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Abstract—Hyperspectral images (HSIs) provide exceptional
spatial and spectral resolution of a scene, crucial for various
remote sensing applications. However, the high dimensionality,
presence of noise and outliers, and the need for precise labels
of HSIs present significant challenges to the analysis of HSIs,
motivating the development of performant HSI clustering algo-
rithms. This paper introduces a novel unsupervised HSI cluster-
ing algorithm—Superpixel-based and Spatially-regularized Dif-
fusion Learning (S2DL)—which addresses these challenges by
incorporating rich spatial information encoded in HSIs into
diffusion geometry-based clustering. S2DL employs the Entropy
Rate Superpixel (ERS) segmentation technique to partition an
image into superpixels, then constructs a spatially-regularized
diffusion graph using the most representative high-density pixels.
This approach reduces computational burden while preserving
accuracy. Cluster modes, serving as exemplars for underlying
cluster structure, are identified as the highest-density pixels
farthest in diffusion distance from other highest-density pixels.
These modes guide the labeling of the remaining representative
pixels from ERS superpixels. Finally, majority voting is applied
to the labels assigned within each superpixel to propagate labels
to the rest of the image. This spatial-spectral approach simultane-
ously simplifies graph construction, reduces computational cost,
and improves clustering performance. S2DL’s performance is
illustrated with extensive experiments on four publicly available,
real-world HSIs: Indian Pines, Salinas, Salinas A, and WHU-Hi.
Additionally, we apply S2DL to landscape-scale, unsupervised
mangrove species mapping in the Mai Po Nature Reserve, Hong
Kong, using a Gaofen-5 HSI. The success of S2DL in these diverse
numerical experiments indicates its efficacy on a wide range of
important unsupervised remote sensing analysis tasks.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) encode reflectance
across a broad spectrum of wavelengths in the visual and

infrared light spectra, storing a rich characterization of large
spatial regions with high spectral resolution. These images
can be obtained through various platforms, such as airplanes,
drones, or orbital spectrometers [1], [2]. HSI data have been
shown to be useful in a wide range of high-impact applica-
tions; e.g., the identification of land use and land cover [3]–[8],
the unmixing of spectral signatures [9]–[12], and the fusion of
images from different sources and modalities [13]–[17]. These
applications often leverage machine learning and deep learning
approaches to exploit the rich information stored within HSIs.

Machine learning and deep learning have significantly im-
proved HSI classification with advanced models that handle
the complex spatial-spectral aspects of HSIs [18]–[22]. Con-
volutional, graph convolutional, and recurrent neural networks
have redefined accuracy and efficiency benchmarks in super-
vised HSI classification tasks [23]–[28]. However, the need
for specialized knowledge and extensive fieldwork for expert
annotations makes HSI labeling a resource-intensive and costly
task, motivating the development of unsupervised clustering
algorithms for analyzing HSIs [1], [5], [29]. Nevertheless,
even HSI clustering algorithms, which rely upon no expert
annotations or ground truth labels for image segmentations,
face at least two key challenges in practice [30]–[33].

The first challenge for HSI clustering is the sheer volume of
pixels in an image that the algorithm must analyze. HSIs being
large datasets is a challenge independent of their inherent high-
dimensionality, which stems from the high spectral resolu-
tion obtained using advanced hyperspectral spectrometers to
generate high-quality HSI data. Large images are especially
challenging for graph-based HSI clustering methods, which
construct a graph to represent pixel affinities and can scale
quadratically, if not worse, with the number of pixels if the
graph is not constructed carefully [1], [4], [34], [35]. Several
techniques have been proposed to mitigate the computational
demands of the graph construction process. For instance,
anchor-based graph approaches reduce the number of graph
nodes by selecting representative anchor points, while the
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Nyström extension approximates the graph’s eigendecompo-
sition to streamline later analysis [36]–[38]. However, the
selection of anchors, often through random or K-Means meth-
ods, can misrepresent the dataset, neglect spatial information,
and be noise-sensitive [39]. Addressing the computational
challenges, it’s important to recognize that HSIs typically
possess a low intrinsic dimensionality because of the natural
relationships between spectral bands, which can often be
captured in a manifold coordinate system [40]–[42]. This
reduced intrinsic dimensionality motivates the downsampling
of pixels, as a carefully selected subset of the HSI is likely
to contain sufficient information to approximate the low-
dimensional geometry intrinsic to an HSI [40].

A second major challenge to HSI clustering algorithms
is the presence of noise and outliers in HSIs, which often
results in a significant reduction in performance on important
unsupervised material classification problems due to internal
and external factors. These factors include sensor noise, at-
mospheric effects, and spectral variability, resulting in a noisy
characterization of a scene in which it can be difficult to
differentiate materials in an unsupervised setting [43], [44]. A
further complication is the high intra-class spectral variability
often observed in different locations of an HSI resulting from
variance in illumination conditions and viewing angles [9].
Integrating spatial information with spectral information can
help mitigate the effects of spectral variability. This allows the
algorithm to use contextual information from spatially nearby
pixels, which often belong to the same class and share similar
spectral characteristics [45]–[47].

In this paper, we propose Superpixel-based and Spatially-
regularized Diffusion Learning (S2DL): a superpixel-based
Diffusion Learning approach to unsupervised clustering of
large HSIs. Our approach first employs Entropy Rate Super-
pixel (ERS) segmentation to partition the image into spatial
regions of similarly-expressive pixels. ERS segmentation as-
sumes local homogeneity and is meant to reduce the effect
of spatial-spectral variability within each superpixel. S2DL
uses a kernel density estimate (KDE) to identify a small
number of most-representative pixels from each superpixel
for use in the construction of a spatially-regularized k-nearest
neighbor (kNN) graph [41], [48]–[50]. Importantly, the graph
used in S2DL explicitly incorporates spatial information into
graph construction by allowing edges only between pixels and
their nearest neighbors within a spatial radius. S2DL locates
and assigns unique labels to single pixels from each cluster
to serve as cluster exemplars: highest density pixels farthest
in spatially-regularized diffusion distances [41], [48]–[50]
from other high-density pixels. S2DL then propagates labels
across the graph using a local backbone (LBB) spread and
diffusion-based label propagation. After the clustering of pix-
els representative of superpixels, majority voting is performed
within each superpixel, ensuring spatial homogeneity of cluster
assignments. As will become clear in extensive numerical
experiments showing its efficacy, S2DL’s procedure results in
a substantial decrease in computational complexity while at
the same time mitigating the effects of noise and outliers.
Thus, S2DL is a highly efficient and accurate approach to
unsupervised HSI clustering.

To summarize, our contributions are threefold: Firstly, we
present an efficient approach that merges superpixel segmen-
tation with the selection of representative pixels, significantly
reducing computational demands for graph-based analysis.
Secondly, we introduce spatially-regularized graphs that cap-
italize on the inherent spatial regularity of HSIs, thereby
enhancing clustering efficacy. Lastly, we employ the LBB
spread to further incorporate modal pixels into downstream
non-modal labeling. This article is organized as follows. In
Section II, we discuss related work on HSI clustering, diffu-
sion geometry, and spatial-spectral HSI clustering algorithms
while overviewing terminology and background. Section III
introduces S2DL and motivates its approach to spatial-spectral
clustering of HSIs. Section IV shows the efficacy of S2DL
through extensive numerical experiments comparing S2DL
with classical and state-of-the-art unsupervised approaches on
four benchmark HSI datasets: Indian Pines, Salinas, Salinas
A, and WHU-Hi. Additionally, this section showcases the ap-
plication of S2DL to a Gaofen-5 sensor-collected HSI dataset
for unsupervised mapping mangrove species in Mai Po Nature
Reserve, Hong Kong [51]. Section V concludes and discusses
future work.

II. RELATED WORKS

A. Overview of HSI Clustering Techniques

Clustering is an unsupervised learning technique that groups
similar objects or data points without the need for ground truth
labels or expert annotations [52]. We denote pixels in an HSI
as a set X = {xi}Ni=1 ⊂ RB , where each xi denotes the
spectral signature of a pixel in the image, and B represents
the number of spectral bands. HSI clustering algorithms par-
tition pixels into a clustering {Xk}Kk=1 (where each Xk is a
cluster) such that pixels from the same cluster are “similar”
(possibly due to a similar material constitution), while pixels
from different clusters are “dissimilar” (containing different
materials) [53]. The specific notion of similarity used varies
widely across the many clustering algorithms in the literature.

Traditional clustering methods—e.g., K-Means [54], Gaus-
sian Mixture Model [55], and Density-Based Spatial Cluster-
ing of Applications with Noise [56]—have been employed
for HSI clustering [4]. However, these methods often en-
counter challenges due to the presence of spectrally-mixed
pixels and noise inherent in HSI data [41], [43], [53]; e.g.,
sensitivity to initialization, assumptions on the distribution
of data [40], [41], [57], [58], and sensitivity to noise [4].
Density peak clustering (DPC) [59] was introduced to mitigate
some of these distribution assumption errors (specifically, that
of uniform density across clusters). DPC locates K points
in a dataset to serve as cluster modes: exemplars for latent
underlying cluster structure. DPC cluster modes are defined as
the highest-density points farthest in Euclidean distance from
other high-density points. These cluster modes are assigned
unique labels, which are propagated across the dataset by
assigning (in order of decreasing density) each point the label
of its ℓ2-nearest neighbor of higher density that is already
labeled. However, the use of Euclidean distances to make
pairwise comparisons between HSI pixels in DPC [59] and
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other traditional clustering algorithms [52] has been shown to
reduce clustering quality on datasets with nonlinear decision
boundaries between latent clusters [40], [49], [53], or due to
the “curse of dimensionality,” that all pixels tend to appear
roughly equidistant from one another in high-dimensional
space [4], [41]. Finally, these methods often cluster individual
pixels, agnostic to rich spatial information present in HSI
data [1], [4], [9], [45], [49].

