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Abstract
The electrocardiogram (ECG) segmentation needs to separate different waves from an ECG
and cluster the waves simultaneously. Clusterwise regression is a useful approach that can
segment and cluster the data simultaneously. In this paper, we apply the clusterwise regression
method to segment the ECG. By modeling the ECG signal wave by the Gaussian mixture
model (GMM) and introducing a weight function, we propose a minimization model that
consists of the weighted sum of the negative log-likelihood and the total variation (TV) of
the weight function. The TV of the weight function enforces the temporal consistency. A
supervised algorithm is designed to solve the proposed model. Experimental results show
the efficiency of the proposed method for the ECG segmentation.

Keywords Electrocardiogram (ECG) · Segmentation · Fiducial point extraction · Gaussian
mixture model (GMM) · Clusterwise regression

Mathematics Subject Classification 92C55 · 62H30 · 62R07

1 Introduction

Electrocardiogram (ECG) shows the electrical changes of the human heart. The ECG signal
morphologies provide essential people’s cardiac information which is important for early
heart disease detection, so that people can prevent themselves from being threatened by
cardiac diseases. The ECG is a quasi-periodic biomedical signal of all the cardiac cycles.
One cardiac cycle represents the information of a single periodic heartbeat. A typical cardiac
cycle in an ECG signal contains the P wave, QRS complex, T wave, and PQ, ST intervals.
Figure1 is an ECG signal illustration of a complete cardiac cycle. The shapes, amplitudes of
the waves, and the time intervals between any wave in the current cardiac cycle and waves
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Fig. 1 An ECG signal of a complete cardiac cycle

in the next cycle can indicate whether the heart is healthy. Clinical detection for pathological
beats and heart diseases is based on such intervals and the characteristics of different waves.
Therefore, the proper segmentation of ECG signals is very important for the accurate heart
disease diagnosis. The ECG segmentation aims to separate the ECG into different wave
subsegments, determine the wave type clusters of these subsegments, and detect the fiducial
points of each wave that include the onset, offset, and peak of P, QRS, and T waves.

Many approaches have been proposed for the ECG segmentation to detect the QRS com-
plex, ST-Segment, R-peak, and other fiducial points. For instance, Di Marco and Chiari
[11] proposed a wavelet-based ECG delineation algorithm, which can be used for the online
QRS detection and P-QRS-T waves delineation of a single lead ECG signal; Fujita et al. [3]
explored the performance of the wavelet-based ECG analysis method for the ST-segment
detection; Umer et al. [20] proposed an ECG feature extraction and pattern recognition
method using a novel windowing algorithm; in Ref. [2], Curtin et al. proposed an automated
approach for the QRS complex detection and QRS duration measurement, which can effec-
tively analyze multichannel ECG signals obtained from cardiac resynchronization therapy
patients; in Ref. [22], Xu et al. proposed a rule-basedmethod for morphological classification
of ST segments in ECG signals that can identify ST segments with the normal morphology
type and five abnormal morphology sub-types; in Ref. [8], Hu and Bao proposed an approach
to the QRS complex detection based on multiscale mathematical morphology; in Ref. [5],
Goovaerts et al. proposed a machine-learning approach for the detection and quantification
of the QRS fragmentation; in Ref. [6], Hadjem et al. proposed an ST-segment and T wave
anomaly prediction method in the ECG data using RUSBoost; in Ref. [21], Xiao et al. mon-
itored significant ST changes through deep learning; in Ref. [1], Akhbari proposed an ECG
segmentation and fiducial point extraction method using the multihidden Markov model.
Most of these methods can detect only one wave feature, or first detect the QRS complexes
and then search the P wave and T wave according to the location of the QRS.

The ECG signal segmentation can be fulfilled by some clustering methods [15, 19]. Clus-
terwise regression is a clustering method, that assumes that the data in the same cluster
follows the same regression model, and classifies data by minimizing the sum of regression
errors [16, 17]. The Gaussian mixture model (GMM) is a statistical model that can be used to
detect the ECG anomalies and model the ECG signals. For example, in Ref. [12], Martis et
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al. proposed a two-stage mechanism for the registration and classification of an ECG using
the GMM; in Ref. [18], based on the GMM, Terzı and Arikan proposed an unsupervised
learning technique to detect the myocardial ischemia; in Ref. [13], McSharry et al. suggested
the use of the GMM to generate synthetic ECG signals; in Ref. [14], Mneimneh and Povinelli
proposed an RPS/GMMapproach toward the localization of themyocardial infarction, where
the GMM is used to model the embedded ECG signal. Based on the clusterwise regression
and GMMs, we focus on representing each type of the wave by the GMM to cluster the ECG
signal and obtain ECG signal segmentation results.

