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Using the Navier-Stokes equation for real blood flow simulations in patients is a challenging task. 
Among many of the challenges, initial and boundary conditions are not directly measurable. Many 
parameters for the flow model are also not directly measurable and differ from patient to patient 
and over time. New machine learning techniques, like physics-informed neural networks (PINN), 
offer some new ways to handle these difficulties. In this work, we aim to learn the operator that 
maps some easily measurable physiological signals to the solution of the blood flow equation. 
We use our proposed model based on Navier-Stokes equation and PINN to fit real data on blood 
pressure. A Windkessel boundary condition is used to produce physically correct reflection waves. 
A time-periodic condition is used to capture the periodicity of blood flow and enables our model 
to simulate the blood flow without initial and boundary conditions. Furthermore, we allow the 
periods of each instance of solution to be different, which makes the training of neural operators 
computationally expensive, but more accuracy and physical correct towards real blood pressure 
data. Further more, we also propose an efficient implementation to incorporate the periodic 
condition into our model. Estimating the hyper-parameters in the Navier-Stokes equation is also 
difficult. We then introduce a hyper-parameter network to estimate these parameters during the 
training process as well. The blood flow data contains useful information for disease detection 
and diagnosis, but directly measuring the entire blood flow remains a significant challenge. We 
apply our proposed method to cuffless blood pressure estimation. More specifically, we aim to 
predict the blood pressure waveform (continuous blood pressure and velocity in both time and 
space) from Electrocardiogram (ECG) and photoplethysmogram (PPG) signals, which can be easily 
measured using wearable devices. Compared to other methods, our method is the first one that 
can predict blood flow continuously, both with location and time which are valuable for cardio-

vascular medical treatments and diagnoses.

1. Introduction

Navier-Stokes equation is a very popular and powerful tool for modeling and simulating the dynamics of incompressible flow. 
[1] introduces a three-dimensional Navier-Stokes equation for blood flow modeling. By applying some physical and mathematical 
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Fig. 1. Illustration of the pulse pressure amplification in arterial systems.

assumptions, the original three-dimensional model can be reduced to a simplified one-dimensional model [1,2]. Though the three-

dimensional model can capture the detailed dynamic of the fluids and the vessel walls, its computational complexity is extremely 
high. The one-dimensional model, on the other hand, provides just the averaged flow information in the arteries, but its computational 
cost is several orders of magnitude lower than the three-dimensional model. Besides, the one-dimensional model can also accurately 
describe the pulse propagation in the arteries, which is very useful in many applications that do not require flow details.

For the one-dimensional model, many classical solvers can solve it accurately, such as the MacCormack scheme [3,4], Taylor-

Galerkin scheme [5,6], MUSCL [7,8], and the local discontinuous Galerkin scheme [9–11]. Typically, solving this model requires 
inlet and outlet boundary conditions, compatibility conditions, and initial conditions. Recently, the physics-informed neural network 
(PINN) has also been applied to solve this equation [12], which demonstrates that PINN has the ability to infer the solution from 
noisy clinical data. In the real clinical setting, it is very difficult to measure all the required boundary conditions and initial conditions 
for each patient. Therefore, the physics-informed machine learning approach may be a more suitable method for these applications. 
The PINN method is designed to solve one instance of PDE. When the boundary/initial condition changes, we need to retrain a new 
network to solve it. This is not very practical if we need to solve many instances of the same type of PDEs. Another type of machine 
learning approach for solving PDE is the neural operators. The neural operator is designed to learn the solution operator of a PDE. 
The input of the neural operator is a function sampled from some function spaces. It can be an initial condition of a time-dependent 
PDE, the diffusion coefficient of a variable coefficient second-order PDE, or some other functions that are related to the PDE. Some 
popular neural operators include the DeepONet [13] and the FNO [14].

In the field of biomedical engineering, there are many research works focusing on predicting the blood flow information, especially 
the blood pressure waveform from some physiological signals like the electrocardiogram (ECG) and the photoplethysmogram (PPG). 
The arterial blood pressure (ABP) waveforms are able to reflect the cardiovascular status of humans [15–18], but measuring the blood 
pressure waveform directly is difficult. The gold standard so far is the invasive method, which involves implanting an invasive pressure 
sensor into the artery. The invasive method is very risky, and the used devices are expensive. Therefore, it is of great importance to 
predict the blood flow from some physiological signals that can be easily measured by some wearable devices. Many deep learning 
models have been introduced to estimate blood flow information, especially blood pressure, from physiological signals [19–22]. The 
models above are all trained in a data-driven way, i.e., trained by minimizing the difference between the ground truth label and 
the network prediction. Since the labeled data is usually measured by invasive methods in the radial artery [23], the trained neural 
network will only predict the radial blood pressure waveform. However, ABP waveforms differ at different locations in the arterial 
systems [24,25], and radial waveforms may not be sufficient to diagnose cardiovascular diseases and can reflect the status of the 
cardiovascular system [26,27]. Another notable observation is the pulse pressure amplification effect. Pulse pressure is defined as the 
difference between the maximum and minimum of the pressure waveforms, and this difference will increase through the propagation 
of the pulse wave in the arterial system (see Fig. 1). All current deep learning-based algorithms can only predict radial ABP waveforms 
since they are trained with labeled data measured at the radial artery. Current guidelines for the management of hypertension are 
based on brachial blood pressure, so the radial blood pressure may not be accurate enough to diagnose hypertension [25].

In this work, we aim to develop new methods to learn the solution operator that maps some functions, like physiological signals, to 
a PDE solution. The blood flow will be modeled by a one-dimensional Navier-Stokes equation [2]. To better match our estimation with 
the real blood flow data, we pose a Windkessel boundary condition to produce some physically reasonable reflection waves. Since the 
initial condition cannot be measured in patients, we also pose a time-periodic condition where the period can be easily inferred from 
the heart rate. This periodic condition can incorporate this condition into the neural operator using the feature expansion method 
mentioned in [28]. However, the heart rate can be different from person to person and from time to time. Thus, the time-periodic 
condition posed to the PDE should be different for each instance. This property will cause some difficulties during the training of 
neural operators. We will also propose efficient implementations to resolve this problem.
2

We summarize our main contributions as follows:
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Fig. 2. Simplification of the three-dimensional model to one-dimensional model. The vessel is assumed to be a straight cylinder, and each axial cross-section is circular.

• To the best of our knowledge, this work is the first attempt to apply physics-informed neural operators to learn the solution 
operator of the blood flow equation.

• The proposed methods incorporate a Windkessel boundary condition to capture the real reflection waves and variable time-

periodic conditions. Without using these conditions, it is not possible to match the model prediction with real data.