Deep clustering algorithms have been investigated for use
on HSIs due to their ability to capture nonlinear decision
boundaries and learn discriminative features for material clas-
sification in recent years [4], [5], [16], [60]–[64]. The vast deep
clustering techniques in the literature range from contrastive
learning-based [61], [62] to graph-based approaches [63]–[65].
The integration of superpixels in deep HSI analysis has
been shown to enhance computational efficiency and semantic
consistency [62], [66]. Despite their success on a wide range of
HSI clustering problems, deep clustering algorithms are often
highly sensitive to noise and perturbations in the data [67],
[68], and recent research has indicated that their success may
be attributable to preprocessing steps rather than the learning
capabilities of the network itself [69]. Moreover, despite
their highly accurate recovery of latent material structure in
some applications, many deep HSI clustering approaches face
limitations such as high computational complexity of training
and the need for large training sets [60], [62], [64].

B. Diffusion Learning for HSI
Diffusion Learning has emerged as a highly effective ap-

proach to extracting and utilizing the inherent geometric struc-
ture contained within HSI data in an unsupervised clustering
framework [41], [42], [49], [53], [58]. Diffusion Learning
interprets HSI pixels as nodes in an undirected, weighted
graph, the edges between which indicate pairwise similarity
between pixels [41], [70]. This graph can be stored in a
sparse adjacency matrix W ∈ RN×N , where Wij = 1 if
the pixel xj is one of the kn ℓ2-nearest neighbors (where
ℓ2 denotes the Euclidean distance) of the pixel xi in X ,
and Wij = 0 otherwise. Diffusion Learning relies on the
data-dependent diffusion distance metric to make pairwise
comparisons between pixels in the HSI [41], [42], enabling
highly accurate extraction of latent nonlinear structure in
HSIs [6], [41], [48], [53], [57], [71].

Diffusion distances are calculated by considering a Markov
diffusion process on the graph underlying W [42]. The
transition matrix for this diffusion process can be calculated
directly from W: P = D−1W, where D is the diagonal
degree matrix with Dii =

∑N
j=1 Wij . Provided the graph

underlying P is irreducible and aperiodic, P will possess a
unique stationary distribution π ∈ R1×N such that πP = π.
The diffusion distance at a time t ≥ 0 between any two pixels
in the HSI xi, xj ∈ X [42], [48], [57], [58] is defined by

Dt(xi, xj) =

√√√√ N∑
k=1

[(Pt)ik − (Pt)jk]2/πk. (1)

Diffusion distances have a natural relationship to the clustering
problem [42], [53], [58]. Indeed, one may expect many high-

weight length-t paths between pixels sampled from the same
latent cluster but very few such paths between pixels sampled
from different clusters, resulting in intra-cluster diffusion
distances that are small relative to inter-cluster diffusion dis-
tances [42], [53], [58]. The diffusion time parameter t governs
the scale of structure considered by diffusion distances, with
smaller t enabling retrieval of small-scale local structure in the
image and larger t retrieving global structure [42], [48], [57].

Importantly, the eigendecomposition of P can be used
for the efficient computation of diffusion distances. Indeed,
given the eigenvalue-eigenvector pairs {(λk, ψk)}Nk=1 of the
transition matrix P, it can be shown [42] that

Dt(xi, xj) =

√√√√ N∑
k=1

|λk|2t[(ψk)i − (ψk)j ]2 (2)

for t ≥ 0 and xi, xj ∈ X . Crucially, under the assumptions
of irreducibility and aperiodicity, |λk| < 1 for k > 1. This
implies that, for sufficiently large t, diffusion distances can be
accurately approximated using only the few eigenvectors ψk

corresponding to the largest |λk| [42], [57], [58].
Employing diffusion geometry for HSI clustering yields

significant advantages. Diffusion distances effectively counter
the “curse of dimensionality” inherent to high-dimensional
datasets like HSIs by extracting an intrinsic lower-dimensional,
nonlinear representation of pixels, simultaneously reducing
sensitivity to noise and redundant information [40], [41], [58].
Consequently, these methods provide a robust approach to ex-
tracting latent geometric structure hidden in high-dimensional
HSI data [41], [48], [53] and have strong performance guar-
antees on clustering recovery across wide classes of data
types [57], [58].

Furthermore, several studies have utilized random walks
on graphs for HSI classification. These studies estimate the
probabilities of transitioning from unlabeled to labeled pixels
by minimizing energy derived from random walk processes,
thereby facilitating the classification of unlabeled pixels [72]–
[74]. However, diffusion learning distinguishes itself from
these related algorithms through its temporal parameter, en-
abling the exploitation of both local and global data structures
in HSIs effectively [42], [57]. Moreover, diffusion learning
leverages eigendecomposition to efficiently estimate diffusion
distances, thereby enhancing scalability [42], [58]. In addition,
as will be discussed soon, there exist spatial-spectral variants
of Diffusion Learning, achieved by constructing a spatially-
regularized graph or assigning labels via spatial window con-
straints, enhancing these algorithms’ sensitivity to the spatial
context of each HSI pixel and therefore improving the quality
of derived clusters [48]–[50], [75].

C. Spatial-Spectral Analysis of HSI

Incorporating the spatial structure of an HSI into an HSI
clustering algorithm is essential for achieving high-quality
partitions and mitigating the effects of noise and spectral
variability in HSIs. This is due to the tendency of nearby
pixels to exhibit similar spectral properties [4], [37], [39], [60],
[62], [63], [75]. Spatially-regularized graphs offer a robust
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framework for embedding spatial context into graph-based
HSI clustering algorithms like Diffusion Learning [48], [49].
Traditional graph-based methods that focus solely on spectral
information and are agnostic to the spectral consistency ob-
served within localized spatial regions in HSIs tend to perform
poorly due to the heterogeneous spectral signatures and noise
across an HSI scene [36], [39], [76]. Spatially-regularized
graphs counteract this spectral variance by limiting connec-
tions between pixels to those within a spatial radius around
each pixel. Mathematically, a spatially-regularized kNN graph
may be defined through its corresponding weight matrix W,
with Wij = 1 if xj is one of the kn Euclidean distance nearest
neighbors of xi from points within a (2R + 1) × (2R + 1)
spatial square centered at xi in the HSI, where R ∈ N is
a user-defined spatial radius, and Wij = 0 otherwise [48],
[49], [53], [76]. Thus, spatially-regularized graphs efficiently
encode spatial coherence within the HSI by restricting edges
within the graph underlying W to spatially-close pixels [4],
[48], [49], [53], [76].

Spatially-regularized graphs have emerged as a pivotal tool
in enhancing HSI clustering and semi-supervised classification
tasks [48]–[50]. The spatially-regularized graph, specifically
tailored for HSIs with diffusion distances and enhanced by
a spatial window-based labeling consensus mechanism, was
introduced in [49] to effectively leverage spatial context.
Extending this approach, a multiscale framework was intro-
duced, utilizing spatially-regularized graphs to learn a single
clustering scale that is most explanatory of latent multiscale
cluster structure extracted by varying t in diffusion distances,
as measured by variation of information [48], [57]. Further-
more, spatially-regularized graphs have found utility in active
learning, a branch of semi-supervised learning that requires
human input. Spatially-regularized graphs aid in the strategic
selection of a set of pixels for labeling—based on available
budget—ensuring that the chosen pixels are locally coherent
due to spatial constraints and globally representative through
density estimation [50].

A second important field of research meant to incorporate
spatial information into HSI clustering algorithms is that of
superpixel segmentation. Superpixel segmentation algorithms
partition the HSI into relatively small spatial regions exhibit-
ing comparable spectral signatures, possibly due to similar
mixtures of materials in the region they correspond to. These
regions (or superpixels) capture local spatial structure, and the
analysis of them (rather than that of the full HSI) reduces
the number of pixels being analyzed, and hence, computa-
tional complexity associated with later analysis [77], [78].
Superpixel algorithms fall into two main classes: clustering-
based, which iteratively cluster pixels based on convergence
criteria [79]–[82], and graph-based, which form superpixels
by optimizing a cost function on a pixel-node graph [77],
[78], [83]–[85]. Simple linear iterative clustering (SLIC), as
one of the most widely-used clustering-based superpixel seg-
mentation algorithm, adapts K-Means clustering to generate
high-quality superpixels while maintaining a remarkably low
computational and memory cost [79]. ERS is a representative
graph-based segmentation algorithm that generates compact,
homogeneous superpixels with similar sizes by minimizing

the cost of cuts on the image graph; see Section III-B [77].
Given ERS’s precision and enhanced boundary delineation, as
demonstrated in superpixel segmentation benchmarks [86], we
have chosen to integrate ERS into our proposed method.