In order to obtain good ECG segmentation results, the temporal consistency of the ECG
signal is considered. The temporal consistency assumes that successive signal data belong
to the same type of the wave and it encourages the adjacent points to be grouped into the
same cluster [7]. In this paper, we propose a weight function representing the possibility that
each data falls into the clusters. Using the clusterwise regression method, the GMM for each
type of the wave and the weight function, the weighted sum of the negative log-likelihood
is minimized to segment and cluster the ECG signals. The total variation (TV) of the weight
function is applied in theminimizationmodel to fulfill the temporal consistency. A supervised
algorithm is designed to solve the proposed model. In the training step, a rough segmentation
is performed to define the training data for each GMM. Then, the expectation-maximization
(EM) algorithm is used to determine the parameters of each GMM separately. In the test step,
the label of the current beat subsegment is estimated by calculating the weight function.

The rest of the paper is organized as follows. In Sect. 2, we propose a minimization model
for the ECG segmentation. In Sect. 3, we develop a supervised algorithm to solve the proposed
model. In Sect. 4, some experiments are performed to demonstrate the effectiveness of the
proposed method. Finally, a conclusion is given in Sect. 5.

2 Methods

For recorded ECG signals s1, s2, · · · , sτ , we define its first-order difference as y1 =
s1, yt = st − st−1, t = 2, 3, · · · , τ . Then, we get the two-dimensional ECG signal series
xt = [st , yt ]′ (t = 1, 2, · · · , τ ). We cluster x1, x2, · · · , xτ , and get its segmentation results.
The maximum or minimum value of each subsegment is associated with the location of its
peak. From the probability distribution histograms and Gaussian kernel fitting of different
waveforms and intervals of an example ECG signal shown in Fig. 2, we find that each type
of wave and interval can be represented by a GMM.

That is, suppose that the signal can be divided intoC types ofwaves, if xt (t = 1, 2, · · · , τ )

belongs to the c-th cluster (c ∈ {1, 2, · · · ,C}), it can be assumed to follow the following
Gaussian mixture distribution:

p
(
xt |μc, �c) =

Kc∑

k=1

αc
kN

(
xt |μc

k, �
c
k

)
,

where Kc is the number of the components of the Gaussian mixture, αc
k is the mixture weight

with the constraint that theweights sum to unity,N (xt |μc
k, �

c
k) represents amultivariateGaus-

sian probability density function, andμc = (μc
1, μ

c
2, · · · , μc

K c ) and�c = (�c
1, �

c
2, · · · , �c

K c )

are the mean vector and covariance matrix of the multivariate Gaussian variables, respec-
tively. According to the wave types of the ECG signal, we assume the number of wave types
or clusters is C = 6. For t = 1, 2, · · · , τ and c = 1, 2, · · · ,C , by utilizing the negative
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Fig. 2 Probability distribution histograms and Gaussian kernel fitting for different waves and intervals of an
example ECG signal

log-likelihood function, we define the similarity measure between xt and the c-th cluster as

d(xt , μ
c, �c) = − log(p(xt |μc, �c)).

For xt (t = 1, 2, · · · , τ ), we introduce the function fc(xt ) which means the probability that
xt belongs to the c-th cluster. Since xt can only fall into one cluster and if we know such
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cluster is the ĉ-th cluster, we can define

fc(xt ) =
{
1, c = r̂;
0, c ∈ {1, 2, · · · ,C}, c �= ĉ.

It holds
∑C

c=1 fc(xt ) = 1 for any t = 1, 2, · · · , τ . Therefore, we can take fc(xt ) as the
weight function. Denote fc = ( fc(x1), fc(x2), · · · , fc(xτ ))

′, F = ( f1, f2, · · · , fC )′, and
1 is a column vector of the length τ whose elements are all 1. We construct the following
constrained minimization model to solve the problem by combining the weighted sum of
negative log-likelihood:

min
F,μ,�

L(F, μ, �) =
C∑

c=1

τ∑

t=1

d
(
xt , μ

c, �c) fc(xt ), (1)

s.t
C∑

c=1

fc = 1, fc ∈ [0, 1]τ , c = 1, 2, · · · ,C,

whereμ = (μ1, μ2, · · · , μC ) and� = (�1, �2, · · · , �C ) are the parameters of theGaussian
mixture models. We define the TV of the weight function matrix F in the temporal direction
as

‖F‖TV =
τ−1∑

t=1

C∑

c=1

| fc(xt+1) − fc(xt )| .

