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Abstract—Understanding the spatial distribution of palms in
tropical forests is essential for ecological monitoring, conservation
strategies, and the sustainable integration of natural forest
products into local and global supply chains. However, the
analysis of remotely sensed data are challenged by overlapping
palm and tree crowns, uneven shading across the canopy surface,
and the heterogeneous nature of the forest landscapes, which
often affect the performance of palm detection and segmentation
algorithms. To overcome these issues, we introduce PalmDSNet,
a deep learning framework for efficient detection, segmentation,
and counting of canopy palms. To model spatial patterns,
we introduce a bimodal reproduction algorithm that simulates
palm propagation based on PalmDSNet outputs. We used UAV-
captured imagery to create orthomosaics from 21 sites across
western Ecuadorian tropical forests, covering a gradient from
the everwet Chocó forests near Colombia to the drier forests of
southwestern Ecuador. Expert annotations were used to create a
comprehensive dataset, including 7,356 bounding boxes on image
patches and 7,603 palm centers across five orthomosaics, encom-
passing a total area of 449 hectares. By integrating detection and
spatial modeling, we effectively simulate the spatial distribution
of palms in diverse and dense tropical environments, validating
its utility for advanced applications in tropical forest monitoring
and remote sensing analysis. The dataset can be accessed at
10.5281/zenodo.13822508, and the code to replicate the study is
available at github.com/ckn3/palm-ds-sp.
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I. INTRODUCTION

PALMS (family Arecaceae) include many ecologically and
economically important species whose spatial distribu-

tions crucially inform tropical forest ecology and conservation
research. They are also central to local economies and regional
to global efforts to incorporate natural forest products into
sustainable livelihoods and local to international forest product
supply chains [1], [2]. Tropical forests host a significant
portion of global biodiversity and are increasingly threatened
by deforestation and degradation [3], [4], and palms, with their
distinctive ecological importance, can serve as vital indicators
of both forest health and human impact, offering insights
into biodiversity, soil quality, and the overall health of forest
ecosystems [5]. They play a central role in shelter, food, and
fiber, and are an emerging resource in the development of non-
timber forest product markets, supporting human communities
in indigenous and rural areas. Palms also constitute essential
and often keystone resources for tropical wildlife [6]–[9].
Here, we are concerned with identifying, locating, and quanti-
fying palms occurring naturally within tropical forests, with
particular attention to their spatial distribution and natural
reproduction (see Figure 1b), as opposed to palm plantations
(see Figure 1a). Knowledge of the spatial distribution and
abundance of palms can inform sustainable use and manage-
ment, leading to economic benefits to local communities. Thus,
these tasks are crucial for effective management, economic
development, and conservation, as well as for understanding
basic ecological questions of palm distribution and abundance.

Palms can be detected in high-resolution remotely sensed
imagery by their distinctive leaves and crowns. Automated
techniques have been widely used in remote sensing tasks such
as land cover mapping [10]–[12], agricultural assessment [13],
[14], and ecological monitoring [15], [16]. While object de-
tection and spatial pattern analysis are well-established in
computer vision and statistics, their application to complex
environments – such as identifying naturally occurring palms
and analyzing their spatial distribution in tropical forests –
poses significant challenges [17]–[20]. First, palm species
exhibit extreme class imbalances, with only two or three
species typically represented in sufficient numbers for reliable
detection [21], [22]. Detecting both common and rare species
is essential for comprehensive forest ecological analysis.

https://zenodo.org/records/13822508
https://github.com/ckn3/palm-ds-sp
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(a) Cases from existing studies

(b) Cases from our dataset
Figure 1: Comparative Samples of Manual Labels.

Second, UAV optical imagery of tropical forests exhibits
considerable variability in lighting, occlusion, and background
clutter, which complicates automated analysis [17], [23].
Palms are often obscured by neighboring tree canopies, and the
dense vegetation adds background noise. Inconsistent lighting
across different forest areas, shadows cast by dense canopies,
and varying sun angles throughout the day further complicates
feature detection and localization [24]–[26].

Third, high-quality labeled datasets for tropical forests
are notably scarce. Their collection and annotation require
extensive fieldwork by trained experts, which is particularly
demanding in Amazon [27]–[29]. Creating such data typically
involves assembling raw imagery into orthomosaics – spa-
tially referenced data products derived from UAV captures.
However, this process is prone to challenges, including noise
and artifacts due to image stitching (alignment, merging,
and rectification) errors, varying lighting conditions, sensor
discrepancies, and environmental factors such as wind and
cloud cover that introduce movement and shading [30].

Moreover, efficient object detection and segmentation meth-
ods remain underutilized for UAV-based remote sensing in
large, densely forested regions where substantial computa-
tional resources may be limited [31]–[33]. This shortfall
highlights the need for robust and scalable algorithms capable
of processing such imagery to support field applications.

Finally, large-scale spatial analysis of palms in tropical
forests remains limited, constrained by localization challenges
and the lack of extensive, high-quality datasets. Effective mon-
itoring and conservation require robust statistical models that
accurately represent the spatial distribution of palms across
vast tropical forest areas [5]. Understanding the ecological
mechanisms driving plant distribution is fundamental, espe-
cially given the urgent need to address the rapid degradation
of wilderness areas in recent decades [3], [34].

Addressing the challenges of localizing and analyzing the
spatial distribution of palms in tropical forests using UAV
imagery, this work presents the following main contributions:

1) We develop a dataset through extensive fieldwork across
21 sites in western Ecuador, spanning a rainfall gradient

from the Choco’s wettest forests to the edge of the tropi-
cal dry forest at the limit of the Sechura desert (5800mm
to 1400mm precipitation). This gradient drives distinct
canopy palm compositions. We annotate 1,500 image
patches with 7,356 bounding-boxed palm instances at
two sites, and mark the landscape center points of 7,603
palms for counting across five sites.

2) We introduce a flexible framework for evaluating models
in efficient palm detection, segmentation, and counting,
effective even with limited computational resources.
We further enhance the model’s interpretability using
saliency maps to spotlight critical decision areas. We
also examine the balance between label volume and
model performance, finding that detection is sensitive to
training set size, while counting remains fairly robust.

3) We present a Poisson-Gaussian reproduction algorithm
that simulates the spatial distribution of palms by com-
bining a Poisson process with a local Gaussian distribu-
tion. The model effectively reproduces observed spatial
patterns and provides insights into palm population
structure and ecological dynamics across forest types.

The paper is organized as follows: Section II reviews re-
search on object detection, segment anything models (SAMs),
palm identification, and spatial point pattern analysis. Section
III describes our dataset and methodology, including the study
area, data collection, preprocessing, and annotation proce-
dures, and the PalmDSNet framework for palm detection,
segmentation, and counting, along with the Poisson-Gaussian
model for simulating palm distributions. Section IV presents
our experimental design, numerical results, and analysis of
palm localization and spatial distribution. Section V summa-
rizes our findings and proposes future research directions.