Superpixel-based methods have been employed in HSI
classification to incorporate spatial information into their pre-
dictions and reduce the effect of spatial-spectral variability
within each superpixel [87]–[90]. Several methods have com-
bined superpixel segmentation with dimensionality reduction
to address the high dimensionality of HSIs and simplify
classification by using contextual pixel information. For in-
stance, SuperPCA utilizes ERS and PCA at the superpixel
level for enhanced local feature extraction from homogeneous
areas, improving classification [46]. Similarly, Superpixel-
wise Collaborative-Representation Graph Embedding employs
a Laplacian-regularized collaborative representation within
superpixels for dimensionality reduction, tackling spectral
redundancy and class variability [91]. Superpixel constraints
aid in subspace learning and classification accuracy [92], and
ERS effectively reduces noise and identifies anchor points for
clustering [39]. Additionally, superpixel pooling autoencoders
have been developed to capture superpixel-level latent repre-
sentations to assist subsequent cluster analysis [62]. Despite
these developments, the integration and exploration of super-
pixels in unsupervised HSI clustering are still relatively lim-
ited, particularly in conjunction with diffusion geometry [48],
[49], [66], [75], [93].

III. SUPERPIXEL-BASED AND SPATIALLY-REGULARIZED
DIFFUSION LEARNING

This section introduces the proposed algorithm for un-
supervised HSI clustering: Superpixel-based and Spatially-
regularized Diffusion Learning (S2DL). While pixel-wise clus-
tering methods can be effective in certain scenarios, they often
fail when applied to HSIs due to their disregard for spatial
information: a key characteristic in HSI data. Ignoring the
spatial context can lead to inaccurate clustering results as the
spatial proximity of pixels often correlates with similarity in
material composition in remotely-sensed images.

A. Overview of S2DL

S2DL addresses this challenge by integrating spatial in-
formation into its clustering process in two key steps. First,
S2DL employs the graph-based ERS superpixel segmenta-
tion technique to obtain a high-quality superpixel segmen-
tation of the HSI [77], [86], as described in Section III-B.
Second, as described in Section III-C, S2DL constructs a
spatially-regularized graph from carefully selected pixels from
each ERS-derived superpixel, effectively capturing intrin-
sic spectral-spatial relationships between pixels within the
HSI [41], [48], [49] while reducing overall computational
complexity of graph construction and analysis. Finally, S2DL
performs a diffusion-based clustering procedure to label super-
pixel exemplars and propagate those labels to the remaining
image as described in Section III-D.

The combination of superpixel segmentation and the use of
a spatially-regularized graph is expected to result in superior
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Figure 1. Workflow of the S2DL Algorithm. The algorithm begins by projecting the first three PCs of the input HSI, which are then used to create a superpixel
map via the ERS algorithm. S2DL estimates the k highest-density pixels within each superpixel as representatives in graph construction, and then constructs
a spatially-regularized kNN graph. Mode pixels are subsequently identified and assigned unique labels, with the LBB of each mode receiving the same label
as its respective mode. Then the labels are propagated to unlabeled selected pixels. The process concludes with majority voting within each superpixel to
finalize the clustering.

clustering results using S2DL (as will be shown in our numer-
ical experiments in Section IV). As is shown in the complexity
analysis in Section III-E, S2DL’s use of superpixel segmen-
tation and spatially-regularized diffusion distances offers a
computationally efficient approach to HSI cluster analysis that
is expected to translate to high-quality unsupervised analysis
of large-scale HSI datasets. The detailed steps of S2DL are
introduced in the following sections and summarized in Figure
1 and Algorithm 2.

B. ERS-Based Superpixel Segmentation

S2DL begins by computing a superpixel segmentation map
using ERS; see Algorithm 1 [77]. As will become clear soon,
the superpixels derived using ERS not only reflect spectral
similarities between pixels in a graph-based procedure, but
also the spatial information. Incorporating spatial information
through superpixels not only offers a significant improvement
over traditional pixel-wise clustering techniques, which often
disregard spatial information, but also substantially reduces
computational complexity by decreasing the number of pixels
processed in subsequent graph construction.

ERS builds its superpixel segmentation based on an undi-
rected weighted graph based on the projection of pixel spectra
onto their first three principal components (PCs), denoted
XPCA. Mathematically, this initial graph may be defined using
the weight matrix Z ∈ RN×N as

Zij =

{
exp

(
−mij

2σ2

)
if xi ∈ Nℓ(xi) or xj ∈ Nℓ(xj),

0 otherwise.

where mij = ∥l(xi) − l(xj)∥22 · ∥xi − xj∥22, with l (xi) and
l (xj) representing spatial coordinates of pixels xi and xj ,
respectively, and σ > 0 is a tuning parameter meant to
control interactions between pixels, and Nℓ(x) is the set of
ℓ spatial nearest neighbors of x in the PCA-reduced feature
space. In our later experiments, we set σ = 5 and ℓ = 8:

the default values for these parameters [77]. Denote the edge
set underlying this graph as E = {(i, j)|Zij > 0}. ERS
performs superpixel segmentation by locating a subset of edges
A ⊆ E to form Ns compact, homogeneous, and well-balanced
superpixels using the following optimization:

A∗ = argmax
A

J (A) = H(A) + αB(A),

s.t. A ⊆ E and NA ≥ Ns,
(3)

where NA is the number of connected components in A and
α > 0 is the balancing factor that determines the trade-off
between the terms H(A) and B(A) that are described below.

The term H(A) = −
∑N

i=1 µi

∑N
j=1 qij(A) log (qij(A))

measures the entropy rate of the edge set A, encouraging
compact and homogeneous spatial regions in the ERS super-
pixel segmentation by considering a random walk on the graph
subset A [77]. The entropy rate calculation relies on two main
quantities: the N × 1 stationary distribution µ ∈ RN×1 of a
random walk on the initial graph underlying Z—defined by
µi =

∑N
i=1 Zij∑N

i,j=1 Zij
—and transition probabilities qij(A) on the

edge subset A of E, defined as

qij(A) =


1−

∑
k∈Ai

Zik∑N
k=1 Zik

if i = j,
Zij∑N

k=1 Zik
if i ̸= j and (i, j) ∈ A,

0 if i ̸= j and (i, j) /∈ A,

where Ai = {k ∈ {1, 2, . . . , N}|(i, k) ∈ A} denotes the set
of indices of pixels directly connected to xi in A. Thus, the
entropy rate H(A) increases monotonically with the addition
of edges to A, particularly when these edges contribute to
more coherent clusters [77].

The second term in ERS’s optimization B(A) is meant to
encourage uniform superpixel size and a balanced number of
superpixels. Mathematically, B(A) = −

∑NA

i=1 ri log (ri) −
NA, where r ∈ [0, 1]NA denotes the distribution of pixels in
NA connected components; i.e., ri is the fraction of pixels
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Algorithm 1: Entropy Rate Superpixel (ERS) algo-
rithm [77]

Input: XPCA (Projection of pixels onto first 3 PCs),
Ns (# superpixels), α (# balancing factor)

Output: S (Superpixel Map)
1 Construct the graph G = (XPCA, E,Z);
2 Initialize the subset edge A∗ = ∅, U = E and

S = {Si | Si = {xi}, 1 ≤ i ≤ N};
3 while U ̸= ∅ and NA ≥ Ns do
4 Find edge â = argmaxa J (A∗ ∪ {a})− J (A∗),

where J (A∗) = H(A∗) + αB(A∗)
5 if A∗ ∪ {â} is cycle-free then
6 Update A∗ = A∗ ∪ {â}
7 end
8 Update U = U − {â}
9 end

10 while A ̸= ∅ do
11 if (i, j) ∈ A then
12 Find xi ∈ Sa and xj ∈ Sb, update

Sa = Sa ∪ Sb

13 Update A = A− {(i, j)} and S = S − Sb

14 end
15 end

in XPCA that exist in connected component i. Therefore,
all else equal, the incorporation of B(A) downweights both
complicated superpixel segmentations with high variation in
superpixel size across the image, or segmentations with extra-
neous superpixels. Hence, the incorporation of B(A) can be
interpreted as balancing the resulting ERS superpixel segmen-
tation, ensuring that new superpixels are roughly equal in scale
when edges are added to A in the ERS optimization [77].

Together, these two terms in J (A) monotonically in-
crease as edges are added to A, referencing uniformly-sized,
spectrally-similar spatial regions as derived superpixels. The
proposed objective function is efficiently addressed using a
“lazy greedy” heuristic that initializes with an empty edge set
A and gradually adds edges to maximize the ERS objective
function [94]. This iterative addition persists until the number
of connected components NA matches the pre-set target Ns,
thereby achieving the specified number of superpixels [77].
Finally, superpixels are generated from the connected edges
in the optimized edge set A∗. Mathematically, a superpixel
Si is a set of pixels with a coherent subset of edges in A∗;
see details in Algorithm 1. In the proposed S2DL algorithm,
the superpixel segmentation S is utilized for subsequent graph
construction, as will become clear soon in Section III-C.

C. Reduced Spatially Regularized Graph Construction
S2DL computes a spatially regularized graph (see Section

II-C for details) using a small subset of carefully selected
pixels from the ERS superpixel segmentation. To find the
representative pixels from each superpixel, S2DL first relies
on the following quantity:

ζ(x) =
1

Z
∑

y∈kn(x)

exp(−||x− y||22/σ2
0) (4)

for each pixel x ∈ X , where kn(x) denotes the set of kn
ℓ2-nearest neighbors of the HSI pixel x in X , σ0 > 0 is
a scaling factor controlling the interaction radius between
pixels, and the quantity Z normalizes ζ(x) to ensure that∑

y∈X ζ(y) = 1. Thus, ζ(x) will be higher for modal pixels
that are close in Euclidean distance to their kn ℓ2-nearest
neighbors and small otherwise [41], [53], [58]. For each ERS
superpixel, S2DL selects the k pixels within the superpixel
maximizing ζ(x), resulting in Ns × k representative pixels
used for graph construction. Mathematically, we define this
highly-explanatory subset Xs of X by Xs =

⋃Ns

i=1{x ∈
Si|x is one of the k maximizers of ζ(x) in Si}.