It is obvious that ‖F‖TV can be used to judge the temporal consistency of the ECG signal.
Smaller values of ‖F‖TV force adjacent data points to belong to the same cluster. Denote

d(μc,�c) = (
d

(
x1, μ

c, �c) , d
(
x2, μ

c, �c) , · · · , d
(
xτ , μ

c, �c))′
,

we expect to get the subsegments with the temporal consistency constraint. Therefore, the
TV of the weight function matrix is introduced into (1) as the regularization term, and the
segmentation results are obtained by solving the following minimization problem:

min
F,μ,�

C∑

c=1

d ′
(μc,�c) fc + β‖F‖TV, (2)

s.t.
C∑

c=1

fc = 1, fc � 0, c = 1, 2, · · · ,C,

where β > 0 is a positive constant.

3 Algorithm

In this section, we design a supervised algorithm to minimize the model (2). We first use 50%
of the data as the training set to train each GMM model. Then, using the remaining 50% of
the data as the test set, we introduce the trained GMM models into the model (2) and obtain
the clustering results of the test set by solving the function F in the model (2). In the training
process, the number of Gaussian mixture components Kc (c = 1, 2, · · · ,C) is estimated by
the AIC or BIC criterion.
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3.1 Training

In the algorithm, each GMM corresponding to a certain type of wave is trained separately.
For example, when we train the GMMof the P wave, we take all the P waves of the 50%ECG
signal to be the training data, and then we complete the training of the GMM corresponding
to the P wave. For the other GMMs, we repeat this procedure and finally get the GMMs for
all the wave types. In each training, the expectation-maximization (EM) algorithm is used to
fit each GMM. Let Xc

train represent the training set composed of all c-th waves of 50% of the
training ECG signal, xt ∈ Xc

train. Given initial (α
c
k)

(0), (μc
k)

(0), (�c
k)

(0), for i = 1, 2, · · · , we
fit the c-th (c = 1, 2, · · · ,C) GMM model by the following EM process.

• Calculate ωc
t,k :

(
ωc
t,k

)(i) =
(
αc
k

)(i−1) N (
xt |(μc

k)
(i−1), (�c

k)
(i−1)

)

∑Kc

k=1

(
αc
k

)(i−1) N (
xt |(μc

k)
(i−1), (�c

k)
(i−1)

) ,

where (ωc
t,k)

(i) = p(z = k|xt , (μc
k)

(i−1), (�c
k)

(i−1)) is the probability that a certain data
point xt belongs to the k-th Gaussianmodel after calculating the parameters of the GMM.

• Update the parameter (αc
k)

(i):

(
αc
k

)(i) =
∑

t∈Xc
train

(
αc
k

)(i−1)

∣∣Xc
train

∣∣ ,

where |Xc
train| is the number of elements in the set X P

train.• Update the parameter (μc
k)

(i):

(
μc
k

)(i) =
∑

t∈Xc
train

(
ωc
t,k

)(i−1)
xt

∑
t∈Xc

train

(
ωc
t,k

)(i−1)
.

• Update the parameter (�c
k)

(i):

(
�c
k

)(i) =
∑

t∈Xc
train

(
ωc
t,k

)(i−1) [
xt − (μc

k)
(i−1)

]′ [
xt − (μc

k)
(i−1)

]

∑
t∈Xc

train
(ωc

t,k)
(i−1)

.

3.2 Test

After training all GMMs, we obtain the parameters of all GMMs, denoted as μ̂ =
(μ̂1, μ̂2, · · · , μ̂C ), �̂ = (�̂1, �̂2, · · · , �̂C ), then for the data xt in the test set (xt ∈ X test),
we can calculate the log-likelihood of each GMM as

d(xt , μ̂
c, �̂c) = − log(p(xt |μ̂c, �̂c)), c = 1, · · · ,C .

Afterwards, for each xt ∈ X test, we solve the following problem to obtain the weight function
F :

min
F

C∑

c=1

d ′(
μ̂c,�̂c

) fc + β‖F‖TV, (3)
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s.t.
C∑

c=1

fc = 1, fc � 0, c = 1, 2, · · · ,C .

Let D denote the gradient matrix. Then we can rewrite

‖F‖TV =
C∑

c=1

‖Dfc‖1.

By introducing the auxiliary variable G = (g1, g2, · · · , gC )′, we reformulate (3) as

min
F,G

C∑

c=1

(

d ′(
μ̂c,�̂c

) fc + β‖gc‖1
)

, (4)

s.t.
C∑

c=1

fc = 1, gc = Dfc, fc � 0, c = 1, 2, · · · ,C .