II. RELATED WORK

A. Object Detection and Segmentation

1) Object Detection: Object detection is a computer vision
task that involves both classifying and localizing objects
within images using bounding boxes [35]. It underpins more
advanced applications in image segmentation and object track-
ing [36]–[41]. Two main approaches that have advanced the
field are Detection Transformer (DETR) [42], [43] and You
Only Look Once (YOLO) [44]–[46].

DETR [42] formulates object detection as a set prediction
task, which eliminates the need on non-maximum suppression
(NMS). It employs a transformer-based architecture, combined
with a set-based global loss and bipartite matching. DETR
utilizes a fixed set of learned object queries to capture and
reason about the relationships between objects and their global
context within the image. Real-Time Detection Transformer
(RT-DETR) [43] enhances DETR by incorporating a con-
volutional backbone and an efficient hybrid encoder. This
adaptation optimizes the processing of multi-scale features
through a combination of intra-scale interactions and cross-
scale fusion. RT-DETR achieves real-time performance while
preserving high accuracy. It also provides flexibility in adjust-
ing inference speed through modifications to decoder layers,
without requiring retraining [43].



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

YOLO regards detection as a single regression task, di-
rectly predicting bounding boxes and class probabilities from
images in real time. Its strong balance between accuracy
and efficiency makes it well-suited for real-world applica-
tions such as autonomous driving, robotic navigation, and
pedestrian tracking [47], [48]. YOLOv8 [44] introduces a
cross-stage partial network for efficient feature extraction, an
enhanced path aggregation network for multi-scale feature
fusion, and an optimized detection head for multi-scale object
localization and classification [49]. YOLOv9 [45] advances
this by incorporating gradient enhanced learning and aug-
mentation network and programmable gradient information
to improve training efficiency. YOLOv10 [46] eliminates the
need for NMS through consistent dual assignments. It features
a lightweight head, spatial-channel decoupled down-sampling,
and a compact inverted block to minimize inference latency.

2) Segment Anything Models: Segmentation partitions an
image into meaningful regions by labeling each pixel, which
provides detailed analysis in fields such as medical diagnostics
and ecological monitoring [50]–[53]. However, traditional seg-
mentation methods require extensive labeled datasets, which
are often costly and labor-intensive to obtain. To address this
challenge, semi-supervised learning methods [54]–[57] and
zero-shot approaches, such as SAMs [58]–[60], have emerged
as effective alternatives. SAMs delineate all object within an
image irrespective of its type and generalize beyond prede-
fined classes, thus broadening their applicability [58]–[60].
These models can autonomously segment entire images or use
prompts like points, boxes, or text to direct segmentation.

The foundational SAM [58] leverages the SA-1B dataset,
which includes over 1 billion masks from 11 million images,
to facilitate prompt-based and zero-shot segmentation. SAM
integrates a Vision Transformer (ViT) [61] for image encoding,
a prompt encoder for processing input prompts, and a dynamic
mask decoder for generating segmentation maps. SAM 2 [59]
extends SAM to video segmentation, allowing for object
tracking across frames. Trained on both the SA-1B and SA-V
datasets (includes 50.9 thousand videos and 642.6 thousand
masklets), SAM 2 enhances performance by incorporating a
masked autoencoder (MAE) pre-trained Hiera encoder [62],
[63]. This upgrade enables the use of multiscale features,
significantly improving the model’s overall effectiveness.

Efforts to adapt SAM for resource-constrained environments
have led to lightweight variants such as Mobile SAM [60]
and FastSAM [64]. Mobile SAM employs a compact ViT-
based encoder and a knowledge-distilled student model to
reduce computational demands while preserving accuracy. It
is trained by minimizing a distillation loss [65]: Ld = α ·T 2 ·
MSE (pt,ps) + (1 − α) ·MSE (y,ps) , where MSE denotes
the mean squared error, pt (at time T ) and ps are teacher
and student outputs, y is the ground truth, α balances the
losses between soft targets and ground truth, and T adjusts the
influence of the soft targets. This compression enables efficient
deployment in mobile and low-power scenarios.

FastSAM [64] replaces the ViT backbone with a lightweight
CNN to achieve real-time segmentation. It adopts a two-
stage pipeline: First, all-instance segmentation using YOLOv8-
seg [44] to generate object masks; second, prompt-guided

refinement using point prompts that match query points to
instance masks, box prompts that apply IoU matching with
detection boxes, and text prompts that leverage CLIP [66]
embeddings. Trained on only 2% of SA-1B, FastSAM achieves
approximately 50× faster inference while improving zero-shot
performance on the COCO dataset. Its real-time capabilities
make it well-suited for UAV-based ecological monitoring.

3) Unified Detection and Segmentation Framework: Recent
advances have led to the development of unified frameworks
that jointly perform object detection and segmentation for
diverse tasks. Traditional instance segmentation models, such
as those based on YOLO and R-CNNs [35], integrate mask
branches to predict pixel-level outputs. However, these meth-
ods rely heavily on extensive mask annotations for effective
training. FastSAM [64] addresses this limitation by prompt-
adapted instance segmentation, which enables flexible and
efficient segmentation without relying solely on exhaustive
annotations. Additionally, SAM-RSIS [67] adapts SAM for
remote sensing by fine-tuning its ViT backbone and mask de-
coder, and uses automatic box prompting to eliminate the need
for manual input. These approaches reflect a broader trend of
using detection outputs (e.g., bounding boxes) as segmentation
prompts. When paired with robust segmentation methods,
such prompts enable precise foreground-background separa-
tion, yielding high-quality masks even in complex scenes.

Several works have integrated fine-tuned object detectors
with zero-shot SAM for remote sensing tasks. For example,
YOLO and SAM are combined to perform instance segmenta-
tion for building extraction and classification in [68], and for
cotton boll segmentation and yield prediction using UAV im-
agery in [69]. Although these works demonstrate the potential
of combining trained detectors with zero-shot segmentation
models, they are primarily limited to structured, homogeneous
environments such as urban and agricultural areas. Moreover,
they do not address challenges inherent to more complex,
heterogeneous landscapes, nor do they incorporate geospatial
referencing essential for ecological analysis [68], [69]. In
contrast, our work extends this paradigm to tropical forest
environments, addressing spatial heterogeneity and producing
georeferenced outputs for landscape-level analysis.

B. Palm Identification
Recent advancements in palm identification employ seg-

mentation, classification, and object detection techniques. Seg-
mentation divides images into polygonal segments that rep-
resent objects or classes; for palm identification, it focuses
on isolating palm crowns and leaves from the background.
These methods typically identify palm centers and create disc-
shaped masks around them as ground truth. For instance, a
U-Net model with residual networks is ultilized to segment
date palms in UAV images of plantations with regular palm
distributions against bare soil in [24]. Similarly, two U-Nets
of varying complexities is applied to high-resolution satellite
imagery of plantations in [22]. While these studies achieved
precision and recall rates of 88% to 94%, they were limited
by clear backgrounds and regular palm spacing.