• The proposed method can also estimate model hyper-parameters automatically from the input physiological signals.

• We apply the proposed method to the application of blood pressure waveform estimation. We also propose a new structure 
of DeepONet, called BP-DeepONet (BP refers to the blood pressure.), for this specific task which can extract information from 
physiological signals efficiently.

• The proposed method is the first one to predict blood pressure waveforms continuously at different locations and times in the 
arteries. It can predict the blood pressure waveforms with reasonably good accuracy. It is remarkable that our model can preserve 
some physical properties like pulse pressure amplification which is not easy for other models.

• During training, we only require the blood pressure measurement at the outlet side of the domain, and no extra measurement is 
needed.

2. One-dimensional model for blood flow simulation

The hemodynamics in a vessel segment can be effectively modeled and simulated by the one-dimensional Navier-Stokes equation 
[1,2]. The one-dimensional model is a simplification of the three-dimensional Navier-Stokes equation by making several assumptions 
on the computational domain:

• The vessel is a straight cylinder with the axis oriented along the coordinate 𝑧 direction (see Fig. 2).

• The vessel wall displaces along the radial direction only, which implies that each axial cross-section is always circular.

• The blood pressure and blood flow rate are constant within each axial cross-section.

• All body forces, like the gravity, are neglected.

Thus, the hemodynamics can be described by three quantities, namely the blood flow rate 𝑄(𝑧, 𝑡), the axial cross-sectional area 
𝐴(𝑧, 𝑡), and the blood pressure 𝑃 (𝑧, 𝑡), where 𝑧 ∈ [0, 𝐿] is the spatial coordinates and 𝑡 ∈ [0, 𝑇 ] is the temporal coordinates. 𝐿 denotes 
the length of the vessel segment, and 𝑇 represents the time duration. Then, the one-dimensional model can be written as:

𝜕𝐴

𝜕𝑡
+ 𝜕𝑄

𝜕𝑧
= 0, (1)

𝜕𝑄
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where 𝜌 is the blood density, and 𝐾𝑟 is a resistance parameter related to blood viscosity. To close this system, the blood pressure 𝑃
and the cross-sectional area are assumed to satisfy:

𝑃 = 𝑃𝑒𝑥𝑡 + 𝛽

√
𝐴−

√
𝐴0

𝐴0
, (3)

where 𝑃𝑒𝑥𝑡 is the external pressure, 𝐴0 is the cross-sectional area at the reference state, and 𝛽 is a constant depending on the physical 
and mechanical properties of vessels. More details of the model derivation can be found in [1,2]. A simple characteristic analysis 
shows that the forward characteristic variable 𝑊1 and backward characteristic variable 𝑊2 in the system (1)-(2) are:

𝑊1(𝐴,𝑄) = 𝑄

𝐴
+ 4

√
𝛽

2𝜌𝐴0
(𝐴1∕4 −𝐴1∕4

0 ),

and

𝑄

√
𝛽 1∕4 1∕4
3

𝑊2(𝐴,𝑄) =
𝐴

− 4
2𝜌𝐴0

(𝐴 −𝐴0 ).



Journal of Computational Physics 519 (2024) 113380L. Li, X.-C. Tai and R.H.-F. Chan

The forward wave and backward wave are traveling at the speed

𝜆1(𝐴,𝑄) = 𝑄

𝐴
+

√
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respectively. In practice, we have√
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so 𝑊1 and 𝑊2 always travel in opposite directions. The speed of the forward wave 𝜆1 ≈
√

𝛽

2𝜌𝐴0
𝐴1∕4 is often called pulse wave 

velocity. Using the relation (3), we can rewrite the equations (1)-(2) as
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𝐴0
𝛽
(𝑃 − 𝑃𝑒𝑥𝑡) +

√
𝐴0.

Even though the one-dimensional model can not capture the blood flow details, it can effectively describe the wave propagation 
within the vessel. This model has been validated by both in vitro data [29,30] and in vivo data [31,32]. There are many effective 
numerical solvers, like the MacCormack scheme [3,4], Taylor-Galerkin scheme [5,6], MUSCL [7,8], and the local discontinuous 
Galerkin scheme [9–11]. A comparison of different numerical methods has also been done in [33].

3. Physics-informed machine learning for PDEs

Machine learning algorithms for PDEs have been extensively studied in recent years. We may use neural networks to solve one 
instance of PDE or the solution operator of PDE problems. One of the pioneering work is the physics-informed neural networks (PINNs) 
proposed in [34]. This work aims to solve an instance of PDEs using a neural network. Compared to traditional numerical solvers, 
the PINN is mesh-free, easy to implement, and can solve high-dimensional problems. However, it can not achieve very high accuracy 
for non-linear PDEs. Another popular method is the neural operator which aims to learn the mapping from some input spaces to the 
solution space, e.g., the DeepONet [13] method. The learned network can quickly predict the PDE solution corresponding to the given 
input. Neural operators can be trained by minimizing either data-driven loss or physics-informed loss. When the physics-informed 
loss is used, the method is also called the physics-informed neural operators.

3.1. Physics-informed neural networks (PINNs)

Let’s consider a general form of a 𝑑-dimensional boundary value problem:

(𝑢)(𝑥) = 𝑓 (𝑥), 𝑥 ∈Ω

(𝑢)(𝑥) = 𝑔(𝑥), 𝑥 ∈ 𝜕Ω

where Ω ∈ℝ𝑑 is the problem domain, (𝑢) denotes a general differential operator, and (𝑢) denotes corresponding boundary condi-

tions. The PINN method first defines a neural network to approximate the solution to this specific instance of PDE:  (𝑥; 𝜃) ∶ Ω →ℝ, 
where 𝜃 denotes the set of all trainable parameters in the network. Then, this network is trained by solving the optimization problem:

min
𝑁0∑|( (𝑥 ;𝜃)) − 𝑓 (𝑥 )|2 +𝜔 𝑁1∑|(𝑥̂ ) − 𝑔(𝑥̂ )|2
4

𝜃
𝑗=1

𝑗 𝑗

𝑗=1
𝑗 𝑗
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Fig. 3. Structures of the fully connected network and the residual network.

where 𝜔 is the weight of the boundary residual, {𝑥𝑗}
𝑁0
𝑗=1 is collocation points randomly sampled from Ω, and {𝑥̂𝑗}

𝑁1
𝑗=1 is collocation 

points randomly generated from 𝜕Ω. The partial derivatives of  can be easily calculated through the back-propagation mechanism. 
An efficient implementation is provided in the DeepXDE package [35] for both PyTorch and TensorFlow platforms. Some similar 
algorithms in the literature use similar ideas, such as the deep Ritz method (DRM) [36] and the mixed residual method (MIM) 
[37,38]. The DRM uses the variational formulation of PDEs to train networks, and the MIM transforms high-order PDEs into first-

order systems to train networks. Various numerical analyses have also been conducted for these physics-informed methods [39–43].