Importantly, constructing the graph using Xs instead of the
entire set X leads to a significant reduction in computational
complexity, while maintaining an accurate characterization
of essential spatial-spectral and geometric information. Once
representative pixels have been identified, a sparse spatially-
regularized kNN adjacency graph is constructed from the
pixels in Xs, following the procedure described in Section
II-C. This graph encodes rich spatial information in an HSI
data by restricting edges between pixels to spatial nearest
neighbors [48], [50].

D. Diffusion-Based Clustering

This section describes S2DL’s unsupervised diffusion-based
clustering procedure to obtain high-quality labeling of su-
perpixels. S2DL is inspired by the ubiquitous DPC algo-
rithm [59] (See Section II-A) and its diffusion geometry-based
extensions [41], [53], [58] that rely on diffusion distances
rather than Euclidean distances to perform cluster analysis.
Specifically, S2DL uses diffusion distances calculated from
the spatially-regularized graph introduced in Section III-C for
the unsupervised identification of cluster modes [48], [49],
[58]. First, S2DL locates K pixels meant to serve as cluster
modes—exemplars for latent cluster structure—and assigns
these pixels unique labels. These cluster modes are identified
as the K pixels in Xs that maximize ∆t(x) = dt(x)ζ(x),
where

dt(x) =


max
y∈Xs

Dt(x, y) x = argmax
y∈Xs

ζ(y),

min
y∈Xs

{Dt(x, y)|ζ(y) ≥ ζ(x)} otherwise.

(5)
In particular, dt(x) is the diffusion distance at time t be-
tween x and that HSI pixel’s Dt-nearest neighbor with higher
density. Thus, cluster modes identified using S2DL are the
highest-density pixels in Xs farthest in diffusion distance
from other highest-density pixels [6], [41], [48]–[50], [53],
[57], [58]. S2DL assigns Ĉ(xmk

) = k for k = 1, 2, . . . ,K,
where {xmk

}Kk=1 are the K maximizers of ∆t(x) and Ĉ ∈
{1, 2, . . . ,K}N is a clustering map with Ĉi = k indicating
that pixel xi is assigned to cluster k.

After locating cluster modes, S2DL relies on a local back-
bone (LBB) to propagate modal labels to unlabeled pixels
in Xs [95]. The LBB is pivotal, consisting not only of the
cluster center but also of the nearest neighbors most likely
to belong to the same cluster, as inferred through similarity
measures such as Euclidean distance or cosine similarity. In
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S2DL, the LBB of each modal pixel—defined as the first kn
spatially-regularized nearest neighbors of that cluster mode—
is assigned the same label as that of the modal pixel [95].
The formation of the LBB plays a crucial role in the S2DL
algorithm, highlighting the spatial coherence of HSI data
early in the non-modal labeling process. Next, in order of
descending density, the remaining pixels x ∈ Xs are labeled
according to their Dt-nearest neighbor of higher density that
is already labeled [49], [58], [59]: Ĉ(x) = Ĉ(x∗), where

x∗ = argmin
y∈Xs

{Dt(x, y)|Ĉ(y) > 0 ∧ ζ(y) ≥ ζ(x)}. (6)

This label propagation is entirely unsupervised, requiring no
input labels. Once all pixels in Xs have been labeled, S2DL
propagates labels within to the rest of the image using a
majority voting process: assigning the majority label of repre-
sentative pixels in each superpixel to all pixels in a superpixel.
Notably, the majority voting procedure further enforces the
retention of essential spatial-spectral characteristics of the
original HSI data in S2DL.

E. Computational Complexity

This section analyzes S2DL (Algorithm 2) concerning its
computational complexity and scaling. The first stage, wherein
superpixels are calculated using ERS, has the following main
components: computing the first three principal components
at a complexity of O(NB2), and the ERS algorithm itself.
While the worst-case complexity of ERS is O(N2 log(N)), in
practice, it often performs more efficiently, typically exhibiting
an average-case complexity closer to O(N log(N)) [77].

For nearest neighbor searches, we assume the use of cover
trees, which enables efficient nearest neighbor searches in
high-dimensional spaces [96]. Indeed, the computational com-
plexity of searching for the k ℓ2-nearest neighbors in X
using cover trees is O(knBc

dN log(N)), where d is the HSI’s
doubling dimension [53], [96] and c > 0 is a constant that is
O(1) with respect to the other parameters kn, B, d, and N .
In this complexity analysis, we assume that these two values
remain constant across subsets of X; e.g., that the doubling
dimension of X is the same as that of Xs [96]. Under this
assumption, the computational complexity of computing the
KDE at each pixel is O(knBc

dN log(N)). Similarly, locating
the k KDE-maximizers from each superpixel has complex-
ity O(Ns log(N/Ns) + O(kNs). Finally, the computational
complexity of building our reduced spatially regularized graph
is O(knBc

dkNs log(kNs)): a notable reduction in computa-
tional complexity due to our earlier downsampling procedure.

To perform its diffusion-based clustering, S2DL requires
O(knBc

dkNs log(kNs)+knL
2kNs) to calculate dt(x), where

L is the number of eigenvectors of P used to approximate
diffusion distances [42], [58]. In contrast to diffusion-based
methods clustering all the pixels, S2DL therefore operates
at a significantly reduced computational complexity through
its analysis of superpixel exemplars. Then, the computational
complexity of labeling the LBB and remaining pixels is
O(Kkn) and O(knLBc

dkNs log(kNs)), respectively [58],
[95]. Finally, it costs O(Nsk) to perform majority voting.
Prior work has demonstrated that it is sufficient to take kn =

Algorithm 2: Superpixel-based and Spatially-
regularized Diffusion Learning (S2DL) method
Input: X (HSI), Ns (# superpixels), k (#

representative pixels per superpixel), σ0 (kernel
scaling factor), kn (# nearest neighbors), R
(spatial radius), K (# of clusters)

Output: C (Clustering Map)
ERS-Based Superpixel Segmentation;

1 Calculate Xs: the projection of pixels in X onto
its first three PCs;

2 Run ERS to segment the PCA-reduced HSI XPCA

into Ns superpixels;
Reduced Spatially Regularized Graph Construction;

3 Compute kernel density estimation
ζ(x) =

∑
y∈kn(x)

exp(−||x− y||22/σ2
0) for all

x ∈ X;
4 For each superpixel, store the k pixels in that

superpixel maximizing ζ(x) in Xs;
5 Construct a spatially-regularized kNN adjacency

graph using the selected k ·Ns pixels with spatial
radius R;

Diffusion-Based Clustering;
6 Compute ∆t(x) = ζ(x)dt(x) for x ∈ Xs, where

dt(x) is as in Equation 5;
7 Identify the K maximizers of ∆t(x) as modal

pixels and assign unique labels from 1 to K;
8 For each cluster mode, assign its local backbone

(with kn nearest neighbors) the modal pixel’s
label;

9 In order of decreasing density, assign each
unlabeled pixel in Xs the label of their
Dt-nearest neighbor of higher density ζ that is
already labeled (Equation 6);

10 For each superpixel, assign all pixels in the
superpixel the modal label among the k
representative pixels in Xs from this superpixel;

O(log(N)) [53], [57], [58] and we expect that, for HSIs taken
over the same scene, Ns = O(1) and K = O(1) with respect
to N . Assuming that L = O(1) and k = O(log(N)) with
respect to N also, S2DL’s overall computational complexity
reduces to O(BcdN log2(N)): log-linear with respect to the
number of pixels. Notably, S2DL’s computational complexity
is dominated by its calculation of the KDE (not graph con-
struction, as in other diffusion-based algorithms), indicating
high-quality scaling to large-scale HSI clustering problems.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section contains extensive numerical experiments
showing the efficacy of the proposed S2DL algorithm. We
compared S2DL against both traditional and state-of-the-art
comparison methods on four real-world HSIs often used for
benchmarking new algorithms (Section IV-A). In addition,
we demonstrate that S2DL may be applied to the real-world
problem of landscape-scale species mapping of mangroves
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using remotely-sensed HSI data collected over the Mai Po
Nature Reserve (Section IV-B).

Among the algorithms we analyzed, several serve as
baselines, as they do not integrate spatial information. K-
Means [54] partitions data by minimizing intra-cluster ℓ2-
distances. Spectral Clustering (SC) [70] employs K-Means on
the first K eigenvectors of P to identify clusters. DPC [59]
defines cluster modes as high-density points distant from oth-
ers, assigning them unique labels that are then propagated to
neighboring points based on decreasing density. PGDPC [97]
discriminates many “peak” pixels with highest density among
nearest neighbors as measured with a KDE from “non-peak”
pixels, which are associated with their nearest neighbor of
higher density. It then derives graph-based cluster assign-
ments for peak pixels (relying on both density and pairwise
geodesic distances for graph construction) and propagates
along geodesic paths to remaining non-peak pixels [97]. Dif-
fusion Learning (DL) [58]—recognized as an early diffusion-
based clustering technique—relies on the metric ∆t(x) from
Section III-D for identifying cluster modes, and performs
label propagation by assigning to each point the label of
its Dt-nearest neighbor with higher density. Diffusion and
Volume Maximization-based Image Clustering (D-VIC) [53]
is a recent diffusion-based clustering algorithm that incor-
porates spectral unmixing into a DL clustering framework,
downweighting high-density, low-purity pixels in mode selec-
tion and non-modal labeling, while following DL for other
aspects. Although shown to be successful on a wide range
of HSI data [41], [53], [57], DL and D-VIC do not natively
incorporate spatial information into their labeling procedures.