Classification techniques assign labels to images, pixels,
or objects, such as identifying palm crowns based on visual
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characteristics. A common approach is the sliding window
technique, where a fixed-size window moves across the image
to classify each sub-region, though this approach is computa-
tionally intensive. CNNs were employed with sliding windows
to detect and count oil palms in QuickBird satellite images of
plantations with homogeneous backgrounds in [21]. In [17], a
probabilistic approach was developed for detecting palms in
dense Ecuadorian rainforests, using varying sliding window
sizes to create probability maps for palm presence [17].
These methods consistently achieve over 95% accuracy in
patch classification but require complex postprocessing for
individual palm detection.

Object detection directly localizes objects with bounding
boxes, which demands high-quality annotations. YOLO is
particularly favored for its balance of speed and accuracy [47].
Ag-YOLO, a YOLOv3-Tiny variant with focal loss for de-
tecting smaller areca palms in UAV images, was introduced
in [31]. Similarly, YOLOv5 was used to detect date palms in
the United Arab Emirates, where palms are clearly delineated
against the background [32]. These methods generally achieve
precision and recall rates up to 92%, though often tested on
smaller datasets with simple backgrounds.

This study contrasts previous work by using direct object de-
tection with expert-verified bounding box annotations, specifi-
cally tailored to the complexities of dense tropical rainforests.
Our method effectively handles the spatial heterogeneity and
diverse vegetation structures inherent to these ecosystems,
which advances wild palm identification.

C. Spatial Point Pattern Analysis

In forest ecosystems, dynamic ecological processes such
as seed dispersal, competition, and mortality often give rise
to characteristic spatial patterns among trees [70]. A robust
analysis of these spatial distributions is crucial for under-
standing forest structure and its ecological and evolutionary
dynamics [71], [72]. One natural approach to spatial distri-
bution analysis is representing each tree as a point, and then
investigating both (1) the characteristics of the spatial pattern
– what the pattern looks like, and (2) the underlying point
process responsible for its formation – how the pattern arises.

Table I: Ripley’s G, F , and J Functions. Here, d̂i represents
the nearest neighbor distance for each observed point i, and
d̃j is the nearest neighbor distance from a simulated point j
to the observed points. 1(·) is an indicator function.

Function Formulation

G G(d) = 1
No

∑No
i=1 1(d̂i < d), No = observed events

F F (d) = 1
Nr

∑Nr
j=1 1(d̃j < d), Nr = simulated events

J J(d) = (1−G(d))/(1− F (d))

To address the first question – characterizing point patterns
– Ripley’s statistical functions, often termed Ripley’s alphabet,
are widely employed [73], [74]. Among them, three key
functions, G, F , and J , stand out for their simplicity and
effectiveness. The function G(d) calculates the proportion of

nearest neighbor distances within the sample that are less than
or equal to a given distance d, thereby reflecting clustering or
dispersion tendencies. The F function, in contrast, mirrors the
G function but measures the nearest neighbor distances from
randomly generated points to the observed pattern, effectively
serving as a measure for spatial randomness. The J function
combines the information from both the G and F functions,
offering a comprehensive view of both intra-pattern and inter-
pattern spatial relationships. These functions provide concise
summary statistics that effectively describe point pattern char-
acteristics. Table I presents their mathematical definitions.

Beyond nearest-neighbor approaches, multi-scale functions
such as Ripley’s K function [73], [75] and its derivative, the
L function [76], are frequently used to detect spatial patterns
across scales. Although highly informative, these methods are
computationally intensive and require extensive spatial data
collection across large areas [77], [78]. Given the localized
focus of our study on palm distributions, we prioritize single-
scale analyses to maintain computational efficiency while
capturing essential spatial patterns.

To simulate the process that generates the observed spatial
patterns, stochastic point process models are employed. The
homogeneous Poisson process, widely used in ecological stud-
ies [79], [80], assumes points are independently and uniformly
distributed within the observation window, leading to point
patterns that exhibit complete spatial randomness with no
spatial trends or associations among points. However, this
model often oversimplifies real ecological conditions. The
heterogeneous Poisson process employs a spatially varying
intensity function to better capture environmental variability
in real-world senarios [80], [81]. Further, the Thomas cluster
process introduces Poisson cluster processes across multiple
scales, thereby enhancing the model’s capacity to depict the
intricate structures observed in natural forests [82], [83].

While classical models provide important foundations, they
exhibit key limitations for modeling palm spatial distributions.
The homogeneous Poisson process fails to capture spatial
structure [79], [80], the heterogeneous Poisson process ac-
counts for environmental heterogeneity but not local cluster-
ing [80], [81], and the Thomas cluster process models local
aggregation but neglects global dispersion [82], [83]. These
shortcomings limit their applicability to patterns where both
clustering and uniformity coexist, as seen in tropical palms.
In contrast, our method balances clustering and dispersion
through a probabilistic mixture, directly fits spatial summary
functions, and offers ecologically interpretable parameters for
modeling complex palm patterns.

III. MATERIALS AND METHODS

A. Dataset

1) Study Sites and Data Collection: The data for this
study, with spatial locations shown in Figure 2, come from
tropical forest in western Ecuador Chocó centered on the Fun-
dación para la Conservación de los Andes Tropicales Reserve
and adjacent Reserva Ecológica Mache-Chindul park (FCAT;
00◦23’28” N, 79◦41’05” W), and the Jama-Coaque Ecological
Reserve (00◦06’57” S, 80◦07’29” W). FCAT consists of high



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

Figure 2: Map of the Study Sites Locations in Ecuador.

(a) Box Distribution (b) Width Distribution (c) Height Distribution
Figure 3: Statistics of Bounding Boxes. Panel (a) shows
the bounding box heatmap of the labels, where the color
intensity represents the occurrence frequency of palm instances
across image patches. Panels (b) and (c) display the width
and height distributions of all bounding boxes, respectively.
The horizontal axes in (b) and (c) represent bounding box
dimensions scaled relative to the image size (unitless).

diversity humid tropical forest at ∼500 m elevation, receiving
∼3000 mm precipitation yr−1 accompanied by persistent fog
during drier months. Jama-Coaque spans from the boundary of
tropical moist deciduous/tropical moist evergreen forest at the
lower elevations (∼1000 mm precipitation yr−1, ∼250 m asl)
to fog-inundated wet evergreen forests above 580m to 800m.
These forests host several regularly occurring canopy-exposed
palm species [84]–[86], with Iriartea deltoidea and Socratea
exorrhiza dominant at FCAT, and Astrocaryum standleyanum
and Socratea exorrhiza at Jama-Coaque.