One popular network structure for the PINN method is the fully connected network (FCN) (Fig. 3(a)). An FCN is typically defined 
as compositions of many fully connected layers:

𝐹𝐶𝑁 (𝑥;𝜃) ∶= (𝐿◦𝐿−1◦⋯◦1)(𝑥),

𝑙(𝑧) ∶= 𝜎𝑙(𝑊𝑙𝑧+ 𝑏𝑙), ∀𝑙 = 1,… ,𝐿− 1,

𝑊𝑙 ∈ℝ𝑑𝑙,𝑖𝑛×𝑑𝑙,𝑜𝑢𝑡 , 𝑏𝑙 ∈ℝ𝑑𝑙,𝑜𝑢𝑡 ,

𝑑1,𝑖𝑛 = 𝑑, 𝑑𝑙,𝑖𝑛 = 𝑑𝑙−1,𝑜𝑢𝑡, 𝑙 = 2,… ,𝐿− 1,

𝐿(𝑧) ∶= 𝜎𝐿(𝑊𝐿𝑧+ 𝑏𝐿), 𝑊𝐿 ∈ℝ𝑑𝐿−1,𝑜𝑢𝑡,1, 𝑏𝐿 ∈ℝ,

where 𝜎𝑙 is the activation function for each layer, 𝑑𝑙,𝑖𝑛 denotes the input dimension of the 𝑙th layer, and 𝑑𝑙,𝑜𝑢𝑡 denotes the output 
dimension of the 𝑙th layer. Choices for the activation function usually include Sigmoid, Tanh, ReLU, etc. For the last layer 𝐹𝐿 , the 
activation function can be the identify function, i.e., 𝜎𝐿(𝑧) = 𝑧. When increasing the depth 𝐿, the training of the FCN may become 
slower because of the vanishing gradient effect. To overcome this limitation, we can use the residual network incorporating the skip 
connection structure [44]. A residual network (Fig. 3(b)) is defined as:

𝑅𝑒𝑠(𝑥;𝜃) ∶= (̂𝐿◦̂𝐿−1◦⋯◦̂1)(𝑥),

̂𝑙(𝑧) ∶= 𝜎𝑙(𝑊𝑙,2𝜎𝑙(𝑊𝑙,1𝑧+ 𝑏𝑙,1) + 𝑏𝑙,2 + 𝑧), ∀𝑙 = 1,… ,𝐿− 1,

𝑊𝑙,1 ∈ℝ𝑑𝑙,𝑖𝑛×𝑑𝑙,𝑜𝑢𝑡 , 𝑊𝑙,2 ∈ℝ𝑑𝑙,𝑜𝑢𝑡×𝑑𝑙,𝑜𝑢𝑡 , 𝑏𝑙,1, 𝑏𝑙,2 ∈ℝ𝑑𝑙,𝑜𝑢𝑡 ,

𝑑1,𝑖𝑛 = 𝑑, 𝑑𝑙,𝑖𝑛 = 𝑑𝑙−1,𝑜𝑢𝑡, 𝑙 = 2,… ,𝐿− 1,

𝐿(𝑧) ∶= 𝜎𝐿(𝑊𝐿𝑧+ 𝑏𝐿), 𝑊𝐿 ∈ℝ𝑑𝐿−1,𝑜𝑢𝑡,1, 𝑏𝐿 ∈ℝ.

3.2. Neural operators for PDEs

Let’s consider a class of parametric PDEs:

(𝑢)(𝑥;𝛼) = 𝑓 (𝑥;𝛼), 𝑥 ∈Ω

(𝑢;𝛼)(𝑥) = 𝑔(𝑥;𝛼), 𝑥 ∈ 𝜕Ω,

where 𝛼 is the parameters that define the problem; for example, 𝛼 can be the diffusion coefficient in a convection-diffusion equation. 
5

The neural operator aims to approximate the solution operator  ∶ → , where  is the function space for 𝛼, and  is the space 
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Fig. 4. Structures of the DeepONet.

for the solution 𝑢. In practice, the input space can also be other function spaces, e.g., the space of the source term 𝑓 (𝑥). In this work, 
we mainly focus on the DeepONet method [13].

A plain DeepONet (Fig. 4(a)) consists of two sub-networks: a branch net and a trunk net. It is defined as

𝐷𝑂𝑁 (𝛼̂, 𝑥) ∶=𝐵𝑟𝑎𝑛𝑐ℎ(𝛼̂)⊤𝑇 𝑟𝑢𝑛𝑘(𝑥)

where 𝛼̂ is the discretization of 𝛼 on a given mesh, 𝑥 is any point in Ω. The outputs of the branch net and the trunk net are 𝑝-

dimensional vectors, where 𝑝 is a user-specified hyper-parameter. The DeepONet  (𝛼̂, 𝑥) gives a prediction to (𝛼)(𝑥). To predict 
the solution on multiple points, we need to evaluate the trunk net multiple times.

The training of neural operators is fully data-driven. Suppose we have a set of {𝛼̂𝑖}𝑁𝑖=1 from  and corresponding PDE solutions 
{𝑢̂𝑖}𝑁𝑖=1 defined on a discretization {𝑥𝑗}𝑀𝑗=1. Then we train the neural operator by minimizing the 𝐿2 difference between the network 
outputs and the reference solution:

min
𝜃

1
𝑀𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|𝐷𝑂𝑁 (𝛼̂𝑖, 𝑥𝑗 ) − 𝑢̂𝑖(𝑥𝑗 )|2
for the DeepONet. A comprehensive study of neural operators is given in [28], which includes numerical experiments on various 
linear and non-linear PDEs.

Besides the data-driven training method, we can apply the physics-informed loss like PINN to train neural operators. Such methods 
are called physics-informed neural operators [45–47]. In many engineering problems, obtaining the entire solution to PDEs may be 
very difficult or expensive. Consequently, it is more desirable to incorporate the physics laws into the training process to regularize 
the neural operators. We can construct a similar residual loss as the PINN method for each pair of training samples and minimize the 
summation over all samples. For the DeepONet, we can use back-propagation to evaluate the derivatives.

4. The physics informed DeepONet for blood flow estimation

4.1. Problem setup

This work aims to learn the operator that maps the physiological signals to the solution of the Navier-Stokes equation:

 ∶ ([0, 𝑇 ])→ ([0,𝐿] × [0, 𝑇 ]) (5)

where ([0, 𝑇 ]) is the set of physiological signals of length 𝑇 and  ([0, 𝐿] ×[0, 𝑇 ]) is the space of solutions to Navier-Stokes equations 
defined on [0, 𝐿] × [0, 𝑇 ].

