions, in contrast, may
be used for parameter-free HSI reconstruction [3].

Here we introduce the Shape-adaptive Reconstruction
(SaR) algorithm. First, SA region of each pixel is found by
the local polynomial approximation (LPA) filtering and inter-
section of confidence intervals (ICI) rule, implemented on the
first principal component (PC) Z € R? of the HSI [T} [12]].
The LPA filtering designs linear filters by fitting polynomi-
als in defined sliding windows to denoise images so that the
spatial information within the neighborhood of pixels is well
explored. The ICI rule constructs the adaptive window by
analyzing the estimation error between the value of ideal im-
age and denoised image using confidence intervals. The LPA
filtering and ICI rule are often composed to select SA regions
for HSI pixels [12]. We follows a reconstruction step that
denoise the spectral of HSI pixels in SaR [3]].

Denote the spatial coordinate as &, = (&;,&)7T for z €
X, and assume the first PC Z(&,) = I(&;) + €, where I(&,)
and €, are the underlying signal and noise of pixel x in its first
PC. LPA estimates true signal of each length candidate [; €
Leor = {li <--- <1; <--- <1y} and direction 6,,, with
m = 1, 2, [N ,8 by Il_7.79m (Ez) = ZS gl_7.79m (US)Z(Rgmfs),
where gi; g,, (us) is the directional LPA kernel for each 0,
and [, and u; = Ry, (& — &) is rotated coordinate differ-

ences of £, and &, and Ry, = fﬁféfg"i) i:ﬁggzg}

Then, ICI is applied to find the optimal length l(jm € Lgar

for each direction 0,,,. The confidence interval for il’gm (&2):

CI(p, (&) = [, .0,, (&), Bi; 0., (§2)] with

Bi;0mm = iz]-,em +710(X2 ngj,em (us))) > Brj.om = 1mm] Bi; 0 s
where T is a threshold. The optimal length l;m is determined
by argmax; ay; g9, < Bljygm. Finally, a SA region for the
target pixel will be constructed after attaining l;’m for each m.
Let Z(x) be the indices of the pixels contained in the cal-
culated SA region for x € X. Then, the reconstructed spec-

trum @ =3 70 P(T, Y)Y/ Dy c 7o) P(@, y), where p(z, y)
is the Pearson correlation coefficient between x and and y.

Algorithm 1: Shape-adaptive Reconstruction
Input: X (dataset), L4, (Iength candidates)
Output: X (reconstructed dataset)

1 Apply Principal Component Analysis (PCA) on X to
get the first PC Z € R7T*W;

2 Foreach l; € Ly, and 0,,, LPA estimates the true
signal I, 9, (§2) = 20— 91, .6, (us)Z(Ra,, &) on
the first PC Z of pixel z, where s is the index of
pixels in 2’s neighborhood [[11]];

3 For each = and 6,,,, computes the optimal length by

ICI: l(jm = argmax, &y, .6,, < B0,

4 Construct the SA region of x by these optimal
lengths in all directions, and denote the indices of
pixels in its SA region as Z(z);

5 Compute the Pearson Correlation coefficients
ple.y) = Eeled)

’ Var(z)-Var(y)

6 Reconstruct the spectrum of each pixel x € X by:

Zyez(q}) p(z,y)y

Zygz(gﬂ) p(z,y) >

between z and y € Z(z);

T = and compose the set X;

2.3. Blind Spectral Unmixing

Due to an inherent tension between spatial and spectral reso-
lution, HSIs are often high in spatial resolution [[1]]. As such,
a single pixel may correspond to a spatial region containing
multiple materials [3| [13]. To account for mixing in HSIs,
linear spectral unmixing algorithms decompose pixel spectra
into a linear combination of endmembers: the spectral signa-
tures intrinsic to the materials in the scene. Mathematically, if
p is the number of materials in the scene, a blind spectral un-
mixing algorithm locates a matrix E € RP*5 (with rows con-
taining endmembers) and abundance vectors a; € RP such
that x; ~ a;, E [, 14]. The purity of a pixel z;—defined
by n(z;) = max; <<, (a;) j—quantifies the level of mixture
in the pixel z;. Indeed, n(x) will be large only if it corre-
sponds to a spatial region containing predominantly just one
material [2, 3] 114].



2.4. Diffusion Geometry

Graph-based clustering methods efficiently extract latent non-
linear structure in HSIs by interpreting pixels as nodes in an
undirected, weighted graph [15]. Edges between nodes are
encoded in an adjacency matrix W € RV*N; W, = 1if z;
is one of the k,, £2-nearest neighbors of z; in X, and W;; = 0
otherwise. Let D be the NV x N diagonal degree matrix with
D, = Zjvzl W,;. Then, P = D~!''W may be interpreted as
the transition matrix for a Markov diffusion process on HSI
pixels. If the graph underlying P is irreducible and aperiodic,
then P has a unique stationary distribution 7 € R** satis-
fying 7P = 7.