Other comparison algorithms implemented exploit both
spatial and spectral information in their labeling procedures.
Improved Spectral Clustering with Multiplicative Update Al-
gorithm (SC-I) [37] modifies SC by iteratively solving the
eigenvalue decomposition of the Laplacian matrix L, relaxing
its discreteness condition, and integrating spatial context into
the graph underlying P. SLIC-PGDPC (S-PGDPC) [97] ex-
tends PGDPC by taking the average of the spectral signatures
within each superpixel and using this average as input for
the PGDPC algorithm. Spectral-Spatial Diffusion Learning
(DLSS) [41] enhances DL by adopting a two-stage labeling
scheme: initially, it assigns labels via DL, subject to a spatial
consensus check through majority voting within a specified
window, leaving non-conforming pixels unlabeled; this is
followed by a secondary DL process to label the remaining
unlabeled pixels. Spatial-Spectral Image Reconstruction and
Clustering with Diffusion Geometry (DSIRC) builds on the D-
VIC framework, utilizing both purity and density metrics for
cluster mode identification, and enhances clustering accuracy
by integrating spatial information through a shape-adaptive
reconstruction process that effectively reduces noise before
applying Diffusion Learning [75]. Spatially-Regularized Dif-
fusion Learning (SRDL) [48], [49] further refines DLSS by
constructing a spatially-regularized graph, resulting in clusters
that are more spatially consistent. Hyperparameters for all
algorithms were optimized for across a grid search, as is
described in Appendix A.

To evaluate the performance of our S2DL algorithm, we

employ a suite of metrics. Overall Accuracy (OA) calculates
the total fraction of pixels correctly clustered. Average Accu-
racy (AA) measures the average OA across different classes.
Cohen’s kappa coefficient (κ), defined as κ = po−pe

1−pe
, contrasts

observed accuracy against expected random accuracy [98].
Additionally, we introduce the sum of OA, AA, and κ (Sum)
as a composite metric to assess overall performance. We
track the runtime (RT) in seconds to assess computational
efficiency. The Hungarian algorithm is applied to align the
clusters generated by S2DL and related algorithms with the
ground truth labels (GT), ensuring each cluster is accurately
matched with its corresponding GT class for performance
evaluation [99], and we determine the optimal clustering
outcome by maximizing the Sum. For all datasets, we set K as
the GT number of clusters. All experiments were conducted in
MATLAB R2021a with the same environment: Intel® Core™
i7-10875H CPU @ 2.30GHz, 8 cores, 64 GB RAM, run on
a Windows 64-bit system. The code to replicate numerical
experiments can be found at: github.com/ckn3/S2DL.

A. Experiments on Benchmark HSI Datasets

1) Benchmark Datasets: In this section, we introduce the
four benchmark datasets chosen for this study. These datasets,
captured using the AVIRIS and Hyperspec sensors, serve as
representatives of diverse agricultural landscapes and have
been widely utilized for evaluating machine learning methods
for HSI.
Salinas and Salinas A: Captured by the AVIRIS sensor
in 1998, the spatially-regular dataset Salinas showcases the
agricultural terrains of Salinas Valley, California. It has a
spectral range of 380 nm to 2500 nm across 224 bands, with
spatial size 512 × 217 pixels, totaling 111,104 pixels. The
Salinas A subset zooms in on a specific region of the Salinas
scene with 83 × 86 pixels, totaling 7,138 pixels. Gaussian
noise was added for distinctiveness. While the broader Salinas
dataset has 16 classes, Salinas A focuses on 6 main crop types.
Indian Pines: Produced by the AVIRIS sensor in 1992, this
dataset portrays northwest Indiana farmlands. It covers a
spectral range of 400 nm to 2500 nm over 224 bands and
spreads over 145 × 145 pixels, making up 21,025 pixels.
Notably, it includes 16 GT classes, capturing various crops
and infrastructure.
WHU-Hi: Collected in 2018 using the Headwall Nano-
Hyperspec imaging sensor mounted on unmanned aerial vehi-
cles, the dataset offers a detailed view of agricultural fields in
LongKou, Hubei Province, China. It encompasses 270 spectral
bands ranging from 400 nm to 1000 nm and covers a spatial
extent of 550 × 400 pixels, summing up to 220,000 pixels.
The dataset is categorized into 9 GT classes, which include 6
types of crops and 3 non-crop categories.

2) Numerical Results on Benchmark Datasets: This section
offers detailed comparisons between the clusterings produced
by S2DL and various classical and state-of-the-art algorithms
introduced earlier in this section. Across the four benchmark
HSIs analyzed, S2DL delivers clusterings with the highest
performance in terms of three evaluation metrics. Notably, it
achieves almost perfect clustering on the Salinas A dataset,

https://github.com/ckn3/S2DL
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Table I
COMPARISON OF UNSUPERVISED CLUSTERING METHODS ON BENCHMARK HSI DATASETS. THE BEST AND SECOND-BEST PERFORMANCES ARE
INDICATED BY BOLD AND UNDERLINED VALUES, RESPECTIVELY. S2DL STANDS OUT FOR ITS HIGH-QUALITY CLUSTERING ACROSS ALMOST ALL

METRICS AND DATASETS, WITH THE EXCEPTION OF AA ON SALINAS, AND OA & κ ON WHU. THE RELATIVELY LOW RUNTIMES AND TOP SUM SCORES
COMPARED TO OTHER ALGORITHMS ALSO HIGHLIGHT THE SCALABILITY OF S2DL AND EFFICACY FOR ANALYSIS OF LARGE HSIS.

Dataset Method
K-Means SC DPC PGDPC DL D-VIC SC-I S-PGDPC DLSS DSIRC SRDL S2DL

Salinas A

OA 0.764 0.841 0.786 0.844 0.887 0.976 0.827 0.647 0.890 0.911 0.895 0.996
AA 0.749 0.887 0.849 0.893 0.920 0.973 0.875 0.680 0.888 0.903 0.926 0.996
κ 0.703 0.806 0.740 0.813 0.860 0.970 0.789 0.568 0.862 0.889 0.870 0.995

Sum 2.216 2.534 2.375 2.550 2.667 2.919 2.491 1.895 2.640 2.703 2.691 2.987
RT 0.05 1.59 2.66 1.63 1.93 4.89 6.43 0.10 5.27 26.39 14.99 1.78

Indian Pines

OA 0.386 0.382 0.391 0.428 0.404 0.471 0.496 0.477 0.467 0.620 0.640 0.647
AA 0.398 0.368 0.376 0.399 0.401 0.376 0.304 0.530 0.462 0.549 0.553 0.591
κ 0.315 0.313 0.304 0.351 0.313 0.383 0.394 0.431 0.400 0.573 0.596 0.602

Sum 1.099 1.063 1.071 1.178 1.118 1.230 1.194 1.438 1.329 1.742 1.789 1.840
RT 1.14 14.40 13.10 19.75 13.64 24.33 70.43 0.38 20.55 136.02 30.52 2.19

Salinas

OA 0.639 0.662 0.668 – 0.687 0.696 – 0.590 0.702 0.677 0.834 0.887
AA 0.612 0.633 0.654 – 0.662 0.623 – 0.487 0.674 0.612 0.756 0.729
κ 0.597 0.620 0.627 – 0.646 0.653 – 0.551 0.662 0.633 0.813 0.874

Sum 1.848 1.915 1.949 – 1.995 1.972 – 1.628 2.038 1.922 2.403 2.490
RT 4.81 414.44 432.98 – 450.82 496.37 – 1.20 504.88 3059.74 445.31 8.80

WHU

OA 0.625 0.743 0.857 – 0.857 0.779 – 0.364 0.837 0.829 0.771 0.822
AA 0.487 0.507 0.540 – 0.540 0.468 – 0.515 0.523 0.415 0.480 0.675
κ 0.545 0.674 0.810 – 0.810 0.710 – 0.276 0.784 0.764 0.698 0.766

Sum 1.657 1.924 2.207 – 2.207 1.957 – 1.155 2.144 2.008 1.948 2.263
RT 13.96 1896.55 1881.26 – 1851.27 1965.99 – 2.50 2059.11 9755.97 2881.06 15.46

despite being unsupervised. Similarly, although the Indian
Pines dataset is widely considered challenging due to its many
classes being distributed widely across the scene, S2DL still
manages to surpass its competitors in performance. On the
Salinas dataset, S2DL not only yields the best performance
in OA and κ but also completes the task in 8.80 seconds of
runtime. In contrast, the next best algorithm (SRDL) required
445.31 seconds of runtime. This impressive improvement on
runtime is attributed to the use of superpixel-based reduction
in graph size, illustrating S2DL’s balanced approach to both
speed and accuracy. For the WHU-Hi dataset, S2DL achieves
the highest sum of OA, AA, and κ, exceeding the second-best
by 5.6%, and completes its analysis in only 15.46 seconds.
Though the OA and κ are lower than the highest values,
the AA surpasses the second-best by 13.5%. These findings
underscore S2DL’s efficacy and efficiency in HSI clustering,
marking it as a suitable choice for practical applications.