Suppose we have a training dataset consisting of 𝑁 pairs of samples:

{(𝑠𝑖, 𝑝𝑖)}𝑁𝑖=1,

where 𝑠𝑖 is a set of physiological signals, and 𝑝𝑖 is the corresponding ABP waveform measured in the radial artery that lies in the 
forearm. All waveform data have the same length. The physiological signal 𝑠𝑖 serves as the input to the neural network and the blood 
pressure waveform 𝑝𝑖 is used to define the boundary condition.

For each sample 𝑖 = 1, … , 𝑁 , its hemodynamics is defined by 𝑈𝑖 = (𝑃𝑖, 𝑄𝑖). We assume each 𝑈𝑖 satisfies the Navier-stokes system 
described in (4):

𝜕𝑈𝑖

𝜕𝑡
+𝐻(𝑈𝑖)

𝜕𝑈𝑖

𝜕𝑧
= 𝐵(𝑈𝑖), (𝑧, 𝑡) ∈ [0,𝐿] × [0, 𝑇 ]. (6)

We also need to provide suitable initial and boundary conditions to identify unique PDE solutions. When solving this system using 
6

some traditional numerical methods, we usually need to impose an inlet boundary condition and an outlet boundary condition. The 
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Fig. 5. Comparison of the simulated blood pressure using different outflow boundary conditions. (a) is the inlet boundary condition given at 𝑧 = 0; (b) is the simulated 
blood pressure at 𝑧 =𝐿 using the non-reflecting outflow boundary condition; and (c) is the simulated blood pressure at 𝑧 =𝐿 using the 3-element Windkessel outflow 
boundary condition. (b) and (c) are computed using a standard MacCormack scheme.

inlet boundary condition is usually set as a Dirichlet boundary condition which prescribes the value of the blood pressure 𝑃 or blood 
flow rate 𝑄 at the inlet side. The outlet boundary condition can determine the reflection waves that run backward in the artery. 
A simple choice for the outlet boundary condition is the non-reflecting boundary condition [1]: 𝑊2 = 0 where 𝑊2 is the backward 
characteristic variable. Though the non-reflecting boundary condition is very easy to implement, it can not provide a physically 
correct reflecting wave. A better choice is the three-element Windkessel boundary condition [48]:

𝑊 (𝑃𝑖,𝑄𝑖) ∶=𝑄𝑖(𝐿, 𝑡)(1 +
𝑅1
𝑅2

) +𝐶𝑅1
𝜕𝑄𝑖

𝜕𝑡
(𝐿, 𝑡) −

𝑃𝑖(𝐿, 𝑡)
𝑅2

−𝐶
𝜕𝑃𝑖

𝜕𝑡
(𝐿, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ], (7)

where 𝑅1, 𝑅2, and 𝐶 are some hyper-parameters related to the artery properties.

Remark. The Windkessel model describes the hemodynamics of the arterial system in terms of resistance and compliance, and it is 
widely used as an outflow boundary condition in the numerical simulation of human arterial systems [29,49,50]. The Navier-Stokes 
equation with this Windkessel boundary condition can produce physical reflection waves in the solutions. A simple comparison of 
two outflow boundary conditions is shown in Fig. 5 where we can observe that the blood pressure simulated using the non-reflecting 
boundary condition is not physically correct.

In our case, since the pressure data 𝑝𝑖, 𝑖 = 1, … , 𝑁 , is measured near the end of radial arteries, it is better to formulate it also as 
an outlet boundary condition:

𝑃𝑖(𝐿, 𝑡) = 𝑝𝑖(𝑡), 𝑡 ∈ [0, 𝑇 ]. (8)

To better simulate the reflection waves in the artery, we use the three-element Windkessel model (7) as another boundary condition.

For the initial condition, we impose a time-periodic condition on both 𝑃𝑖 and 𝑄𝑖 instead of giving a prescribed initial value:

𝑈𝑖(𝑧, 𝑡+ 𝛿𝑖) =𝑈𝑖(𝑧, 𝑡), (𝑧, 𝑡) ∈ [0,𝐿] × [0, 𝑇 ] (9)

where 𝛿𝑖 is the period for the 𝑖-th training sample, and it can be estimated from the physiological signals 𝑠𝑖 . Typically, the waveforms 
are almost periodic within a short time.

Remark. Conventional methods directly prescribe the initial value of solutions. One commonly used initial condition is 𝑈 (𝑧, 0) =
(𝑃𝑒𝑥𝑡, 0). However, it is very difficult to measure the value of 𝑃𝑖 and 𝑄𝑖 at the initial time for each sample and it is not realistic to 
assume an initial condition like 𝑈 (𝑧, 0) = (𝑃𝑒𝑥𝑡, 0). Therefore, using a time-periodic condition is more suitable in our situation.

By solving the system (4) with the boundary condition (8) (7) and initial condition (9), we would be able to predict the hemody-

namics in the radial artery. For conventional numerical methods, it would be difficult to solve under this setting, because there is no 
prescribed initial value given and there is no boundary condition at the inlet side; but it is easy to handle by the physics-informed 
method.

In this problem, the period for each sample is different, which will cause some difficulty in computing the loss function. In this 
work, we will propose a new efficient implementation method to handle this issue.

4.2. BP-DeepONet

We propose a new physics-informed DeepONet, BP-DeepONet, to learn the solution operator (5). We adopt the same structure 
as the original DeepONet. For the branch net, we use a structure that combines a one-dimensional convolutional ResNet and a bi-
7

directional LSTM, see Fig. 6. The inputs to the branch net are some segments of physiological signals 𝑠𝑖 and the output would be two 
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Fig. 6. Structure of the branch net.

Fig. 7. Structure of the trunk net.

latent vectors 𝐛𝟏 and 𝐛𝟐. conv1d(channels=𝑐, kernel=𝑠) represents a standard one-dimensional convolutional layer whose number 
of output channels is 𝑐 and kernel size is 𝑠. Bi-LSTM (size=ℎ, layers=𝑙) represents a bi-directional LSTM block whose input size and 
hidden size are ℎ, and the number of layers is 𝑙. Such a structure has been shown in [51] that performs the best in extracting features 
from physiological signals and predicting blood pressure. For the trunk net, similar to the original implementation of DeepONet [13], 
we adopt the fully connected network structure with residual connection as Fig. 3(b) with the feature expansion (Fig. 7). The residual 
connection can improve the efficiency of training deep networks and has been used in physics-informed machine learning problems 
as well [36]. Feature expansion [52] is a technique to impose the periodic condition on PINN. To impose the time-periodic constraints 
(9), we can simply expand the inputs (𝑧, 𝑡) to

(𝑧, sin( 2𝜋𝑡
𝛿𝑖

), cos( 2𝜋𝑡
𝛿𝑖

), sin( 4𝜋𝑡
𝛿𝑖

), cos( 4𝜋𝑡
𝛿𝑖

),…).