To capture detailed spatial data, UAV surveys were con-
ducted in two phases across 96 plots in 21 areas, covering a
total of 1995 hectares with a ground spacing distance (GSD)
<6 cm. The first phase, in June 2022, involved flying over 95
hectares using a DJI Phantom 4 RTK drone equipped with a
1” CMOS sensor. Mission planning was done using GS RTK,
with flights conducted at an altitude of 90 meters above ground
level (AGL) with 70% sidelap and 80% frontlap. The 387
resulting images were processed with Agisoft Metashape 2.0
to create orthomosaics – georeferenced image created through
photogrammetry by stitching together multiple overlapping
images of a geographic area. These images are orthorectified
to standardize perspective and spatial scale while embedding
spatial metadata, although localized distortions may still occur,
particularly along the edges. The second phase, conducted in
February 2023, expanded coverage to 1900 hectares, flying at
150 meters AGL and capturing 8458 photos using the same
drone and software. Subsequent data processing involved noise
reduction, edge trimming of orthomosaics, and the generation
of Digital Surface Models and Digital Terrain Models.

(a) Bounding Boxes (b) Crown Centers
Figure 4: Annotation examples. Panel (a) shows manually
annotated bounding boxes for palm crowns in the image patch.
Panel (b) displays georeferenced crown centers labeled on an
orthomosaic. Note that the red segments in (b) are generated
by SAM 2 and are not part of the manual annotations.

2) Manual Labels: To create a high-quality training and
validation dataset, we manually annotated drone imagery from
two sites within the FCAT Reserve. A total of 1,500 patches
(800×800 pixels each) were extracted from orthomosaics,
representing various image qualities and palm densities. Pre-
cise bounding boxes were annotated around palm crowns and
isolated leaves. Figure 3 provides a detailed analysis of the
bounding box annotations, including their spatial distribution
and size variability. For counting tasks, we also manually
labeled five orthomosaics using ArcGIS Pro 3.3.1 by placing
georeferenced points at the centers of visible palm crowns.
Figure 4 illustrates representative examples of our annotations,
including both bounding boxes and crown centers.

Unlike studies focused on structured plantation palms [21],
[24], [32], our research examines natural forest scenes (see
Figure 1). Manual annotation of bounding boxes was particu-
larly hard due to crown overlap, occlusion by other vegetation,
and orthomosaic distortions Similarly, labeling the center
points of palms across five sites was labor-intensive but es-
sential for conducting landscape-level analysis and validating
counting accuracy against expert assessments.

B. Palm Detection and Segmentation Network

This section introduces the Palm Detection and Segmenta-
tion Network (PalmDSNet), a framework designed to detect,
segment, and count palms in the dense, heterogeneous tropical
forests (see Figure 5). The detection target is the individual
palm crown, with bounding box annotations used for training
and evaluation, while manually labeled crown centers support
landscape-level validation. Segmentation is also applied to
visualize palm crowns. Unlike prior works that focus on
structured environments or omit geospatial analysis, PalmD-
SNet addresses the spatial heterogeneity of natural forests,
incorporates georeferenced outputs, and uses expert-verified
labels for accurate detection in complex ecological settings.

PalmDSNet is modular, which supports interchangeable
detection and segmentation backbones tailored to specific con-
texts. Detection results are produced by trained backbones and
used to guide zero-shot segmentation. Furthermore, saliency
maps are incorporated to highlight focal areas influencing
model decisions that enhance interpretability.

1) Palm Detection: The detection networks aim to locate
palm crowns in orthomosaic images, which are partitioned
into overlapping patches for detailed analysis. These networks
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Figure 5: Workflow of PalmDSNet. The model is trained on labeled patches for accurate palm detection, with the refined
weights then used to infer bounding boxes on new images. These boxes guide the segmentation and counting processes across
selected regions or landscape scales. Saliency maps are also produced to enhance the interpretability of palm localization.

are designed to be flexible, allowing for the substitution of
alternative models based on specific analytical needs [42]–
[46]. Training involves various image augmentations, such
as adjustments in hue, saturation, and brightness, as well as
rotations, scaling, translations, and flips, to enhance gener-
alization across diverse visual conditions. During inference,
detections from adjacent patches are merged using NMS
to avoid duplication. The output is a set of georeferenced
bounding boxes representing individual detected palms.

2) Palm Segmentation: Segmentation is performed during
inference due to the absence of segmentation masks in the
training dataset. Detected palms serve as centers, with their
surrounding areas included for contextual information. The
bounding box from the detection phase acts as a prompt for
a chosen SAM, allowing it to focus on and segment the palm
crown. This targeted approach efficiently delineates palms
without requiring full-scene processing.

3) Palm Counting: Palm counting is conducted either at
the landscape scale or within a region of interest (ROI). For
ROIs, a user-drawn polygon is enclosed within a rectangular
area to ensure full coverage during detection and segmentation.
The detection module identifies individual palms, and logs
their coordinates followed by NMS. The segmentation branch
then generates masks for these palms based on the bounding
box outputs. These masks, along with bounding boxes, are
visualized to enable thorough analysis and verification within
the ROI. Center point annotations are used to validate model
predictions across landscape-scale orthomosaics in this task.

4) Saliency Map: To enhance interpretability, we employ
Grad-CAM [87], [88], which creates coarse localization maps
by using gradients flowing into the final convolutional layer.
These maps highlight the the image regions that most influence
the model’s predictions. By providing visual explanations of
the model’s focus, Grad-CAM helps verify that the network
emphasizes relevant features for accurate palm localization.

C. Poisson-Gaussian Palm Reproduction Algorithm

This section introduces the proposed Poisson-Gaussian
model to simulate palm spatial reproduction that optimizes the
reproduction parameters to minimize the discrepancy between

observed and simulated point patterns (see Algorithm 1). This
model provides insights into both global and local aspects
of palm reproduction, including long-range and short-range
reproductive dynamics. Understanding the spatial distribution
of palms can further reveal how different palm species and
individuals of the same species interact in tropical forests,
specifically whether they coexist or compete for resources.

The Poisson-Gaussian model combines a Poisson point
process with a local Gaussian distribution to simulate palm
dispersal dynamics [89]. The Poisson process represents long-
range, random dispersal like animal-mediated spread, yielding
a uniform background distribution; while the Gaussian distri-
bution models the tendency of seeds to fall and germinate
near parent trees, creating localized clusters. This bimodal
approach better captures ecological processes such as negative
density dependence [90], where increased density reduces seed
germination and survival rates, promoting species coexistence
and realistic spatial distribution patterns. Unlike the Student’s
t distribution [91] which favors tight clustering, the proposed
model balances both local aggregation and global dispersion.

The optimization process begins with initializing p∗, σ∗,
and dmin. Ripley’s functions g and f are computed for the
observed set X and serve as benchmarks for comparison. The
Simulate function generates synthetic point patterns based
on candidate values of p and σ, starting with a randomly placed
point and probabilistically adding new points: with probability
p, offspring are drawn from a Gaussian distribution centered
around a randomly selected parent, and with probability 1−p,
offspring are uniformly distributed. This process continues
until the synthetic set X̂ matches the size of X . For each
parameter combination, N simulations are performed to com-
pute the total discrepancy. Simulated patterns are compared to
the observed data using Ripley’s functions. The discrepancy
di for each trial is measured as the integral of absolute
differences between observed and simulated functions. The
total discrepancy d is the sum of discrepancies across all trials,
with the optimal parameters being those that minimize d.

