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ABSTRACT
Artisanal and Small-scale Gold Mining (ASGM) is an im-
portant source of income for many households, but it can
have large social and environmental effects, especially in rain-
forests of developing countries. The Sentinel-2 satellites col-
lect multispectral images that can be used for the purpose of
detecting changes in water extent and quality which indicates
the locations of mining sites. This work focuses on the recog-
nition of ASGM activities in Peruvian Amazon rainforests.
We tested several semi-supervised classifiers based on Sup-
port Vector Machines (SVMs) to detect the changes of water
bodies from 2019 to 2021 in the Madre de Dios region, which
is one of the global hotspots of ASGM activities. Experiments
show that SVM-based models can achieve reasonable perfor-
mance for both RGB (using Cohen’s κ 0.49) and 6-channel
images (using Cohen’s κ 0.71) with very limited annotations.
The efficacy of incorporating Lab color space for change de-
tection is analyzed as well.

Index Terms— change detection, artisanal gold mining,
RGB & multispectral images, semi-manual labeling, semi-
supervised machine learning.

1. INTRODUCTION

Change detection in remote sensing images involves analyz-
ing the temporal effects of certain phenomena quantitatively
using multi-temporal datasets. The changes of land coverage
provide information in various aspects, including the occur-
rences of natural disasters, changes in urban areas and agri-
cultural fields, and indications of mining activities, see [1,
2, 3]. Illegal gold mining often impacts the environment by
discarding mercury, used by miners to process the ore, di-
rectly into streams. This can cause a color change of water,
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which may indicate the location of mining activities [3, 4]. In
this work, we have tested several classical and state-of-the-
art semi-supervised classifiers and compared the classifica-
tion results of water change types in Madre de Dios (MDD)
regions. Semi-supervised approaches require less manual la-
beling and computational resources during training than su-
pervised classifiers. In [3], SVM with Smoothed Total Varia-
tion (SVM-STV) was applied to the difference images of the
bi-temporal data. SVM-STV was mainly used to classify the
water changes which are considered indicators for mining ac-
tivities. Although the data dimension was reduced by taking
the difference of the bi-temporal images, the original spectral
information of the data was ignored. In this work, instead of
using difference images, we concatenated the pre-processed
bi-temporal datasets of the same region together (also known
as image stacking [2]) for recognizing mining pond changes.

This article is organized as follows. Section 2 introduces
the data and methodology of the study, including the study
sites, the change categories, and the methods used to process
and classify the water changes. In Section 3, the results of
semi-supervised algorithms are compared and analyzed. Sec-
tion 4 concludes the article and discusses future work.

Fig. 1. Location of the ASGM study sites in Madre de Dios



2. DATA AND METHODOLOGY

2.1. Study Site and Data Acquisition

Madre de Dios is a global hotspot of ASGM activity. In this
work, we investigated several regions in the La Pampa area,
see Figure 1. Ten samples (∼ 37.7km2 each) of interest in
La Pampa are selected according to a gradient of significant
mining intensity, techniques, and policy enforcement over the
last 15 years. Therefore, bi-temporal image dates are selected
to maximize the number of changed pixels and provide more
examples for the technique. To acquire the data, we used
the Google Earth Engine (GEE) platform to get the Sentinel-
2 images. The Sentinel-2 satellite constellation [5] was de-
veloped for monitoring variability on land surfaces with 13
multi-spectral channels, ranging from ultra-blue to shortwave
infrared. Thanks to infrared and shortwave infrared channels,
Sentinel-2 data is widely used to assess land surface water
change [6, 7].

2.2. Change Detection of RGB & Multispectral Images

We selected data from two distinct dates (August 18th, 2019,
and July 23rd, 2021) which showcase periods in which sig-
nificant land-use change had occurred in the regions. Prefer-
entially selected data are with minimal cloud cover or other
atmospheric influences. Specifically, two different sets of
spectral images were composed to create the data. One of the
sets consists of 3-Channel, Red-Green-Blue images, which
have low-cost process and storage. Another set includes
6-Channel, Red-Green-Blue-NIR-SWIR-1-SWIR-2 images,
where NIR-SWIR-1-SWIR-2 channels are used to calculate
water indices (NDWI and MNDWI) introduced in the follow-
ing subsection.

For the purpose of generating data to detect the changes
related to ASGM, we defined three pond states of mining: ac-
tive, transition, and inactive as in [3]. Active state, in which
pond mining was ongoing at the time of collecting the data.
Transition state, in which pond mining was recent but not on-
going. Inactive state, in which mining had ceased more than
six months before the imaging time. Changing categories
were then defined as follows [3]: (1) Decrease: Change from
active to inactive, active to transition, or transition to inactive;
(2) Increase: Change from inactive to active, inactive to tran-
sition, or transition to active; (3) Water Existence/Absence:
change from water to no-water or no-water to water; and,
(4) No Change: no state changes between time periods took
place. These categories were associated with the intensifica-
tion, cessation, and the effect of governance of ongoing min-
ing activities [8, 9, 10].