Then, our network outputs will be strictly time-periodic with period 𝛿𝑖. The output of the trunk net is a vector 𝐤 whose dimension 
is the same as 𝐛𝟏 and 𝐛𝟐. The final prediction of the BP-DeepONet will be calculated as follows:

𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝑧, 𝑡)) = 𝐛1(𝑠𝑖)⊤𝐤(𝑧, 𝑡, 𝛿𝑖), 𝑄𝜃(𝑠𝑖, 𝛿𝑖, (𝑧, 𝑡)) = 𝐛2(𝑠𝑖)⊤𝐤(𝑧, 𝑡, 𝛿𝑖)

where 𝜃 is the set of all trainable parameters in the BP-DeepONet.

The training loss function of our network is defined as

(𝑃𝜃,𝑄𝜃) =𝑝𝑑𝑒(𝑃𝜃,𝑄𝜃) +𝜔1𝑏1
(𝑃𝜃) +𝜔2𝑏2

(𝑃𝜃,𝑄𝜃) (10)

where

𝑝𝑑𝑒(𝑃𝜃,𝑄𝜃) =
1
𝑁

𝑁∑
𝑖=1

‖‖‖‖‖
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖, 𝛿𝑖, ⋅)

‖‖‖‖‖
2

𝐿2([0,𝐿]×[0,𝑇 ])
,

1
𝑁∑‖ ‖2
8

𝑏1
(𝑃𝜃) =

𝑁
𝑖=1

‖𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, ⋅)) − 𝑝𝑖‖𝐿2([0,𝑇 ]) ,
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Fig. 8. Structure of the BP-DeepONet.

and

𝑏2
(𝑃𝜃,𝑄𝜃) =

1
𝑁

𝑁∑
𝑖=1

‖‖𝑊 (𝑃𝜃,𝑄𝜃)(𝑠𝑖, 𝛿𝑖, (𝐿, ⋅))‖‖2𝐿2([0,𝑇 ]) .

The complete structure of the BP-DeepONet is displayed in Fig. 8.

To evaluate the different residual terms 𝑝𝑑𝑒 , 𝑏1, and 𝑏2, we need to approximate the 𝐿2 norm with some discrete quadrature. 
For the PDE residual term 𝑝𝑑𝑒, we can simply approximate the 𝑖-th 𝐿2 residual by

‖‖‖‖‖
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖, 𝛿𝑖, ⋅)

‖‖‖‖‖
2

𝐿2([0,𝐿]×[0,𝑇 ])

≈
𝑀∑
𝑗=1

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖, 𝛿𝑖, (𝑧𝑗 , 𝑡𝑗 ))

|||||
2

,

where {(𝑧𝑗 , 𝑡𝑗 )}𝑀𝑗=1 is a set of quadrature points randomly sampled from the domain [0, 𝐿] × [0, 𝑇 ]. The partial derivatives in the 
residual terms can be calculated as

𝜕

𝜕𝑥
𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝑧𝑗 , 𝑡𝑗 )) = 𝐛𝟏(𝑠𝑖)⊤

𝜕

𝜕𝑥
𝐤(𝛿𝑖, (𝑧𝑗 , 𝑡𝑗 )), 𝑥 = 𝑧 or 𝑡,

𝜕

𝜕𝑥
𝑄𝜃(𝑠𝑖, 𝛿𝑖, (𝑧𝑗 , 𝑡𝑗 )) = 𝐛𝟐(𝑠𝑖)⊤

𝜕

𝜕𝑥
𝐤(𝛿𝑖, (𝑧𝑗 , 𝑡𝑗 )), 𝑥 = 𝑧 or 𝑡.

However, evaluating this approximation is very time-consuming because the total number of gradient evaluations in one training 
epoch is 𝑂(𝑀𝑁). It is necessary to design a more efficient method to approximate the residuals. This can be achieved by utilizing 
the periodicity of our BP-DeepONet.

4.3. Efficient implementation of training BP-DeepONet

Given any periodic function 𝑓 (𝑡) with period 𝛿, we have the norm ‖ ⋅ ‖𝐿2([0,𝑇 ]) is equivalent to ‖ ⋅ ‖𝐿2([0,𝛿]):⌊
𝑇

𝛿

⌋‖𝑓‖2
𝐿2([0,𝛿]) ≤ ‖𝑓‖2

𝐿2([0,𝑇 ]) ≤
⌈
𝑇

𝛿

⌉‖𝑓‖2
𝐿2([0,𝛿]),

where ⌊⋅⌋ and ⌈⋅⌉ denote the floor function and ceiling function, respectively. Then, for the 𝑖-th 𝐿2 residual term in 𝑝𝑑𝑒, we may 
replace it with‖‖‖‖‖

(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖, 𝛿𝑖, ⋅)

‖‖‖‖‖
2

𝐿2([0,𝐿]×[0,𝛿𝑖])

=

𝛿𝑖 𝐿 |||( 𝜕
(
𝑃𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃)

𝜕
(
𝑃𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖, 𝛿𝑖, (𝑧, 𝑡))

|||2 𝑑𝑧𝑑𝑡

9

∫
0

∫
0

|| 𝜕𝑡 𝑄𝜃 𝜕𝑧 𝑄𝜃 ||
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=

𝛿𝑖

∫
0

𝐿

∫
0

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖,1, (𝑧, 𝑡∕𝛿𝑖))

|||||
2

𝑑𝑧𝑑𝑡.

After a change of variable 𝑡 = 𝑡∕𝛿𝑖, the above integration can be written as

1

∫
0

𝐿

∫
0

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
∕𝛿𝑖 +𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖,1, (𝑧, 𝑡))

|||||
2

𝑑𝑧𝑑𝑡

≈
𝑀∑
𝑗=1

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
∕𝛿𝑖 +𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖,1, (𝑧𝑗 , 𝑡𝑗 ))

|||||
2

where {(𝑧𝑗 , ̂𝑡𝑗 )}𝑀𝑗=1 is randomly sampled from the domain [0, 𝐿] × [0, 1]. We approximate 𝑝𝑑𝑒 by

1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
∕𝛿𝑖 +𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖,1, (𝑧𝑗 , 𝑡𝑗 ))

|||||
2

(11)

Then, the partial derivatives in (11) can be calculated as

𝜕

𝜕𝑥
𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝑧𝑗 , 𝑡𝑗 )) = 𝐛𝟏(𝑠𝑖)⊤

𝜕

𝜕𝑥
𝐤(1, (𝑧𝑗 , 𝑡𝑗 )), 𝑥 = 𝑧 or 𝑡,

𝜕

𝜕𝑥
𝑄𝜃(𝑠𝑖,1, (𝑧𝑗 , 𝑡𝑗 )) = 𝐛𝟐(𝑠𝑖)⊤

𝜕

𝜕𝑥
𝐤(1, (𝑧𝑗 , 𝑡𝑗 )), 𝑥 = 𝑧 or 𝑡.