The model’s novelty lies in its iterative, mixed-generation
mechanism, which dynamically selects parent points and con-
trols clustering-dispersion balance through parameter p. Unlike
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Algorithm 1: Poisson-Gaussian Palm Reproduction
Input: p (list of candidate p), σ (list of candidate σ),

X (set of observed palm coordinates), N
(number of Simulations)

Output: p∗, σ∗ (optimal p and σ that minimizes d)

1 Initialize p∗ = 0, σ∗ = 0, dmin = ∞, X̂ = ∅;
2 Compute Ripley’s functions g = G(X) and f = F (X);

3 Procedure Simulate(p, σ):
4 Initialize X̂ with a random 2D point generated

uniformly across the spatial extent;
5 while |X̂| < |X| do
6 Select a random parent palm x from X̂ and

generate a random number pr from [0, 1];
7 if pr < p then
8 Generate offspring palm using a Gaussian

distribution N (x,Σ) around the parent x
with Σ = [σ2, 0; 0, σ2];

9 else
10 Generate offspring palm from a 2D uniform

distribution;
11 end
12 Append offspring palm to X̂;
13 end
14 return X̂;

15 foreach p in p do
16 foreach σ in σ do
17 Initialize d = 0;
18 for i = 1 to N do
19 X̂i = Simulate(p, σ);
20 Compute gsi = G(X̂i) and fsi = F (X̂i);
21 Integrate the difference for the i-th trial:

di =
∫
x
|g − gsi| dx+

∫
x
|f − fsi| dx;

22 d = d+ di;
23 end
24 if d < dmin then
25 Update dmin = d, p∗ = p, σ∗ = σ;
26 end
27 end
28 end
29 return p∗, σ∗;

the Thomas cluster process [82], [83], which uses a strictly
two-stage generation process with fixed parent-child relation-
ships and requires three parameters (parent intensity ρp, mean
offspring µ, and cluster spread σ), our approach grows clusters
incrementally from observed patterns. Moreover, our data-
driven optimization of Ripley’s G and F functions provides
more flexible pattern matching. This model contrasts with
the Thomas process [82], which typically relies on maximum
likelihood estimation and theoretical assumptions, limiting its
flexibility in handling complex, non-ideal clustering patterns.
This yields a more practical framework for empirical ecolog-
ical patterns with fewer parameters (just p and σ) and lower
computational complexity.

IV. EXPERIMENTAL RESULTS

This section outlines the performance evaluation of our
PalmDSNet framework, systematically addressing several re-
search objectives across diverse ecological sites. We begin
by evaluating the performance of various detection models,
including RT-DETR [43], YOLOv8 [44], YOLOv9 [45], and
YOLOv10 [46] under different training conditions to assess
their accuracy and efficiency. Saliency maps [87] are used to
visualize the focus regions of these models for palm detection,
particularly in densely populated tree crowns. The bounding
box annotations, which represent the target palm crowns, are
used during both training and evaluation for detection tasks.

Following detection, we assess the segmentation capibilities
of SAM [58], SAM 2 [59], and Mobile SAM [60], focusing on
inference time and the visual quality of segmentation results.
We then explore how training data volume affects the accuracy
of these models and evaluate their counting performance,
which is crucial for ecological analysis. Finally, we apply the
models to orthomosaics for large-scale landscape analysis. The
annotated crown centers, which are georeferenced, are used to
validate the counting performance.

We also evaluate our bimodal palm reproduction model,
which combines a Poisson point process with a local Gaussian
distribution to simulate palm spatial distribution, accounting
for both random spread and localized clustering. By comparing
simulated and PalmDSNet derived patterns, we assess its abil-
ity to replicate real-world palm distributions, which provides
insights into the ecological dynamics of palm populations,
including interspecies interactions and habitat coexistence.

A. Experimental Setting

To evaluate PalmDSNet and the proposed Poisson-Gaussian
reproduction model, we conducted experiments to test both
robustness and reliability. For PalmDSNet, we adopted two
data allocation strategies to quantitatively analyze the differ-
ence between limited and extensive training datasets: (1) 10%
Training Set: We used 10% of the available data for training
over 100 epochs. This setup was designed to simulate data-
scarce conditions, which is a common challenge in deep learn-
ing applications, particularly in remote sensing. By limiting
the training data, we aimed to evaluate the model’s ability to
generalize and perform well under week supervision. (2) 90%
Training Set: We used 90% of the data for training over 300
epochs. This setup allowed us to maximize data utilization and
assess the model’s performance with abundant labeled data.
The extended training epochs ensured that the model could
fully utilize the larger dataset to optimize its parameters. Both
trained models were then rigorously validated to assess their
detection and counting performance. Images were cropped to
800×800 pixels with a stride of 400 to balance spatial cover-
age and computational efficiency. The model was configured
to detect a single class to simplify the architecture and reduce
computational requirements. While four RTX 3090 GPUs were
utilized for training, only one was used during validation and
testing to simulate resource-limited operational settings.

For the Poisson-Gaussian palm reproduction model, simu-
lations were conducted using an Intel Xeon Silver 4210 CPU
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RT-DETR YOLOv8 YOLOv9 YOLOv10 GT

Figure 6: Comparative Visualization of Detection Outcomes and Saliency Maps Across Different Models in PalmDSNet. Each
pair of columns displays detection results with bounding boxes and confidence levels alongside saliency maps derived from
detection model weights. The final column showcases the labeled ground truth (GT).

Table II: Performance Comparison of Detection Models for PalmDSNet.

Model GFLOPS Params (M) Latency (ms) Validation (10% Training) Validation (90% Training)

Precision Recall AP50 AP75 mAP Precision Recall AP50 AP75 mAP

RT-DETR 222.5 65.5 22.4 0.845 0.778 0.843 0.560 0.532 0.923 0.905 0.955 0.822 0.734
YOLOv8 257.4 68.1 22.9 0.859 0.773 0.849 0.569 0.532 0.902 0.919 0.944 0.725 0.672
YOLOv9 189.1 57.4 24.3 0.869 0.795 0.878 0.640 0.590 0.897 0.914 0.950 0.769 0.680

YOLOv10 169.8 31.6 21.2 0.838 0.781 0.846 0.562 0.529 0.912 0.891 0.938 0.735 0.662

(40 cores, 2.20 GHz). Each simulation was repeated 10 times
(N = 10) to mitigate random variance. The Ripley’s G and F
functions were computed at sampled values and compared to
observed data, with their absolute differences integrated using
the trapezoidal rule [92] to identify optimal parameters.