As visualized in Figure 2, S2DL demonstrates notable
precision in accurately identifying the GT labels within the
Salinas A dataset. Whereas various algorithms split the cluster
associated with the 8-week maturity romaine into two parts
(visualized in dark blue in Figure 2), both S2DL and the next
highest-performing algorithm—D-VIC—correctly group these
pixels into a unified cluster, with S2DL surpassing D-VIC by
approximately 2% across all three metrics (see Table I). The
precision demonstrated by D-VIC primarily stems from its
incorporation of spectral unmixing information [53], whereas
S2DL’s effectiveness is attributed to its incorporation of both
spatial and spectral data into its diffusion-based clustering pro-
cedure. Notably, S2DL mitigates spatial noise in its clustering
through its superpixelation step, yielding a more spatially-
regularized clustering compared to D-VIC. This demonstrates
the capability of S2DL to utilize spatial information as a robust

alternative to the spectral unmixing in D-VIC, especially with
spatially-regular HSIs.

The performance of S2DL on the Salinas dataset is par-
ticularly noteworthy, having achieved highest OA and κ
scores in Table I. The AA of S2DL is marginally lower
than that of SRDL (<3%), potentially because of SRDL’s
efficiency in recognizing smaller classes. Nevertheless, this
slightly lower AA is compensated with over 5% higher OA
and κ. Additionally, S2DL boasts a much lower runtime due
to its superpixelation step, further highlighting its efficiency.
The gap in performance between S2DL, SRDL, and other
methods indicates the significance of a spatially-regularized
graph approach in handling large and regular HSIs like Salinas.

As shown in Figure 3, S2DL exhibits outstanding perfor-
mance on the Indian Pines dataset as well. Indeed, S2DL
achieved OA and κ values slightly higher than those of
SRDL—its nearest competitor—by approximately 1% and AA
values 4% in Table I. This improvement indicates S2DL’s
enhanced accuracy in classifying diverse classes, including
those with fewer labels. Furthermore, S2DL delivers its effi-
cient clustering performance with substantially lower runtime
than SRDL. As discussed earlier, this significant reduction in
computational cost is due to S2DL’s utilization of superpix-
elization. While SRDL utilizes a spatially-regularized graph,
S2DL integrates both superpixels and a spatially-regularized
graph. This combination not only facilitates more efficient use
of spatial information but also optimizes the computational
process, leading to the observed runtime advantage.

Finally, S2DL distinguishes itself on the WHU-Hi dataset
by achieving the best sum of metrics and the highest AA by
5.6% and 13.5% compared to DPC: its nearest competitor.
DL and DPC, despite outperforming S2DL in OA and κ
slightly, require extensive processing times due to pixel-wise
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(a) First 3 PCs (b) K-Means (c) SC (d) DPC (e) PGDPC (f) DL (g) D-VIC

(h) SC-I (i) S-PGDPC (j) DLSS (k) DSIRC (l) SRDL (m) S2DL (n) Ground Truth

Figure 2. Comparison of clustering results of algorithms using spectral information (panels (b)-(g)), and algorithms using both spatial and spectral information
(panels (h)-(l)) and S2DL (panel (m)) on the Salinas A dataset (panel (a) with GT (panel(n))).

(a) First 3 PCs (b) K-Means (c) SC (d) DPC (e) PGDPC (f) DL (g) D-VIC

(h) SC-I (i) S-PGDPC (j) DLSS (k) DSIRC (l) SRDL (m) S2DL (n) Ground Truth

Figure 3. Comparison of clustering results of algorithms using spectral information (panels (b)-(g)), and algorithms using both spatial and spectral information
(panels (h)-(l)) and S2DL (panel (m)) on the Indian Pines dataset (panel (a)) with GT (panel (n)).

analysis, exceeding 1800 seconds. Conversely, S2DL leverages
superpixels for a swift analysis, concluding in merely 15.46
seconds. S2DL’s lower OA and κ on WHU-Hi result from
the limited utility of spatial regularization for this dataset, a
contrast to its benefits on other datasets. This aspect is detailed
in Section IV-A4 and illustrated in Figures 7b and 8.

3) Hyperparameter Robustness Analysis: This section con-
siders the robustness of S2DL’s clustering performance to the
selection of hyperparameters. We focus on parameters such as
the number of superpixels Ns, the spatial radius R, the number
of representative pixels per superpixel k, and the diffusion
time t. Given the established stability of diffusion learning
for the kernel scaling factor σ0 and the number of nearest
neighbors kn [41], [53], [58], [100], these parameters are not
the focus of our robustness analysis here. Instead, we focus
on the new hyperparameters introduced with S2DL as a part
of its incorporation of spatial information and diffusion time.

Figure 4 illustrates the impact of the number of superpixels,
denoted as Ns, and the spatial radius R on clustering out-
comes (k held constant). An examination of the algorithm’s
performance on four HSIs suggests that a larger spatial radius
R is preferable when Ns is relatively small. This strategy

guarantees an adequate pixel count for the construction of a
spatially-regularized graph. The Salinas dataset, characterized
by its expansive size and homogeneous areas, requires a
larger spatial radius compared to the other two datasets under
consideration, and S2DL’s performance is fairly consistent
when R ∈ [10, 30] and Ns ∈ [300, 1500]. On the other
hand, the Indian Pines dataset, with its constrained spatial
dimensions relative to the Salinas dataset, is more amenable to
the selection of a smaller radius. As depicted in Figure 4 (c), a
similar result can be achieved when R falls within [5, 15] and
Ns ∈ [300, 1500]. Regarding the Salinas A dataset, its size
coupled with consistent spatial clusters make it suitable for a
reduced number of superpixels. Notably, S2DL can still yield
high performance with Ns < 1000. For the WHU-Hi dataset,
the need for a larger spatial radius range of R ∈ [25, 60]
and a superpixel range of Ns ∈ [300, 1500] is attributed to
its extensive size. In general, there is an inverse relationship
between the number of superpixels Ns and the spatial radius R
across various datasets. The spatial dimensions and complexity
of each dataset also influence the optimal selection of Ns and
R. Despite these variations, the S2DL algorithm demonstrates
robustness to changes in the hyperparameters R and Ns,
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maintaining consistent performance across HSIs of different
sizes and spatial complexities.

(a) Salinas A, k=5

(b) Salinas, k=3

(c) Indian Pines, k=5

(d) WHU-Hi, k=5

Figure 4. Analysis of OA, AA, and κ for four HSIs under varying spatial radii
R and numbers of superpixels Ns, with a fixed value of k. Columns in the
figure represent the OA, AA, and κ respectively, while rows correspond to the
four different datasets. Each subplot within the figure depicts the performances
achieved through various combinations of R and Ns. The x-axis represents
the spatial radius, while the y-axis denotes the number of superpixels.

Figure 5 quantifies the robustness of S2DL to different
spatial radii R and number of representative pixels k. The top
row of Figure 5 shows that, with an increase in spatial radius,
the average performance across the four datasets initially
experiences a swift uptick before eventually flattening. This
pattern not only indicates robustness to changes in the spatial
radius but also underscores the enhancement in results upon
the integration of spatial information. For the Salinas A and
Indian Pines datasets, the flattened phases both occur around
R = 10, while for the Salinas dataset, the flat phase arises
near R = 20. For the WHU-Hi dataset, performance contin-
ues to improve with increasing R, with the gains becoming
marginal beyond R = 40. Similarly, Figure 5 indicates that
S2DL is highly robust to the selection of k—the number of
representative pixels sampled from ERS superpixels—across
the evaluated four datasets. We observe that S2DL achieves
highest performance on Salinas A for k > 3 in Figure 5.
S2DL achieves its peak performance on Salinas for k = 3 and
has stable performance for k > 3. Although there is slight
fluctuation in the performance of S2DL on Indian Pines as k
increases, the variance in peak performance remains consistent
within a narrow margin less than 5%. Finally, for the WHU-
Hi dataset, performance slightly increases and achieves its
best when k = 5, then slightly drops when k = 6. This
consistent trend across different values of k demonstrates to
the robustness of the proposed method for all four datasets
under consideration.

Finally, we analyzed the robustness of S2DL to the selection
of t, the diffusion time parameter used in diffusion distances,
to explicitly understand how the diffusion process influences

clustering outcomes. Specifically, we evaluated S2DL at the
optimal parameter set across a data-dependent exponential grid
of t-values that captures the portion of the diffusion process
during which cluster structure may be extracted; see Appendix
A for more [48], [53], [57]. In Figure 6, it is evident that, for
each dataset, there exists a wide window of diffusion time
during which S2DL achieves optimal performance. Notably,
different algorithms required different diffusion time inputs
for optimal clustering performance, likely due to differences
in intrinsic geometric structure within the HSIs. That S2DL
is capable of recovering latent cluster structure during regions
of time aligns with the literature in diffusion clustering [42],
[48], [57], which has demonstrated that diffusion time is
closely linked with the scale of discoverable cluster structure.
Notably, this also indicates that S2DL may be applied to the
important problem of multiscale clustering by varying the
diffusion time parameter t [48], [57], [100]. Regardless, the
steady performance over extended periods of diffusion time
indicates the algorithm’s robustness to this parameter at the
scale of interest.

4) Ablation Studies: This section provides ablation studies
focused on the LBB [95] and the spatial regularization [48],
[49] within the S2DL algorithm. Our objective is to empirically
compare the performance of S2DL with and without the imple-
mentation of these components. The performance differences
are quantitatively analyzed based on the three metrics utilized
throughout this section.