For different 𝑖, we do not need to recompute the gradient of 𝐤, so the number of gradient evaluations in one training epoch is only 
𝑂(𝑀). We can use the same idea to approximate 𝑏2 by

𝑏2(𝑃𝜃,𝑄𝜃) ≈
1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝑄𝜃(1 +𝑅1∕𝑅2) +𝐶𝑅1

𝜕

𝜕𝑡
𝑄𝜃 − 𝑃𝜃∕𝑅2 −𝐶

𝜕

𝜕𝑡
𝑃𝜃

)
(𝑠𝑖,1, (𝐿, 𝑡𝑗 )).

|||||
2

(12)

For 𝑏1, we simply approximate it by

𝑏1(𝑃𝜃) ≈
1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||𝑃𝜃(𝐿, 𝑡𝑗 ) − 𝑝̄𝑖(𝑡𝑗𝛿𝑖)|||2 (13)

where {𝑡𝑗}𝑀𝑗=1 is randomly sampled from the domain [0, 1] and 𝑝̄𝑖 is the average of 𝑝𝑖 over all periods contained in [0, 𝑇 ]. Finally, the 
entire empirical loss function for training the BP-DeepONet is the combination of three terms (11), (12), and (13):

̂(𝑃𝜃,𝑄𝜃) =
1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
∕𝛿𝑖 +𝐻(𝑃𝜃,𝑄𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃)

)
(𝑠𝑖,1, (𝑧𝑗 , 𝑡𝑗 ))

|||||
2

+
𝜔1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||𝑃𝜃(𝑠𝑖,1, (𝐿, 𝑡𝑗 )) − 𝑝̄𝑖(𝑡𝑗𝛿𝑖)|||2
+
𝜔2
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝑄𝜃(1 +𝑅1∕𝑅2) +𝐶𝑅1

𝜕

𝜕𝑡
𝑄𝜃 − 𝑃𝜃∕𝑅2 −𝐶

𝜕

𝜕𝑡
𝑃𝜃

)
(𝑠𝑖,1, (𝐿, 𝑡𝑗 ))

|||||
2

.

4.4. Hyper BP-DeepONet for sample-dependent hyper-parameters estimation

In the Navier-Stokes equation, many hyper-parameters depend on the physical properties of arterial systems. In the previous BP-

DeepONet, we set all these hyper-parameters to be subject-independent, i.e., we use the same set of hyper-parameters for all samples. 
However, in real situations, these parameters differ from person to person, so it is unrealistic to set them all as constants. To handle 
this issue, we generalize the model (6) to be sample-dependent. For each training sample 𝑖 from 1 to 𝑁 , we denote the set of all 
hyper-parameters for the 𝑖-th sample as

𝛾𝑖 ∶= {𝛽𝑖,𝐴0,𝑖, 𝜌𝑖,𝐾𝑟,𝑖, 𝑃𝑒𝑥𝑡,𝑖,𝑅1,𝑖,𝑅2,𝑖, 𝐶𝑖},

and we assume the solutions 𝑃𝑖, 𝑄𝑖 for the 𝑖-th sample satisfy the following PDE:

𝜕𝑈𝑖

𝜕𝑡
+𝐻(𝑈𝑖, 𝛾𝑖)

𝜕𝑈𝑖

𝜕𝑧
=𝐵(𝑈𝑖, 𝛾𝑖), (𝑧, 𝑡) ∈ [0,𝐿] × [0, 𝑇 ] (14)
10

where
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𝑈𝑖 =
(
𝑃𝑖
𝑄𝑖

)
,

𝐻(𝑈𝑖, 𝛾𝑖) =
⎛⎜⎜⎝

0 𝛽𝑖

2𝑎(𝑃𝑖,𝛾𝑖)𝐴0,𝑖
𝑎(𝑃𝑖,𝛾𝑖)2

𝜌𝑖
− 2𝐴0,𝑖𝑄

2
𝑖

𝛽𝑖𝑎
3(𝑃𝑖,𝛾𝑖)

2𝑄𝑖
𝑎(𝑃𝑖,𝛾𝑖)2

⎞⎟⎟⎠ ,
𝐵(𝑈𝑖, 𝛾𝑖) =

(
0

−𝐾𝑟,𝑖
𝑄𝑖

𝑎(𝑃𝑖,𝛾𝑖)2

)
,

and

𝑎(𝑃𝑖, 𝛾𝑖) =
𝐴0,𝑖

𝛽𝑖
(𝑃𝑖 − 𝑃𝑒𝑥𝑡,𝑖) +

√
𝐴0,𝑖.

The corresponding boundary and periodic conditions are:

𝑃𝑖(𝐿, 𝑡) = 𝑝𝑖(𝑡), 𝑡 ∈ [0, 𝑇 ],

𝑊 (𝑃𝑖,𝑄𝑖, 𝛾𝑖) ∶=𝑄𝑖(𝐿, 𝑡)(1 +
𝑅1,𝑖

𝑅2,𝑖
) +𝐶𝑖𝑅1,𝑖

𝜕𝑄𝑖

𝜕𝑡
(𝐿, 𝑡) −

𝑃𝑖(𝐿, 𝑡)
𝑅2,𝑖

−𝐶𝑖
𝜕𝑃𝑖

𝜕𝑡
(𝐿, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ], (15)

and

𝑈𝑖(𝑧, 𝑡+ 𝛿𝑖) =𝑈𝑖(𝑧, 𝑡), 𝑧 ∈ [0,𝐿].