Our evaluation utilized a series of standard metrics for a
thorough assessment of the model’s performance. Precision
and Recall measure the model’s accuracy and error rates
in detecting objects. Average Precision (AP) at various IoU
thresholds quantifies precision across different recall levels,
and Mean Average Precision (mAP) aggregates these measures
for a comprehensive performance overview. We also examine
computational demands by comparing Giga Floating Point
Operations Per Second (GFLOPS), the number of parameters
(Params), and latency to evaluate efficiency during training
and inference. Model counting performance was validated by
comparing predictions against expert annotations across five
sites. For the bimodal reproduction model, optimal parameters
p∗ and σ∗ were selected based on the minimum integrated
difference between observed and simulated point patterns.

B. Performance Evaluation of PalmDSNet

1) Detection: Table II summarizes the performance of
detection models in PalmDSNet under two training regimes:
10% and 90% of the data used for training. The evaluated
models vary in computational costs and inference efficiencies.
YOLOv10 is the lightest model (31.6M parameters, 169.8
GFLOPS), while YOLOv8 is the heaviest (68.1M parameters,
257.4 GFLOPS). Nevertheless, all models maintain consistent

inference times under 25ms per frame, thus showing suitability
for real-time applications and on-board deployment.

Detection performance improves consistently with increased
training data. With only 10% of the data for training, YOLOv9
outperforms others, achieving mAP (0.59) and AP75 (0.64) –
both over 6% higher than the nearest competitor. Its precision
(0.869) and recall (0.795) are also the highest under this
setting, which indicates strong capability in both correctly
detecting palms and retrieving the majority of true palm
instances. This suggests YOLOv9’s generalizes well from
limited supervision, making it a practical choice for scenarios
with scarce annotations. In contrast, RT-DETR under 10%
training exhibits lower precision (0.845), recall (0.778), and
mAP (0.532), indicating challenges in accurately localizing
palms with limited samples. YOLOv10, while being the most
lightweight and fastest model, shows the lowest mAP (0.529)
under this setting, which suggests a trade-off between effi-
ciency and localization accuracy when data are limited.

With 90% training data, all models show improved de-
tection accuracy and bounding box quality. RT-DETR leads
in mAP (0.734) and AP75 (0.822), outperforming the next
best by about 5%, with strong precision (0.923) and recall
(0.905). This indicates its effectivenes in both detection and
localization when data are abundant. The gains over its 10%
training performance (mAP: +0.202, AP75: +0.262) further il-
lustrates the data efficiency of ViT-based methods. In contrast,
YOLOv10, while efficient, still lags in mAP (0.662) and AP75

(0.735), indicating a prioritization of efficiency over detection
accuracy with ample data. These trends affirm the importance
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Table III: Counting Performance Comparison of PalmDSNet Across 5 Sites. Sites marked with ⋆ are training locations.

Site Size (ha) No. of Counts Counting Accuracy (10% Training) Counting Accuracy (90% Training)

RT-DETR YOLOv8 YOLOv9 YOLOv10 RT-DETR YOLOv8 YOLOv9 YOLOv10

FCAT 1⋆ 21.7 284 0.997 0.979 0.997 0.993 0.989 0.997 0.997 0.993
FCAT 2⋆ 119.4 2,569 0.998 0.988 0.992 0.994 0.999 0.998 0.998 0.997
FCAT 3 103.1 2,206 0.998 0.995 0.993 0.995 0.999 0.998 0.998 0.995

Jama-Coaque 1 112.2 732 0.969 0.876 0.872 0.862 0.975 0.870 0.909 0.833
Jama-Coaque 2 92.3 1,596 0.938 0.776 0.812 0.775 0.940 0.743 0.824 0.791

(a) Sample Region (b) SAM (c) SAM 2 (d) Mobile SAM (e) FastSAM
Figure 7: Comparison of SAM Segmentation Results. While panels (b–d) demonstrate comparable segmentation performance,
panel (e) reveals FastSAM’s failure to segment palms effectively.

of data volume in optimizing model performance and guide
model choice based on resource availability.

Figure 6 illustrates detection performance across varied
scenes using models trained with 90% of the data. In the first
row, YOLOv9 struggles with densely overlapped palm crowns,
misdirecting attention toward non-palm regions and missing
detections. In the second row, RT-DETR shows slightly higher
confidence but yields two false positives in the lower right,
likely due to a low threshold aimed at boosting recall, as
supported by its saliency map. Similarly, YOLOv8 produces a
false positive in the upper right, while YOLOv10, though more
precise, fails to tightly bound a palm leaf there. In contrast, all
models perform well in row three, correctly detecting palms
in a simpler setting. Saliency maps reveal prioritization of
palm leaves and centers, with centers often highlighted more
intensely; however, they also display activities in non-palm
zones, illustrating that while saliency maps guide model focus,
the final detection head – layers responsible for final decision-
making – ultimately confirms the presence of palms, which
shows the disparity between model focus and actual output.

2) Segmentation: Figure 7 compares the segmentation per-
formance of SAM, SAM 2, Mobile SAM, and FastSAM at
Jama-Coaque 1 – an ecologically distinct site from the training
environment, differing in rainfall, palm species, and forest
structure. The results demonstrate the models’ adaptability to
out-of-sample data, despite some expected false alerts due to
the intentionally low confidence threshold.

SAM provides precise boundary alignment with palm leaves
but tends to fragment palm crowns into multiple segments
where they overlap with other tree crowns. SAM 2 improves
upon this by delivering better boundary segmentation while
reducing the occurrence of small, broken segments, therefore
providing a more cohesive representation of palm crowns. In
contrast, Mobile SAM includes broader areas as foreground,
resulting in more unified palm segmentation but with less
precise boundaries. FastSAM, though efficient, struggles with
dense tropical canopies, often failing to segment palm crowns
and instead detecting irrelevant areas, even with prompts

Statistics FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

Mean (m) 0.90 0.84 0.84 1.20 1.30
Median (m) 0.77 0.73 0.74 1.06 1.05

Standard Deviation (m) 0.60 0.54 0.51 0.78 1.02

Figure 8: Distribution of Distance Shifts Across Sites.

Table IV: Latency of Different Configurations for PalmDSNet
Across 5 Sites. Segmentation latency is measured based on
the detection results of RT-DETR.

Model FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

RT-DETR 42.9 378.0 273.5 177.1 143.0
YOLOv8 34.1 297.6 213.1 138.9 112.0
YOLOv9 34.7 297.2 216.4 140.4 113.8
YOLOv10 31.3 273.8 197.5 134.3 102.3

SAM 175.9 1454.9 1219.5 496.6 590.4
SAM 2 150.4 1265.4 1052.8 445.7 509.1

Mobile SAM 107.2 835.8 654.0 341.7 334.2

(Figure 7(e)). This stems from its lightweight CNN backbone,
sparse training (2% of SA-1B), and its approach of segmenting
images into pieces before matching prompts, which reduces its
precision in complex environments.