The augmented Lagrangian functional of (4) is

min
fc�0,gc,

c=1,2,··· ,C

C∑

c=1

(

d ′(
μ̂c,�̂c

) fc + β‖gc‖1 + z′c(gc − Dfc) + γ

2
‖gc − Dfc‖22

)

+ y′
(

C∑

c=1

fc − 1

)

+ λ

2

∥∥∥∥∥

C∑

c=1

fc − 1

∥∥∥∥∥

2

2

,

where z1, z2, · · · , zC , and y are Lagrange multipliers, and γ, λ > 0 are penalty parameters.
For i = 1, 2, · · · , c = 1, 2, · · · ,C , the process of the alternating direction method of
multipliers (ADMM) is given as

f (i)
c = arg min

fc�0
d ′(

μ̂c,�̂c
) fc −

(
z(i−1)
c

)′
Dfc + γ

2

∥∥∥g(i−1)
c − Dfc

∥∥∥
2

2

+
(
y(i−1)

)′
fc + λ

2

∥∥∥∥∥
fc +

c−1∑

k=1

f (i)
k +

C∑

k=c+1

f (i−1)
k − 1

∥∥∥∥∥

2

2

, (5)

g(i)
c = argmin

gc
β‖gc‖1 +

(
z(i−1)
c

)′ (
gc − Df (i)

c

)
+ γ

2

∥∥∥gc − Df (i)
c

∥∥∥
2

2
, (6)

z(i)c =z(i−1)
c + γ

(
g(i)
c − Df (i)

c

)
, (7)

y(i) =y(i−1) + λ

(
C∑

c=1

f (i)
c − 1

)

. (8)

Let UU = γ D′D + λI . Then the subproblem (5) can be rewritten as

f (i)
c = arg min

fc�0

1

2

∥∥U fc −U−1ξ
∥∥2
2 + con1 (9)

with

ξ = −d(
μ̂c,�̂c

) +D′z(i−1)
c +γ D′g(i−1)

c − y(i−1) −λ

(
c−1∑

k=1

f (i)
k +

C∑

k=c+1

f (i−1)
k − 1

)

, (10)
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Fig. 3 Block diagram of the proposed supervised algorithm for a fiducial points detection

where con1 is a constant independent of fc, and U is a symmetric matrix. The constrained
problem (9) with the constraint (10) is convex, and according to KKT conditions, we obtain
the solution of fc as

f (i)
c = max

{
0, (γ D′D + λI )−1ξ

}
.

The subproblem (6) can be written as

g(i)
c = argmin

β

γ
‖gc‖1 + 1

2

∥∥∥∥gc − (Df (i)
c − 1

γ
z(i−1)
c )

∥∥∥∥

2

2
+ con2,

where con2 is a constant independent of gc. Let [gc] j represent the j-th component of [gc].
Then for j = 1, 2, · · · , N , we have

[g(i)
c ] j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
Df (i)

c − 1

γ
z(i−1)
c

]

j
− β

γ
,

[
Df (i)

c − 1

γ
z(i−1)
c

]

j
− β

γ
> 0,

[
Df (i)

c − 1

γ
z(i−1)
c

]

j
+ β

γ
,

[
Df (i)

c − 1

γ
z(i−1)
c

]

j
+ β

γ
< 0,

0, others.

Figure3 shows the block diagram of the proposed supervised algorithm for determining
the peak, onset, and offset of the ECG waves.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed method through some ECG
signal segmentation experiments using the ECG signal from the PhysioNet QT dataset. The
PhysioNet QT dataset is available at the website https://www.physionet.org/physiobank/
database/qtdb/. This QT dataset consists of ECG signals from 105 patients, where each
patient’s data is a 2-by-225 000 matrix, and each row of the data matrix corresponds to a
lead ECG record for that patient. In the following experiments, we use the data recorded by
the first lead. We separate the data into two parts with the equal size, then do training on
the first part and testing on the second part. Meantime, do training on the second part and
testing on the first part, and finally calculate the macro-F1 scores of the two tests. Since the
annotations for onsets of the T wave are not available in the QT dataset, we do not calculate
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Table 1 Macro-F1 scores of the ECGfiducial point extraction on the first experiment (“–”means not available)

Method Pon Ppeak Poff QRSon Rpeak QRSoff Tpeak Toff

Proposed 0.98 0.95 0.98 1.00 1.00 1.00 0.98 0.98

Peak 0.98 0.98 – 0.98 0.98 0.98 0.98 0.98

DWT 0.98 0.98 0.98 0.98 0.98 0.98 0.00 0.00

CWT 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.81

Table 2 Macro-F1 scores of the ECG fiducial point extraction on the second experiment (“–” means not
available)

Method Pon Ppeak Poff QRSon Rpeak QRSoff Tpeak Toff

Proposed 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.97

Peak 0.90 0.97 – 0.97 0.97 0.97 0.14 0.10

DWT 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.93

CWT 0.00 0.00 0.00 0.97 0.97 0.97 0.27 0.27

the estimation error for the onsets of the T wave. The hyperparameters in the algorithm are
set to β = 10, λ = 10, and γ = 10.