It is almost impossible to measure 𝛾𝑖 for each sample. To address this issue, we further define a hyper-parameter network on top 
of the branch net and we name this new method the hyper BP-DeepONet. This network takes 𝐛1 and 𝐛2 as inputs and outputs the 
estimation of 𝛾𝑖. This network is optimized together with the BP-DeepONet. We also impose extra constraints to regularize the output 
of the hyper-network. The first constraint is imposed as:

𝑇

∫
0

𝑃𝑖(𝑧, 𝑡)𝑑𝑡 =

𝑇

∫
0

𝑝𝑖(𝑡)𝑑𝑡, ∀𝑧 ∈ [0,𝐿], (16)

which implies that the mean blood pressure does not change during the wave propagation. This phenomenon was found in clinical 
observations [53]. The second constraint is imposed as

𝑅1,𝑖 +𝑅2,𝑖 =
∫ 𝛿𝑖
0 𝑃𝑖(𝐿, 𝑡)𝑑𝑡

∫ 𝛿𝑖
0 𝑄𝑖(𝐿, 𝑡)𝑑𝑡

. (17)

This equation can be derived by integrating the equation (15) over one period [0, 𝛿𝑖] and it is used for regularizing the estimation 
of 𝑅1,𝑖 and 𝑅2,𝑖. If we have other information about the hemodynamics, like the pulse wave velocity, we may introduce them as 
constraints to regularize the hyper-parameter network. Then, the training loss function of the hyper BP-DeepONet is

𝑚𝑒𝑡𝑎(𝑃𝜃,𝑄𝜃, 𝛾𝜃) =𝑝𝑑𝑒(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

+𝜔1𝑏1
(𝑃𝜃) +𝜔2𝑏2

(𝑃𝜃,𝑄𝜃, 𝛾𝜃) +𝜔3𝑐1
(𝑃𝜃,𝑄𝜃) +𝜔4𝑐2

(𝑃𝜃,𝑄𝜃, 𝛾𝜃) (18)

where Γ𝜃 is the set of estimated hyper-parameters given by the hyper-parameter network:

𝛾𝜃(𝑠𝑖) = {𝛽𝜃(𝑠𝑖),𝐴0,𝜃(𝑠𝑖), 𝜌𝜃(𝑠𝑖),𝐾𝑟,𝜃(𝑠𝑖), 𝑃𝑒𝑥𝑡,𝜃(𝑠𝑖),𝑅1,𝜃(𝑠𝑖),𝑅2,𝜃(𝑠𝑖),𝐶𝜃(𝑠𝑖)}, 𝑖 = 1,… ,𝑁,

and the residual terms in (18) are defined as

𝑝𝑑𝑒(𝑃𝜃,𝑄𝜃, 𝛾𝜃) =
1
𝑁

𝑁∑
𝑖=1

‖‖‖‖‖
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

)
(𝑠𝑖, 𝛿𝑖, ⋅)

‖‖‖‖‖
2

𝐿2([0,𝐿]×[0,𝑇 ])
,

𝑏2
(𝑃𝜃,𝑄𝜃, 𝛾𝜃) =

1
𝑁

𝑁∑
𝑖=1

‖‖𝑊 (𝑃𝜃,𝑄𝜃, 𝛾𝜃)(𝑠𝑖, 𝛿𝑖, (𝐿, ⋅))‖‖2𝐿2([0,𝑇 ]) ,

𝑐1
(𝑃𝜃,𝑄𝜃) =

1
𝑁

𝑁∑
𝑖=1

‖‖‖‖‖‖‖
𝑇

∫
0

𝑃𝜃(𝑠𝑖, 𝛿𝑖, (⋅, 𝑡))𝑑𝑡−

𝑇

∫
0

𝑝𝑖(𝑡)𝑑𝑡
‖‖‖‖‖‖‖
2

𝐿2([0,𝐿])

,

𝑐 (𝑃𝜃,𝑄𝜃, 𝛾𝜃) =
1

𝑁∑⎛⎜𝑅1,𝜃(𝑠𝑖) +𝑅2,𝜃(𝑠𝑖) −
∫ 𝛿𝑖
0 𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡))𝑑𝑡 ⎞⎟2 ,
11

2 𝑁
𝑖=1 ⎜⎝ ∫ 𝛿𝑖

0 𝑄𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡))𝑑𝑡 ⎟⎠
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Fig. 9. Structures of the hyper BP-DeepONet.

and 𝑏1
(𝑃𝜃) is defined the same as (10). To approximate these residual terms, we use the same change of variable technique as 

section 4.2:

𝑝𝑑𝑒(𝑃𝜃,𝑄𝜃, 𝛾𝜃) ≈
1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

)
(𝑠𝑖,1, (𝑧𝑗 , 𝑡𝑗 ))

|||||
2

,

𝑏2
(𝑃𝜃,𝑄𝜃, 𝛾𝜃) ≈

1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝑄𝜃(1 +𝑅1,𝜃∕𝑅2,𝜃) +𝐶𝜃𝑅1,𝜃

𝜕

𝜕𝑡
𝑄𝜃 − 𝑃𝜃∕𝑅2,𝜃 −𝐶𝜃

𝜕

𝜕𝑡
𝑃𝜃

)
(𝑠𝑖,1, (𝐿, 𝑡𝑗 ))

|||||
2

,

𝑐1
(𝑃𝜃,𝑄𝜃) ≈

1
𝑁

𝑁∑
𝑖=1

𝑀 ′∑
𝑗1=1

||||||
𝑀∑
𝑗2=1

(𝑃𝜃(𝑠𝑖,1, (𝑧̂𝑗1 , 𝑡𝑗2 )) − 𝑝𝑖(𝑡𝑗2 ))
||||||
2

,

𝑐2
(𝑃𝜃,𝑄𝜃, 𝛾𝜃) ≈

1
𝑁

𝑁∑
𝑖=1

||||||𝑅1,𝜃(𝑠𝑖) +𝑅2,𝜃(𝑠𝑖) −
∑𝑀

𝑗=1 𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡𝑗 ))∑𝑀

𝑗=1𝑄𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡𝑗 ))

||||||
2

,

where {(𝑧𝑗 , ̂𝑡𝑗 )}𝑀𝑗=1 is a set of quadrature points sampled from [0, 𝐿] × [0, 1] and {𝑧̂𝑗}𝑀
′

𝑗=1 is a set of quadrature points sampled from 
[0, 𝐿], and 𝑏1

(𝑃𝜃) is approximated in the same way as (13). Then, the empirical training loss for the hyper BP-DeepONet is given as

̂ℎ𝑦𝑝𝑒𝑟(𝑃𝜃,𝑄𝜃, 𝛾𝜃) =
1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝜕

𝜕𝑡

(
𝑃𝜃
𝑄𝜃

)
+𝐻(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

𝜕

𝜕𝑧

(
𝑃𝜃
𝑄𝜃

)
−𝐵(𝑃𝜃,𝑄𝜃, 𝛾𝜃)

)
(𝑠𝑖,1, (𝑧𝑗 , 𝑡𝑗 ))

|||||
2

+
𝜔1
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||𝑃𝜃(𝑠𝑖,1, (𝐿, 𝑡𝑗 )) − 𝑝̄𝑖(𝑡𝑗𝛿𝑖)|||2
+
𝜔2
𝑁