Diffusion distances enable comparisons between data
points in the context of the diffusion process encoded in P.
Define the diffusion distance at time ¢ > 0 between x;,x; €

X by Dy(wia;) = /S (P — (P12 /. (130,
The diffusion time parameter ¢ controls the scale of struc-
ture considered by diffusion distances; smaller ¢ corresponds
to the recovery of local structure and larger ¢ corresponds
to the recovery of global structure [10, [16]. Diffusion
distances may be efficiently computed using the eigende-
composition of P. Indeed, if {(Ag, 1)) }4_, are the (right)
eigenvalue-eigenvector pairs of the transition matrix P, then
Di(sses) = /S0 P (0): — (), for any ¢ > 0
and x;, r; € X. Importantly, for ¢ sufficiently large, diffusion

distances therefore can be accurately approximated by using
just the eigenvectors v, with sufficiently large |Ag|.

2.5. Diffusion and Volume Maximization-based Image
Clustering

The unsupervised D-VIC algorithm incorporates spectral
mixture into a diffusion-based clustering framework [3]. In
its spectral unmixing step, D-VIC estimates the endmember
set E € RP*B ysing alternating volume maximization [17],
where p is calculated using HySime. Pixel purity is then esti-
mated from abundances, calculated using a nonnegative least-
squares solver [18]. Empirical density of pixels is estimated
using f(2) = e, (o eP(—lle — yl3/02). where
NNy, (x) is the set of k,, nearest neighbors of = in X and
op > 0 1is the scaling factor controlling the interaction radius

between pixels in density calculations. Denoting {(z) as the
n(x)

harmonic mean of normalized purity 7j(z) = TR e

and density f(z) = (@)

k maxi<i<n f(zi)’ )
constructed to aid the estimation of modal pixels:

the following function is

max Dy (z,y) r = argmin ((y),
df(x) — yex yeX

Irgi)l}{Dﬂ@y)\C(y) > ((x)} otherwise.

y

Hence, the K maximizers of D;(x) = ((x)d;(x) are pixels
high in density and purity, but far in diffusion distance from

Algorithm 2: Spatial-Spectral Image Reconstruc-
tion and Clustering with Diffusion Geometry

Input: X (dataset), k,, (# nearest neighbors),
oo (KDE bandwidth), ¢ (diffusion time parameter),
K (# classes), L.
Output: ¢ (HSI clustering)
1 For each z € X, compute n(z) and f(z);

2 Foreach z € X, compute ¢(z) = %,

3 Compute the reconstructed data X = SaR(X);

4 Let {#, }_, be asorting of X by
Dy(%) = ¢()d:(Z) in non-increasing order. Label
C(Zm,) =kforl <k <K;

5 In order of non-increasing (-value, assign non-modal
pixels Z € X the label C() = C(&*), where
Tt = arfegiﬂ{Dt(i,y)IC(y) > ((x) A Cly) > 0}

other pixels high in density and purity. These pixels are se-
lected as class modes and given unique labels. Non-modal
pixels are (in order of non-increasing ¢ (z)) assigned the label
of their labeled D;-nearest neighbor of higher (-value that
is already labeled. D-VIC is equivalent to the Learning by
Unsupervised Nonlinear Diffusion (LUND) algorithm if pixel
purity is set to be constant across all pixels in X [3,[19].

3. SPATIAL-SPECTRAL IMAGE
RECONSTRUCTION AND CLUSTERING WITH
DIFFUSION GEOMETRY

HSI pixels generally satisfy spatial regularity; i.e., pixels that
are spatially close are more likely to contain the same materi-
als. This can be observed from real HSI datasets, and has been
applied in many studies to improve the pixel-wise clustering
and classification algorithms [} (7,18} 9, [10].

This section introduces the DSIRC clustering algorithm,
which explicitly incorporates HSI reconstruction into the D-
VIC algorithm. In its first stage, DSIRC computes {(z) us-
ing the original pixel spectra as described in Section [2.3] [3].
Then, the SaR algorithm (Section @]) is used to find the SA
region of each pixel € X, and produce the smoothed spec-
trum by weighting the spectra of pixels in z’s SA region
with normalized Pearson correlation coefficients as in Algo-
rithm[I] The K maximizers of D;(Z) = ((z)d,(%) are con-
sidered cluster modes and assigned unique labels. Remaining
pixels are labeled in order of non-increasing (-value accord-
ing to their D,-nearest neighbor of higher (-value that is al-
ready labeled. Notably, the main difference between DSIRC
and D-VIC is that DSIRC incorporates spatial information by
reconstructing the spectra of pixels as an intermediate step
before labeling.