3) Counting: Table III evaluates counting accuracy across
five sites and examines the impact of training data quantity.
Counting accuracy is defined as the proportion of detected
centers located within a 5-meter radius of the labeled centers.
FCAT 1 and FCAT 2, marked with ⋆, used for training,
achieve near-perfect accuracy across all models and training
ratios. FCAT 3, though not used in training, achieves high
accuracy, especially for RT-DETR (0.998 with 10% data, 0.999
with 90%), indicating strong generalizability within the same
ecological reserve. This suggests that PalmDSNet effectively
captures structural and visual features that are consistent across
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Figure 9: Distribution of Distances to Nearest Neighbors
Among Detected Palm Centers Across Sites.

spatially separated but ecologically similar areas.
Performance declines at geographically distinct reserves.

At Jama-Coaque 1, RT-DETR achieves the highest accuracy
(0.975 with 90% data), only slightly improving over its 10%
result (0.969). In contrast, YOLOv10’s performance drops
(0.833 with 90% data vs. 0.862 with 10% data), indicating
potential overfitting or limited adaptability. A similar trend
appears at Jama-Coaque 2, where RT-DETR remains robust
(0.938 with 10% data, 0.940 with 90% data), but YOLOv8’s
accuracy drops sharply (0.776 to 0.743) despite increased
training data. This shows that not all models benefit equally
from larger training sets in cross-domain settings and under-
scores the need for models capable of handling domain shift.

Importantly, increasing training data from 10% to 90%
yields minimal accuracy gains across most models and sites
(e.g., RT-DETR: -0.8% to +0.6%). This implies additional data
primarily refines localization rather than counting accuracy.
It also emphasizes the need to balance data volume with
model choice, particularly for cross-domain adaptation in
ecologically diverse environments like tropical forests.

Figure 8 further quantifies localization performance using
estimated density and cumulative distributions of distance
shifts between predicted and true centers, which occur typi-
cally when only part of a palm is visible, causing the bounding
box center to skew towards visible leaves. In FCAT sites,
these shifts are minimal, with mean distances below 0.90
meters and medians under 0.77 meters. Jama-Coaque sites
show greater shifts (mean < 1.30 meters; median < 1.06
meters), yet still within the 5-meter radius but indicating less
precise localization in new environments.

Moreover, FCAT sites display lower variability in distance
shifts (standard deviation 0.51–0.60 meters) compared to
Jama-Coaque (0.78–1.02 meters). This indicates more con-
sistent palm localization in FCAT regions, likely due to
more homogeneous environmental conditions or better palm
visibility. The increased variance in Jama-Coaque reflects
the model’s greater difficulty in adapting to variability in
forest composition and palm species. Nonetheless, the model

Table V: Parameters p∗ and σ∗ for different sites.

Parameters FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

p∗ 0.49 0.52 0.46 0.64 0.51
σ∗ 50 70 70 80 60

demonstrates robust adaptability across diverse environments.
4) Landscape-level Processing: The efficiency of PalmD-

SNet presented in Table IV substantiates the its capability
for landscape-level processing, which is essential for rapid
ecological assessments. Detection (first 4 rows) involves iden-
tifying palms and recording georeferenced outputs in a CSV,
while segmentation (last 3 rows) generates and stores the
combined segmentation mask overlaid on the image. Models
maintain a high throughput, processing each frame within 25
ms on an RTX 3090, which shows their potential for real-time
applications and suitability for on-board UAV deployment.
Detection times vary from 31.3 to 378 seconds depending on
the area of the site, while segmentation durations vary from
107.2 to 1454.9 seconds, influenced by detected palm counts.
Overall, full-site processing times for detection, segmentation,
and counting span from about 2.5 to 30 minutes, confirming
the method’s potential real-time use in varied environments.

To reduce missed detections, we use a sliding window with
half-patch strides during inference, ensuring each region of the
orthomosaic is processed four times. This overlap improves
detection of partially visible palms, while redundant outputs
are filtered using NMS. With precision and recall per patch
just over 90%, this strategy ensures high overall coverage
and efficient large-scale palm extraction, as evidenced by
consistent counting accuracy across different ecosystems.

C. Spatial Distribution Analysis
The analysis of spatial distribution in palm populations

offers critical insights into their ecological dynamics and
interspecies relationships. By examining spatial patterns, we
can better understand species coexistence and competition,
which are essential for guiding sustainable forest management
and utilization strategies [78], [93]. This section explores palm
distribution through nearest neighbor analysis, distribution
randomness analysis, and spatial point pattern simulation.

1) Nearest Neighbor Analysis: Figure 9 depicts the distance
distributions from each detected palm to its nearest neigh-
bors. The results reveal compact clustering, which suggests
biological interactions or shared habitat preferences of palms.
The average top five nearest neighbors’ distance distribution
shows that while palms generally form tight clusters, they
also participate in larger, slightly more dispersed groups. This
pattern is more distinct in Jama-Coaque than FCAT, reflecting
ecological heterogeneity and differences in demographic or
environmental drivers – an area warranting further study.

2) Distribution Randomness Analysis: This analysis eval-
uates whether the spatial distribution of palms across various
sites deviates from a random pattern by comparing observed
patterns with those generated by a Poisson point process.
We aim to identify underlying ecological patterns that may
indicate clustering or dispersion within these environments.

Figure 10 presents the observed spatial distribution of palms
across five study sites. These regions display heterogeneous
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(a) FCAT 1 (b) FCAT 2 (c) FCAT 3 (d) Jama-Coaque 1 (e) Jama-Coaque 2

(f) FCAT 1 (g) FCAT 2 (h) FCAT 3 (i) Jama-Coaque 1 (j) Jama-Coaque 2
Figure 10: Visualization and Randomness Analysis of Palm Spatial Distribution. The first row (a-e) presents kernel density
estimates with histograms illustrating palm distribution across regions. Green dots indicate detected palm locations, with darker
KDE regions showing higher clustering. The second row (f-j) compares Ripley’s functions of the detected palms to those
generated by a Poisson process, highlighting deviations from randomness. Blue-shaded areas represent the 95% confidence
intervals with the black line indicating the mean for a Poisson process, while the red lines represent Ripley’s functions of
the observed data. Red and orange points denote regions with p-values below 1% and 5%, respectively, indicating significant
differences from randomness. These indices quantify palm clustering or dispersion relative to a random distribution.

densities, with certain areas exhibiting higher concentrations.
The first row visually indicates non-random structures with
clusters and dispersed regions are clearly visible. The second
row quantitatively compares observed point patterns of palm
distributions with those generated by a Poisson point process
using Ripley’s functions. For the G and F plots, the central
black line represents the expected pattern if palms were
randomly scattered throughout the forest. The blue-shaded area
around this line indicates the 95% confidence interval within
which random data points would typically fall, with different
confidence levels (1−p) for the sampled points being random,
depicted with varying colors for p < 0.01 and p < 0.05. The
J function plot includes a dashed line at J(d) = 1, with values
below this line colored red to indicate clustering.