In the first experiment, we use the ECG signal “ecg3” from the QT dataset. The signal
“ecg3” has 30 annotated beats and contains 6 363 sample points. We apply the proposed
algorithm to this ECG signal, and the classical Peak-based method, the discrete wavelet
transform (DWT) method, and the continuous wavelet transform (CWT) method are also
applied to segment this ECG signal for comparisons. The code for these comparison methods
is provided in Ref. [10]. The macro-F1 scores obtained by the different methods are shown in
Table 1. For the proposedmethod, except for themacro-F1 scores of the P peak, themacro-F1
scores of other fiducial points are greater than or equal to the macro-F1 scores obtained by
the Peak method, DWT, and CWT method. The macro-F1 scores of the T peak and T offset
obtained by the DWTmethod are both 0, indicating that the DWTmethod can not accurately
detect the location of the T wave in this experiment. For a more intuitive observation, we also
show the fiducial points for the first 1 000 ECG signal data obtained by the proposed method
in Fig. 4. From Fig. 4, we can also see that the proposed method can relatively accurately
detect the fiducial points.

In the second experiment, we use the ECG signal “ecg7” from the QT dataset. This signal
has 29 annotated beats and 9 575 sample points. The proposed algorithm, the Peak method,
the DWT method, and the CWT method are also applied to segment this ECG signal. Table
2 shows the macro-F1 scores obtained by these four methods. As we can see from Table 2,
the proposed method obtains relatively high macro-F1 scores, while the Peak method and
the CWT method are unable to accurately detect the T waves and P waves, respectively. The
fiducial points for the first 1 000 ECG signal data obtained by the proposedmethod are shown
in Fig. 5, which shows that the proposed method can relatively accurately detect the fiducial
points.

In the third experiment, we use the ECG signal “ecg30” from the QT dataset, which has
30 annotated beats and 6 467 sample points. This ECG signal is also segmented by four
methods: the proposed algorithm, the Peak method, the DWTmethod, and the CWTmethod.
We show the macro-F1 scores obtained by these four methods in Table 3. From Table 3, the
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Fig. 4 The fiducial points obtained by the proposed method for the first 1 000 data points in “ecg3”

macro-F1 scores obtained by the proposed method are greater than or equal to the macro-F1
scores obtained by other methods. Figure6 shows the fiducial points for the first 1 000 ECG
signal data obtained by the proposed method, and it also shows that the proposed method
can relatively accurately detect the fiducial points.

It can be seen from the above experiments that the proposed method can obtain relatively
good detection results, while the Peak, DWT, and CWTmethods may fail in the P wave or the
T wave detection. Therefore, the proposed method outperforms the Peak, DWT, and CWT
methods.
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Fig. 5 The fiducial points obtained by the proposed method for the first 1 000 data points in “ecg7”

Table 3 Macro-F1 scores of theECGfiducial point extraction on the third experiment (“–”means not available)

Method Pon Ppeak Poff QRSon Rpeak QRSoff Tpeak Toff

Proposed 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00

Peak 0.98 0.98 – 0.98 0.98 0.98 0.98 0.03

DWT 0.98 0.98 0.95 0.98 0.98 0.95 0.95 0.07

CWT 0.00 0.00 0.00 0.98 0.98 0.98 0.97 0.70
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Fig. 6 The fiducial points obtained by the proposed method for the first 1 000 data points in “ecg30”

5 Summary

The clusterwise regression is a clustering technique that can simultaneously segment and
cluster data. In this paper, based on the clusterwise regressionmethod, GMMs, and theweight
function, we propose a minimization model for the ECG segmentation and fiducial point
extraction. In the proposed method, each wave of the ECG signal is modeled by a GMM. By
introducing a weight function, we cluster the ECG sample points byminimizing the weighted
sum of the negative log-likelihood of all GMMs. To ensure the temporal consistency of the
data, the total variation regularization of theweight function is also introduced into themodel.
A supervised algorithm is used to minimize the proposed model. Experimental results show
that the proposed method is efficient for finding the fiducial points of the ECG signal.
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