(g) D-VIC

(h) SC-I

(i) DLSS

(j) DSIRC

Fig. 1: Comparison of clusterings results of classical algorithms (Panels (c)-(f)), state-of-the-art algorithms (Panels (g)-(i)) and
DSIRC (Panel (j)) on the Indian Pines HSI (Panel (a)-(b)). Outliers are incorrectly clustered by pixel-wise algorithms based on
Euclidean distances, leading to noisy outputs, see Panels (c)-(f). By introducing the diffusion geometry and labeling pixels with
non-increasing order of {(x) (D-VIC), the mistakes in predictions are diminished, see Panels (g). Enforcing spatial regularity

further removed isolated falsely labeled pixels, see Panels (h)-(j).

4. EXPERIMENTAL RESULTS

This section contains comparisons of DSIRC against related
HSI clustering algorithms on the Indian Pines HSI. Indian
Pines—collected by the NASA AVIRIS sensor in northwest
Indiana, USA—encodes B = 200 bands of reflectance across
145 x 145 pixels. The Indian Pines scene consists of K = 16
GT classes, which are visualized in Fig[I(a). Fig[I{b) visu-
alizes the first PC of Indian Pines. Clusterings were evalu-
ated using overall accuracy (OA)—the fraction of correctly
labeled pixels—and Cohen’s k-coefficient k = Ol‘:f <, (pe 18
the probability of random agreement).

The classical algorithms we compared against include
K-Means and the Gaussian Mixture Model (GMM) [4]. K-
Means locates the clustering that minimizes within-cluster
Euclidean distances to cluster centroids. GMM fits a mixture
of Gaussian distributions to the dataset using the expectation-
maximization algorithm. As HSIs have hundreds of spectral
bands, PCA dimensionality reduction is often implemented
before cluster analysis using K-Means and GMM [4]].

Two spatially-agnostic graph-based clustering algorithms,
namely spectral clustering (SC) and D-VIC (see Sec-
tion [2:3) are compared to show the clustering performance
when spatial dependency of HSIs is disregarded. SC im-
plements K -Means on the nonlinearly-mapped dataset x; +—>

[(¥1); (¥2)i - .. (YK )], usually after a normalization step [20].

We also compared DSIRC against several graph-based
clustering algorithms that use spatial information. First,

OA K OA K
GMM PCA 0.3581 0.2821 SC-I | 04696 0.3493
SC 0.3784 0.3029 | D-VIC | 0.4756 0.3848
K-Means 0.3817 0.3080 | DLSS | 0.4886 0.4074
K-Means PCA | 0.3837 0.3085 | DSIRC | 0.6195 0.6123

Table 1: Performances of DSIRC and comparison methods
on the Indian Pines dataset. The bold values indicate the high-
est performance. The performance of K-Means, K-Means
PCA, GMM PCA, SC, D-VIC, and DSIRC were averaged
across ten trials.

we compare against improved spectral clustering (SC-I),
which modifies the graph underlying P in SC to incorpo-
rate spatial information into edge weights [21]]. We analyze
spectral-spatial diffusion learning (DLSS) algorithm as well,
which incorporates spatial information into LUND by re-
stricting edges between pixels to spatial nearest neighbors
ina (2R 4+ 1) x (2R + 1) spatial square centered at those
pixels, where R = 1,2,...,9 is a spatial window input
parameter [8]. We optimized for OA across the same hy-
perparameter grid for all graph-based algorithms. The set of
length candidates of DSIRC is set as Lgq, = 1,2,3,5,7,9.

Table [T| compares the performance of DSIRC against the
methods described above and Figure [I] visualizes the Indian
Pines dataset and optimal clusterings. DSIRC outperforms
DLSS (the closest competitor) by 0.13 in OA, and 0.21 in
k. The differences between these two algorithms are that



DSRIC incorporates pixel purity in mode selection and ut-
lizes the spatial regularity of HSI before the unsupervised
diffusion-based labeling process. Futhermore, DSIRC relies
on a spatially-adaptive window with automatically deter-
mined shape, whereas DLSS requires the user to input the
spatial window size R [8]. Image reconstruction in DSIRC
appears to efficiently remove “spatial noise” observed in the
D-VIC clustering, as is visualized in Figure Thus, en-
forcing spatial regularity appears to improve the quality of a
diffusion-based clustering quite substantially.

5. CONCLUSIONS AND FUTURE WORKS

We conclude that incorporating spatial information through
image reconstruction appears to substantially improve the
performance of pixel-wise HSI clustering algorithms. Thus,
incorporating a shape-adaptive reconstruction akin to that
which was used in DSIRC may be useful before the labeling
of HSI pixels. Future work includes extending DSIRC to the
active learning domain, wherein the labels of a few carefully-
selected points are queried and propagated to the rest of the
image [2, 8]. We also expect that DSIRC may be extended
to the unsupervised multiscale clustering setting [[10, [16].
The resulting unsupervised and active learning algorithms
are likely to be successful in a number of applications; e.g.,
identifying changes of mining ponds in multispectral images
over time, possibly reflecting the occurrence of artisanal and
small-scale gold mining activities [22].
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