Our analysis begins with an examination of LBB, revealing
varied impacts on performance across datasets, as depicted in
Figure 7a. For Salinas, LBB generally enhances performance
metrics, although a notable exception occurs at k = 1, where
the limited pixel selection due to the dataset’s size causes
LBB to overemphasize pixel similarity. Conversely, S2DL’s
performance on Indian Pines is uniform across k for k > 1,
with or without the use of an LBB. Finally, on Salinas A,
incorporating LBB leads to a slight reduction in over half
of the metrics assessed, yet its overall performance remains
robust. This slight decline can be attributed to the smaller size
and the subtle differences between classes of Salinas A; when
k is larger, the inclusion of more noisy pixels can diminish
the reliability of LBB.

Next, we turn our attention to the impact of spatial regular-
ization, showcased in Figure 7b. This ablation study modifies
the S2DL by removing the spatial window constraint in the
kNN graph construction, thereby allowing the algorithm to
consider all representative pixels in its search. For Indian Pines
and Salinas, adding spatial regularization leads to improved
OA and κ, but at the cost of AA, enhancing overall perfor-
mance. This indicates spatial regularization tends to favor over-
all accuracy, possibly at the expense of accurately identifying
minor classes. In contrast, Salinas A sees improvements in
all metrics with spatial regularization, highlighting its efficacy
in focusing searches within spatial neighborhoods for spectral
neighbors. Yet, WHU-Hi faces a distinct situation; while AA
sees a minor increase, both OA and κ experience notable
declines with spatial regularization. The drop is linked to the
spatial disconnection of major classes, making local searches
ineffective for bridging these areas.
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(a) Salinas A (b) Salinas (c) Indian Pines (d) WHU-Hi

Figure 5. The average performance in relation to the spatial radius R (first row) and the best performance concerning the number of representative pixels k
(second row). Each panel corresponds to one of the datasets: Salinas A, Salinas, Indian Pines, and WHU-Hi, with a fixed number of superpixels.

(a) Salinas A (b) Salinas (c) Indian Pines (d) WHU-Hi

Figure 6. Analysis of OA, AA, and κ for S2DL Across Various Diffusion Times: The x-axis represents the exponential scale of diffusion time (expressed as
2x), while the y-axis shows the corresponding values of OA, AA, and κ as the time parameter t varies across the diffusion process. This figure effectively
illustrates the variation and stability of these performance metrics in response to changes in diffusion time.

To further investigate the performance on WHU-Hi, we
visualize the clusterings produced by algorithms that rely
solely on spectral information and demonstrate good perfor-
mance for WHU-Hi, such as DL and DPC, alongside the
clusterings from algorithms that utilize spatially-regularized
graphs, namely SRDL and S2DL, and S2DL without spatial
regularization (S2DL⋆), in Figure 8. The clusterings by DL and
DPC, shown in Figures 8a and 8b, although noisy, effectively
identify broad-leaf soybean (yellow) and corn (orange) classes.
However, SRDL and S2DL, shown in Figures 8c and 8d,
which employ spatial regularization, underperform on these
classes due to their spatial disconnection; spatial regularization
restricts pixel connections to spectral nearest neighbors within
a local spatial domain. Without a sufficiently large radius,
establishing connections between pixels of the same class
but in disconnected regions becomes challenging. S2DL⋆, as
depicted in Figure 8e, significantly improves performance by
sacrificing 1% in AA for a 7.9% increase in OA and a 10.4%
increase in kappa compared to S2DL. In this scenario, S2DL⋆

surpasses all competing algorithms in all metrics, achieving
improvements of 4.4% in OA, 12.5% in AA, 6% in κ, and
a cumulative 22.9% increase in Sum, as compared to all
algorithms with the exception of S2DL itself, as detailed in
Table I.

In summary, LBB enhances clustering in spatially homo-
geneous datasets like Salinas but may be less beneficial for
datasets with intricate spatial structures or smaller sizes. Spa-
tial regularization generally enhances clustering performance,
yet its application may be counterproductive in cases like
WHU-Hi, characterized by spatial disconnection within the
same class. The improved performance of S2DL without
spatial regularization (S2DL⋆) on WHU-Hi illustrates the
importance of balancing between enhancing connectivity and
preserving spatial characteristics.

(a) Local Backbone (b) Spatial Regularization

Figure 7. Performance Impact of Local Backbone and Spatial Regularization
in S2DL. Panel (a) presents the summed performance differences across three
metrics, calculated as the performance with LBB minus the performance
without LBB. Panel (b) compares the performance metrics between S2DL
and its variant without spatial regularization, S2DL⋆.

(a) DPC (b) DL (c) SRDL (d) S2DL (e) S2DL⋆ (f) GT

Figure 8. Comparison of clustering results of algorithms using spectral
information (panels (a)-(b)), and algorithms using both spatial and spectral
information through spatial regularization (panels (c)-(d)) and without spatial
regularization (panel (e)) on the WHU-Hi dataset with GT (panel (f)).

B. Experiments on Mangrove Forests in Hong Kong

The Mai Po Nature Reserve (MPNR), positioned at the
entrance of the Shenzhen River in northwest Hong Kong
and facing the Futian Nature Reserve in Shenzhen, spans
the coordinates 113°59’E–114°03´E, 22°28´N–22°32´N. This
reserve boasts a rich tapestry of ecosystems, including wet-
lands, freshwater ponds, inter-tidal mudflats, mangroves, reed
beds, and fishponds, each fostering a diverse array of wildlife.
Recognized for its ecological significance and unique loca-
tion, MPNR was designated a restricted area in 1975 and
subsequently declared a site of special scientific importance in
1976 [51]. At the heart of MPNR lies its expansive mangrove
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(a) Confusion Matrix (b) Spectral Signatures

Figure 9. Confusion matrix for S2DL clustering (k = 5) and spectral
signatures of samples from each class, colored by GT. Notably, different
classes exhibit separation within spectral signatures in some spectral bands
(but not all), making mangrove species mapping a challenging unsupervised
remote sensing problem.

forests, covering approximately 319 hectares and recognized
as Hong Kong’s largest mangrove habitat [101].

Originally, there were six native mangrove species within
the Reserve, including Kandelia obovate (KO), Avicennia
marina (AM), Aegiceras corniculatum (AC), Acanthus ili-
cifolius (AI), Bruguiera gymnorrhiza (BG) and Excoecaria
agallocha (EA). The latter two species are rarer compared to
their counterparts. Additionally, two exotic species, Sonneratia
caseolaris and Sonneratia apetala, originating from the nearby
Futian Nature Reserve, have been identified within MPNR.
These are actively removed to mitigate their potential im-
pact on the native mangrove population. Consequently, four
dominant, well-studied species remain: KO, AM, AC, and
AI. Specifically, KO and AI exhibit significant intraspecific
variation, leading to their classification into sub-species: KO1,
KO2, AI1, and AI2 [102].

The hyperspectral data analyzed in this study were acquired
using the Advanced Hyperspectral Imaging system aboard
the Gaofen-5 Chinese satellite. This dataset encompasses 330
spectral bands, covering a 92×72 pixel spatial region with
a spatial resolution of 30 m. These bands include both the
visible/near-infrared spectrum, with a spectral resolution of 5
nm, and the shortwave infrared spectrum, with a resolution of
10 nm [51]. The study area includes not only the six primary
mangrove classes but also classes such as mudflats and water
bodies, collectively accounting for a total of 6624 pixels.

The evaluation metrics employed for benchmark HSIs,
including the introduction of producer’s accuracy, are used
in this study. This metric calculates the ratio of correctly
classified pixels for a specific class to the total number
of GT pixels for that class, thereby assessing class-specific
performance. As depicted in Table II, our method demonstrates
stable results across different values of the parameter k, with
optimal performance observed at k = 5, achieving an OA
of 0.732, AA of 0.77, and κ of 0.686. Notably, the best
performance for half of the six mangrove species (spanning
from column KO2 to AC) is achieved at k = 5. S2DL
consistently outperforms other methods in OA, AA, and κ,
with SRDL as its nearest competitor. S2DL surpasses SRDL
in half of the producer accuracy metrics across eight classes,
while SRDL faces challenges in precisely identifying the AC

and AM classes. In contrast, other methods struggle with
accurately clustering classes like KO2, AI1, and AC due to
sample imbalance, spectral similarities between classes, and
diverse signatures within classes. S2DL’s success, therefore,
highlights the benefit of using representative pixels from each
superpixel to reduce the variability within spatial regions prior
to cluster analysis.

Figure 10 presents the visualizations of S2DL clustering
outcomes for different values of k. The results are consistently
high-performing across all settings, with most classes demon-
strating optimal performance at k = 5. Additionally, Figure 9a
presents the confusion matrix for the S2DL clustering with
k = 5, where most classes are effectively separated, with
notable overlaps in predictions observed for classes such
as KO1, AM, and AI1. As depicted in Figure 9b, which
showcases the top 5 samples closest to the mean, AM and
AI1 exhibit only subtle spectral differences. In contrast, KO1’s
spectral signature, which subtantially differs from AM and AI1
spectra, leads to the frequent misclassification by S2DL of its
upper-right and bottom pixels as AM and AI1, respectively,
due to the spatial constraints in S2DL. The high-quality unsu-
pervised species mappings produced in this section underscore
S2DL’s capability to deliver robust results in real-world forest
environments.