2.3. Histogram Matching & Semi-Manual Labeling

There is no publicly available dataset for change detection
of ASGM activities, and thus we created our own labeled

Fig. 2. RGB and SWGB Images of 7th and 8th MDD regions
in 2019 and 2021.

dataset, see [3]. Manual labeling and semi-manual labeling
were applied to label ponds and their states. To label the
ponds manually in relatively small regions, we used RGB and
SWGB (SWIR/Green/Blue) images to visualize and distin-
guish ponds in different colors. Because of atmospheric ef-
fects, the color shades are different in both RGB and SWGB
bi-temporal images (see Fig.2). Thus, we matched the color
histograms for each band in RGB and 6-channel images.

Fig. 3. Semi-manual labeling scheme: Thresholding based on
color index Ci and Modified Normalized Difference Water
Index (MNDWI); manual correction; and subtraction of bi-
temporal labels.

Manual labeling is time-consuming and labeling based on
color is a subjective task and can vary significantly from per-
son to person. Therefore, we introduced a semi-manual pro-
cess based on color histograms and thresholding for consis-
tency labeling. Specifically, to label pond states, we used the
red and green bands to determine different shades of yellow
to green, as sediment reflects highly in the red band (in active
ponds). Also, photosynthetic material is present (in inactive



ponds) and influences the shortwave infrared reflectance. The
color index is defined by Ci = (green−red)

(green+red) to categorize the
state of ponds as shown in our previous work [3]. Distribu-
tions of the color index were used to define thresholds (0 and
0.15). Furthermore, to accurately classify pond changes, wa-
ter surfaces are identified before color thresholding to remove
nearby vegetation (green) and sand (yellow). There have been
several studies to detect or segment the surface water body
in the defined zones [11, 12]. There are two formulations
of spectral water indices that are the most used methods in
the literature [13]. According to the proposed study in [11],
MNDWI has higher accuracy and lower error than the NDWI
water index. Thus, we used the MNDWI spectral water index
in this work.

According to the preset thresholds, all pixels in the images
are labeled. However, many labeled pixels in a pond should
be of the same state. Fig. 3 (b1) and (b2) show that the bor-
ders of the ponds are labeled differently than the center of the
pond after thresholding. We checked the labels of the ponds
and manually corrected them as needed.

2.4. Semi-supervised Change Detection

Semi-supervised machine learning methods have been widely
used in identifying land coverage and detecting changes over
time [3, 14]. In this article, we introduce several semi-
supervised classifiers based on SVMs. The basic SVM al-
gorithm finds hyperplanes that maximize margins between
classes. Nonlinear kernel functions enable SVM to project
and classify the data in a higher-dimensional space so that
classes are linearly separable [15]. To avoid potential over-
fitting, ν-SVM uses a parameter ν ∈ [0, 1] to control the
portion of misclassifications in training processes [16]. The
pixel-wise SVM classifiers ignore the spatial information in
remotely sensed images, whereas spatial connectivity is ob-
served in many real scenes. Incorporating spatial features can
improve the performance of classifiers [14, 17, 18, 19].

Several algorithms have been proposed to include spatial
features into the kernel of SVMs. In the SVM method with
composite kernels (SVM-CK) [17], spatial and spectral fea-
tures are extracted and fed into different kernels satisfying
Mercer’s conditions. The superpixel-based classification via
multiple kernels (SC-MK) method [18] used a graph-based
superpixel algorithm to segment the hyperspectral image and
extracted feature vectors from superpixels to construct multi-
ple kernels. The kernels are then weighted to form composite
kernels and train non-linear SVMs.

Multi-stage SVM-based methods, such as [14, 19, 20],
make use of spatial and spectral information in different
phases separately. The rich spectral information is used to
discriminate classes, and the spatial information is utilized to
reduce the noise in images. In the SVM-STV model [14], a
ν-SVM was trained and predicted probability vectors for all
pixels in the first stage, and then a smoothed total variation

model was applied to reduce the noise in the constructed
probability tensor and derive the classification map. For RGB
images, the information of each pixel is limited and the RGB
color space is highly correlated. To further utilize the infor-
mation of RGB images, lifting was introduced in [21], which
transfers the images from RGB to Lab color space and con-
catenates the RGB and Lab images together. In our previous
work [3], the SVM-STV algorithm with the lifting option
as a preprocessing step also improves the change detection
performance for RGB images substantially.

3. NUMERICAL EXPERIMENTS

Fig. 4. Average performance of the semi-supervised methods
using RGB and 6-channel multispectral images with varying
training size. The x-axes and y-axes represent the number
of labels per class for training and the corresponding average
performance on 10 regions, resp.