For the G function, the observed line ascends more steeply
than the random case, indicating a higher degree of clustering,
with palms closer to their nearest neighbors than random
placement would suggest. Conversely, in the F function, the
observed line falls below the random case, implying that
random points must travel a greater distance to find a nearby
palm, indicating larger gaps or empty spaces in the actual palm
distribution compared to a random arrangement. The J func-
tion, with values below 1, further supports these observations
by indicating that the palms are more clustered than would be
expected under randomness. Together, these Ripley’s functions
reveal significant deviations from randomness and suggest
complex ecological interactions shaping palm distributions.
The observed pattern’s clustering is more prominent than
randomness yet less extreme than one would expect with a
Student’s t distribution. This sets the stage for future work to

explore the underlying ecological drivers of the distribution.
3) Simulation of Spatial Point Pattern: Given the statisti-

cally significant evidence that the distribution of palms is far
from random, as anticipated due to the influence of various
factors such as habitat suitability, as well as human and animal
activities, we seek to employ a statistical yet straightforward
model that can simulate and explain the spatial point patterns
of palm distribution. To this end, we utilize the proposed
Poisson-Gaussian palm reproduction model, which integrates
the inherent stochastic nature of palm reproduction with spa-
tially dependent factors, thereby generating distributions that
can be compared with those predicted by PalmDSNet.

To measure clustering and dispersion in the simulated
palm distributions, we use Ripley’s G and F functions, with
G indicating clustering and F showing dispersion between
palms. By comparing these functions from our simulations
to those derived from PalmDSNet, we aim to align the
simulated distributions with the predicted ones. Ecologically,
the parameter p indicates the degree of global randomness,
with higher values denoting greater randomness and lower
values indicating local clustering with a Gaussian distribution.
The parameter σ controls the local range of palm reproduction,
reflecting the degree of clustering around individual palms.

Table V lists the grid search results of the optimal (p∗, σ∗)
pairs for the five study sites. Four of the sites yield stable
results, with p∗ ranging from 0.46 to 0.52 and σ∗ between 50
to 80 (∼2−4 m). Jama-Coaque 1 stands out with a higher p∗

of 0.64, indicating more dispersed clusters, as also reflected
by the slightly larger σ∗ for this site. This greater dispersion
is evident in the estimated density shown in Figure 10d. The
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(a) FCAT 1

(b) FCAT 2

(c) FCAT 3

(d) Jama-Coaque 1

(e) Jama-Coaque 2
Figure 11: Comparison of Simulated and Predicted Point Patterns. The first column shows PalmDSNet’s predicted palm
distribution, the second column shows the simulated distribution, and the third column depicts a uniform random pattern. The
fourth and fifth columns compare Ripley’s G and F functions, respectively, between the simulated and predicted patterns.

robustness of p∗ and σ∗ across sites demonstrates the model’s
capability to replicate typical palm spatial patterns with only
two parameters. This simplicity helps in understanding the
spread of palm species in forests under various scenarios.

Figure 11 compares our simulated point patterns to those
predicted across sites. The first column presents the predicted
spatial distribution of detected palms by PalmDSNet, the
second column shows the simulated distribution, and the third
column depicts random points with a uniform distribution.
The fourth and fifth columns compare Ripley’s G and F

functions, respectively, between the simulated and predicted
distributions. This last comparison shows an excellent fit for
all sites. With the exception of FCAT 1, the simulated point
patterns in the second column are visually more homogeneous
than the predicted ones. This is easily explained by the fact
that the distribution parameters were estimated globally. This
observation should lead us to perform slightly more localized
parameter estimation in the future.
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V. CONCLUSION AND FUTURE WORK

The PalmDSNet framework has proven effective in detect-
ing, segmenting, and counting palms across diverse forest
environments. We found that increasing the number of training
labels enhances the precision of bounding boxes, though it has
a minimal impact on counting accuracy. PalmDSNet supports
efficient, large-scale landscape analysis even under resource-
constrained scenarios, including on-board UAV processing and
integration into autonomous flight control systems, despite
using weak supervision, where labels for bounding boxes
and crown centers only sparsely overlap. By delivering the
framework to function under these conditions, we ensure its
generalizability to new geographic regions without retraining,
while still extracting useful ecological information.

Additionally, our spatial analysis across multiple forest
reserves shows that palms tend to form tightly-knit clus-
ters, yet their spatial arrangements vary significantly across
ecosystems. The Poisson-Gaussian reproduction model, which
employs a brute-force method to identify the optimal param-
eters that align with observed point patterns using Ripley’s
G and F functions, has also shown satisfying performance.
This model reliably captures the spatial patterns of palm
distribution across various forest reserves, with consistent
parameter ranges observed in most sites. By quantifying the
level of clustering and its deviation from randomness, the
model enhances our understanding of spatial processes of
palms, which is crucial for conservation efforts, management
strategies, economic planning, and supply chain logistics.

The integration of these two models: PalmDSNet for data-
driven prediction and the Poisson-Gaussian model for ecologi-
cal interpretation, is necessary given the nature of our data and
the distinct goals of each stage. The two-step process separates
the prediction and interpretation tasks, and reflects the reality
of ecological data workflows, where stakeholders often operate
with disparate annotation formats and goals. For instance,
ecologists and conservation practitioners frequently rely on
georeferenced crown annotations created in GIS softwares,
while computer scientists typically label bounding boxes using
Python tools. Aligning these annotations spatially at scale is
inherently hard, especially since cropped image patches used
for training may not preserve georeferenced information.

Furthermore, in practice, different stakeholders require dif-
ferent outputs: some applications (e.g., automated counting)
benefit directly from accurate detection results, while oth-
ers (e.g., ecological modeling, biodiversity assessments) may
already have access to center annotations and are primarily
interested in analyzing spatial structure. The modularity of
our approach supports both use cases, which allows broader
adoption in conservation, ecological monitoring, and land
management. By addressing these diverse needs, our frame-
work is well suited for real-world ecological applications,
particularly in regions where expert-labeled, comprehensive
datasets are difficult and costly to produce.

Future work will expand the dataset via semi-automated
labeling, covering new regions in Ecuador and a 1000 km2

area near Iquitos, Peru, with species-level differentiation.
We will incorporate a normalized Digital Surface Model to

integrate height information for refining palm localization in
dense and overlapping canopies [94]. To improve accuracy
metrics and better reflect real-world performance, we will also
develop a symmetric counting metric that considers both palm
centers captured by predictions and predictions supported by
true centers. Applying the framework to multi-year imagery
will further enable tracking of temporal dynamics in palm
populations under environmental change [95], [96]. Deploy-
ment on edge devices, such as the NVIDIA Jetson series, will
enable real-time inference in the field.

The framework is broadly adaptable to conservation tasks,
such as species-level canopy mapping, land cover segmenta-
tion, and monitoring of threats such as illegal mining [55],
[97]. Future extensions will incorporate more complex spatial
models that account for environmental drivers, demographic
processes, and anthropogenic impacts, particularly after incor-
porating species-level classifications.
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