V. CONCLUSION

This work introduces Superpixel-based and Spatially-
regularized Diffusion Learning (S2DL) for unsupervised HSI
clustering. Given the high levels of noise and spectral variabil-
ity often observed in the HSIs, algorithms that rely exclusively
on spectral information fail to recover latent cluster structure
or produce suboptimal material classifications [2], [4], [45]. To
mitigate these important challenges, S2DL incorporates both
spatial and spectral information, effectively processing HSIs
that have consistent spatial patterns but also contain areas
with noise or varied spectral characteristics. S2DL demon-
strates impressive clustering performance on both real-world
benchmarking HSIs and the practical landscapes of the Mai
Po Nature Reserve. This balanced performance highlights its
robustness in standard scenarios and its adaptability to real-
world environmental variations. Moreover, S2DL is capable
of achieving these high-quality clustering results at a fraction
of the computational cost of related algorithms due to its
reliance on superpixel segmentation prior to graph construc-
tion. Indeed, S2DL’s derived superpixels not only encapsulate
localized spatial coherence within the image but also reduce
the number of data to be analyzed, resulting in a computa-
tionally efficient clustering process and a robust utilization of
spatial information [39], [89]. Using a spatially regularized
graph on this reduced dataset in a diffusion geometry-based
clustering procedure enables S2DL to efficiently leverage
spatial information into a low-runtime and highly accurate
clustering estimate [48], [49]. Nevertheless, the limitations of
the algorithm include dependency on hyperparameter tuning
and the method of selecting representative pixels within each
superpixel, which might lead to potential information loss.

In future work, we aim to estimate the optimal number
of superpixels by leveraging the intrinsic characteristics of
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(a) Ground Truth (b) k = 1 (c) k = 3 (d) k = 4 (e) k = 5 (f) k = 6

Figure 10. Comparison of clustering results of S2DL on the MPNR dataset with varying number of representative pixels per superpixel k. The color coding
for the GT in (a) is as follows: grey for background, white for mudflat, blue for water, red for KO2, orange for KO1, pink for AM, purple for AI2, light rose
for AI1, and green for AC.

Table II
COMPARATIVE PERFORMANCE ANALYSIS OF S2DL AND OTHER METHODS ON THE MPNR DATASET. THE TABLE PRESENTS THE OVERALL

PERFORMANCE AND PRODUCER’S ACCURACY FOR VARYING k VALUES IN S2DL AND COMPARES IT WITH OTHER CLUSTERING METHODS. BEST
PERFORMANCES IN EACH COLUMN FOR BOTH S2DL AND OTHER METHODS ARE HIGHLIGHTED IN BOLD.

Overall Performance Producer’s Accuracy

S2DL OA AA κ Mudflat Water KO2 KO1 AM AI2 AI1 AC

k = 1 0.715 0.669 0.664 0.887 0.794 1.000 0.538 0.667 0.917 0.547 0.000
k = 3 0.687 0.733 0.637 0.919 0.614 0.808 0.364 0.778 0.875 0.604 0.903
k = 4 0.722 0.743 0.673 0.919 0.755 0.808 0.529 0.729 0.875 0.425 0.903
k = 5 0.732 0.770 0.686 0.932 0.690 0.808 0.364 0.986 0.875 0.604 0.903
k = 6 0.706 0.688 0.652 0.919 0.522 0.808 0.796 0.521 0.938 0.425 0.581

K-Means 0.426 0.331 0.311 0.837 0.190 0 0.378 1.000 0 0 0.226
SC 0.533 0.502 0.452 0.805 0.147 0.635 0.480 0.882 0.844 0.104 0

DPC 0.542 0.463 0.454 0.629 0.489 0 0.578 0.743 0.896 0.142 0.226
PGDPC 0.488 0.357 0.361 0.833 0.288 0 0.991 0 0.521 0 0.226

DL 0.542 0.463 0.454 0.629 0.489 0 0.578 0.743 0.896 0.142 0.226
D-VIC 0.566 0.466 0.476 0.701 0.446 0 0.693 0.826 0.823 0 0.226
SC-I 0.481 0.387 0.375 0.792 0.087 0 0.582 0.896 0.542 0 0.194

S-PGDPC 0.651 0.542 0.586 0.891 0.571 0.019 0.529 0.785 0.958 0.585 0
DLSS 0.592 0.490 0.512 0.805 0.467 0 0.653 0.806 0.927 0.038 0.226

DSIRC 0.549 0.466 0.456 0.842 0.005 0.365 0.680 0.806 0.938 0 0.226
SRDL 0.673 0.626 0.613 0.968 0.636 0.731 0.511 0.431 0.958 0.679 0.097

datasets, such as size, spatial complexity, and resolution [88],
[103]. Since most common superpixel segmentation meth-
ods are designed primarily for RGB or grayscale images,
they often fall short of fully extracting the abundant spatial
and spectral information available in HSIs. Consequently,
exploring and developing superpixel segmentation methods
specifically tailored for HSIs will be worthwhile [89], [104].
Additionally, integrating feature extraction techniques into the
S2DL framework is a promising avenue, allowing us to utilize
more effectively the rich spatial and spectral information
within superpixels, thereby enhancing the overall performance
and efficiency of the algorithm in clustering HSIs [46], [62],
[87], [93]. Furthermore, as referenced in Section IV-A3, S2DL
is expected to be well-equipped to handle multiscale clustering
problems by varying its diffusion time parameter. Moreover,
by identifying the optimal clustering across scales through
minimization of average variation of information [48], [57],
[105], we expect to be able to mitigate the dependence of
S2DL on diffusion time. While this may slightly reduce peak
performance, it greatly enhances the practical applicability of
the method. Lastly, pursuing the active extension of S2DL,
especially when a limited number of carefully selected labels
are available depending on budget constraints, is a valuable
direction for semi-supervised practical applications [41], [50],
[71], [106].

APPENDIX
OPTIMIZATION OF HYPERPARAMETERS

This appendix details the process by which hyperparam-
eters were tuned in order to obtain the experimental results
presented in Section IV. Table III provides a summary of
the parameter grids for each algorithm. K-Means was imple-
mented without the need for hyperparameter adjustments. For
stochastic algorithms that require hyperparameter inputs (SC,
D-VIC, and DSIRC), optimization was based on achieving the
median sum of OA, AA, and κ over 10 trials for each set of
parameters in the specified hyperparameter grids.

All graph-based algorithms in this study utilized adjacency
matrices from sparse kNN graphs, with SC-I employing
a full graph. For algorithms without spatial regularization,
we used N1, an exponential sampling range of 10 to 900
for nearest neighbors. For those with spatial regularization,
N2 was used, with values from 10 to 50 in increments
of 10. DL, D-VIC, DLSS, DSIRC, SRDL, and S2DL were
executed at each t within T = 0, 1, 2, 22, . . . , 2T , where
T = ⌈log2[logλ2(P)(

2×10−5

min(π) )]⌉. The process concludes at
t = 2T since, for t ≥ 2T , maxx,y∈X Dt(x, y) ≤ 10−5 [57].
The optimal time step t from this range was selected for each
dataset, maximizing the sum of OA, AA, and κ. Additionally,
the KDE and σ0 hyperparameters were uniformly applied
across these algorithms. In our grid searches, σ0 covered
D , which involved sampling ℓ2-distances between HSI pixels
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Table III
HYPERPARAMETER RANGES FOR ALGORITHMS, INCLUDING N1 FOR

EXPONENTIAL NEAREST NEIGHBOR SAMPLING [10,900], N2 FOR
SPATIALLY-REGULARIZED GRAPHS [10,50], D FOR ℓ2-DISTANCES WITH

1000 NEAREST NEIGHBORS, D1 FOR SC-I DISTANCES, D2 FOR S-PGDPC
GAUSSIAN FILTER σ, T FOR DIFFUSION TIME SAMPLING, B FOR SC-I

SPATIAL-SPECTRAL INFORMATION RATIO, R FOR SPATIAL
REGULARIZATION RADII, R1 FOR DSIRC ADAPTIVE RADIUS, AND S FOR

SUPERPIXEL NUMBER RANGE [100-1500]. ’—’ INDICATES NO
HYPERPARAMETER REQUIREMENT.

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

K-Means — — — — —
SC kn ∈ N1 — — — —

DPC kn ∈ N1 σ0 ∈ D — — —
PGDPC kn ∈ N1 — — — —

DL kn ∈ N1 σ0 ∈ D t ∈ T — —
D-VIC kn ∈ N1 σ0 ∈ D t ∈ T — —
SC-I — σ1 ∈ D1 — β ∈ B —

S-PGDPC kn ∈ N1 σ2 ∈ D2 — — Ns ∈ S
DLSS kn ∈ N1 σ0 ∈ D t ∈ T R ∈ R —
DSIRC kn ∈ N1 σ0 ∈ D t ∈ T R1 ∈ R1 —
SRDL kn ∈ N2 σ0 ∈ D t ∈ T R ∈ R —
S2DL kn ∈ N2 σ0 ∈ D t ∈ T R ∈ R Ns ∈ S

and their kn nearest neighbors. Additionally, σ1 spanned D1

for SC-I, sampling ℓ2-distances between each data point and
all others. For S-PGDPC, σ2 was used as a parameter for
Gaussian filtering, applied to blur the image prior to superpixel
segmentation. For DLSS, SRDL, and S2DL, the spatial radius
R ranged from 1 to 30, with an exception for the WHU-Hi
dataset where this parameter’s range is 1 to 60, likely due
to that dataset’s large spatial dimensions. DSIRC utilized R1

to automatically determine the radius of a spatially-adaptive
window in various directions. SC-I employed B as the ratio
parameter for balancing spatial and spectral information. The
number of superpixels Ns in S was set within a range of 100
to 1500 in increments of 100.
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