We compared and presented the results of ν-SVM [15],
SVM-CK [17], SC-MK [18], and SVM-STV [14] for change
detection of ponds in the MDD region. For both RGB and
6-channel images, we compared against the variant of SVM-
STV with lifting (denoted as SVM-STV′) as well [3]. As the
MDD datasets are imbalanced with a dominating class “no



Fig. 5. Comparison of classification results using semi-supervised methods on the 9th MDD region. The bi-temporal images
are shown in the left. The two figures in the right show the heat maps of misclassifications of RGB and 6-channel results, where
the colors of pixels indicates the number of false classifications in 10 trials (see the colorbar).

change”, instead of using accuracy, we used Cohen’s kappa
coefficient κ, Jaccard index J , and F1-score to quantify the
results [3]. We ran ten trials with different randomly selected
training sets to remove the effect of stochasticity.

Fig. 4 shows the average quantitative performance across
the ten regions in MDD. The results improve monotonically
with increasing labels. Comparing 6-channel results with
RGB results, the portion of falsely classified pixels is highly
reduced because infrared channels in the 6-channel images
provide essential information to discriminate water changes.
SVM-CK outperforms other methods in terms of κ when the
number of labels/class ≤ 30. SVM-STV or its variant out-
performs other methods in the three metrics in other cases.
Table 1 shows the classification performance of compared
SVM-based methods when No. labels/class = 100. It shows
that SVM-STV′ outperforms SVM-STV by 2-4% in terms
of three metrics using RGB images, which indicates that the
lifting option provides complementary information that aids
the classification of SVM-STV. Lifting is not recommended
for the 6-channel images since the improvement is negligible
and the computational time increases.

Fig. 5 visualizes the heatmaps of misclassifications of
these methods on the 9th MDD region in Fig. 1 as an exam-
ple. Incorporating spatial information improves the classifi-
cation at the upper-left part most effectively for the 6-channel
images, where the pond change has not occurred. The spatial
information helps with ironing out the isolated classification
noise. For RGB images, SVM-STV and SVM-STV′ predict
the pixels located at the middle and lower-right corner of the
region better than their competitors, where the pond changes
occur extensively. This is because the spectral information of
RGB images is not sufficient for accurate classification, even

for neural networks [3]. The smoothed total variation term
reduces the spatial noise in the probability maps produced by
ν-SVM and thus improves the ν-SVM result. SVM-CK up-
weights spatial information into composite kernels, so it has
comparable performance as SVM-STV′ when spectral infor-
mation is very limited. However, since SC-MK extracts su-
perpixels in the first stage and then extracts spatial features,
the quality of superpixels directly impacts the quality of its
classification result.

RGB Images 6-Channel Images
Kappa Jaccard F1 Kappa Jaccard F1

Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best
ν-SVM 0.3743 0.4383 0.4050 0.8283 0.5260 0.9059 0.6831 0.7125 0.5817 0.9262 0.7047 0.9616

SVM-CK 0.4552 0.5084 0.4675 0.8534 0.5907 0.9207 0.6961 0.7283 0.5941 0.9325 0.7153 0.9650
SC-MK 0.3613 0.3954 0.4145 0.7823 0.5353 0.8775 0.6440 0.6719 0.5589 0.9113 0.6833 0.9535

SVM-STV 0.4639 0.5552 0.4556 0.9102 0.5691 0.9529 0.7072 0.7426 0.6020 0.9354 0.7223 0.9666
SVM-STV′ 0.4871 0.5685 0.4919 0.8983 0.6134 0.9463 0.6998 0.7367 0.6078 0.9331 0.7304 0.9653

Table 1. The best and the average performance of semi-
supervised methods on 10 MDD regions when the number
of labels/class = 100 for training. The bold and underlined
values represent the best and second-best performance, resp.

4. CONCLUSIONS

In this work on change detection, we tested several SVM-
based classifiers to recognize water pond changes in Peruvian
rainforests, specifically in Madre de Dios. Band selection,
histogram matching, semi-manual labeling, lifting, and im-
age stacking are performed before classifying the types of
water changes. Semi-supervised classifiers are then trained
with a few expert labels and applied to predict the changes
using preprocessed RGB and 6-channel bi-temporal datasets.
These SVM-based methods achieve very reasonable results
on the ten samples from MDD. Spatial regularity is observed



in the MDD datasets, and incorporating spatial information
improves the performance of both RGB and 6-channel im-
ages.

Observing that the best performance in the ten trials is
much better than the average performance of the ten trials
with randomly initialized training labels, a practical-based
semi-supervised way called active learning is planned as fu-
ture work. Instead of selecting labels arbitrarily, active learn-
ing methods choose the labels of the most informative pix-
els for training [22, 23]. Unsupervised diffusion-based clus-
tering algorithms will also be tested on ASGM datasets as
well [24, 25].
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