𝑁∑
𝑖=1

𝑀∑
𝑗=1

|||||
(
𝑄𝜃(1 +𝑅1,𝜃∕𝑅2,𝜃) +𝐶𝜃𝑅1,𝜃

𝜕

𝜕𝑡
𝑄𝜃 − 𝑃𝜃∕𝑅2,𝜃 −𝐶𝜃

𝜕

𝜕𝑡
𝑃𝜃

)
(𝑠𝑖,1, (𝐿, 𝑡𝑗 ))

|||||
2

+
𝜔3
𝑁

𝑁∑
𝑖=1

𝑀 ′∑
𝑗1=1

||||||
𝑀∑
𝑗2=1

(𝑃𝜃(𝑠𝑖,1, (𝑧̂𝑗1 , 𝑡𝑗2 )) − 𝑝𝑖(𝑡𝑗2 ))
||||||
2

+
𝜔4
𝑁

𝑁∑
𝑖=1

||||||𝑅1,𝜃(𝑠𝑖) +𝑅2,𝜃(𝑠𝑖) −
∑𝑀

𝑗=1 𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡𝑗 ))∑𝑀

𝑗=1𝑄𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡𝑗 ))

||||||
2

.

The overall structures of the hyper BP-DeepONet are given in Fig. 9 where the hyper-parameter network is implemented as a simple 
FCN.

Remark. During the training of the hyper BP-DeepONet, we only require the measurement of blood pressure at 𝑧 = 𝐿. Then the whole 
solution, all boundary conditions, initial conditions, and hyper-parameters can be automatically learned from this measurement. No 
extra measurements and parameters are needed.

Remark. Identifying all hyper-parameters is an ill-posed problem when the given information about the flow dynamic is limited, 
12

which is similar to the three-element Windkessel problem considered in [54,55]. Thus, we add regularization terms 𝑅𝑐1 and 𝑅𝑐2 in 



Journal of Computational Physics 519 (2024) 113380L. Li, X.-C. Tai and R.H.-F. Chan

Fig. 10. The inflow boundary condition.

the training loss, which can help the proposed approach to find a set of hyper-parameters that can produce physically reasonable 
blood flow. More regularization terms can be introduced if we know more information about the patient, like the blood flow velocity 
and the pulse wave velocity.

5. Numerical experiments of the PINN on simulated data

In this section, we would like to validate the proposed physics-informed training method by solving one PDE instance. We first 
generate a solution to the Navier-Stokes equation (4) using a MacCormack scheme with a prescribed initial condition and inlet 
boundary condition. Then, we solve this equation with the boundary conditions (8) and (7) and the time-periodic condition (9) using 
a simple PINN. We can see in the numerical results that the PINN solution is very close to the simulated solution. We consider the 1D 
Navier-stokes equation (1) and (2) with the initial condition:

𝐴(𝑥,0) =𝐴0, 𝑄(𝑥,0) = 0,

the inflow boundary condition:

𝑄(0, 𝑡) = 𝑞0(𝑡),

and the three-element Windkessel boundary condition

𝑄(𝐿, 𝑡)(1 +
𝑅1
𝑅2

) +𝐶𝑅1
𝜕𝑄

𝜕𝑡
(𝐿, 𝑡) = 𝑃 (𝐿, 𝑡)

𝑅2
+𝐶 𝜕𝑃

𝜕𝑡
(𝐿, 𝑡).

Such an initial boundary value problem can be efficiently solved by many classical methods like the MacCormack scheme [3,4], 
Taylor-Galerkin scheme [5,6], MUSCL [7,8], and the local discontinuous Galerkin scheme [9–11]. We use a numerical example 
that is similar to the baseline aorta case provided in [50], where the hyper-parameters are chosen as 𝐿 = 25 cm, 𝐴0 = 4.52 cm2, 
𝛽 = 1134.37 kg/s2, 𝜌 = 1060 kg/m3, 𝑃𝑒𝑥𝑡 = 9 kPa, 𝑅1 = 1.17 × 107 Pa s m−3, 𝑅1 = 1.12 × 108 Pa s m−3, 𝐶 = 1.01 × 10−8 m3 Pa−1, 
𝑣 = 0.01 ×106 m2∕s2, and the inflow boundary conditions 𝑞0(𝑡) is given in Fig. 10. Then, we solve this problem using the MacCormack 
scheme.

After having a referenced numerical solution 𝐴̂ and 𝑄̂, we define a residual network 𝑁𝜃(𝑧, 𝑡) = (𝑃𝜃(𝑧, 𝑡), 𝑄𝜃(𝑧, 𝑡)) shown in Fig. 3

(b) with five residual layers. The time-periodic condition is incorporated into the network using the same feature expansion technique 
described before. We train this network by minimizing the following loss function:

𝐿𝑃𝐼𝑁𝑁 (𝜃) ∶=
‖‖‖‖ 𝜕𝐴𝜃𝜕𝑡 +

𝜕𝑄𝜃

𝜕𝑧

‖‖‖‖2𝐿2([0,𝐿]×[0,𝑇 ])
+
‖‖‖‖‖𝜕𝑄𝜃

𝜕𝑡
+ 𝜕

𝜕𝑧
(
𝑄2
𝜃

𝐴𝜃
) +

𝐴𝜃

𝜌

𝜕𝑃𝜃

𝜕𝑧
+𝐾𝑟

𝑄𝜃

𝐴𝜃

‖‖‖‖‖
2

𝐿2([0,𝐿]×[0,𝑇 ])

+ 100

(‖𝑃𝜃(𝐿, ⋅) − 𝑃 (𝐿, ⋅)‖2𝐿2([0,𝑇 ]) +
‖‖‖‖𝑄𝜃(𝐿, ⋅)(1 +

𝑅1
𝑅2

) +𝐶𝑅1
𝜕𝑄𝜃

𝜕𝑡
(𝐿, ⋅) −

𝑃𝜃(𝐿, ⋅)
𝑅2

−𝐶
𝜕𝑃𝜃

𝜕𝑡
(𝐿, ⋅)

‖‖‖‖
2

𝐿2([0,𝑇 ])

)
where 𝑃𝜃(𝑧, 𝑡) = 𝑃𝑒𝑥𝑡 +

𝛽

𝐴0
(
√
𝐴𝜃(𝑧, 𝑡) −

√
𝐴0).

We use a standard Adam optimizer with a learning rate of 1e-4, and the total number of training epochs is 50,000. The training 
is conducted on an NVIDIA RTX A6000 gpu and takes 1.8 hour. We randomly sample 1,000 quadrature points in the domain in 
each epoch to approximate the 𝐿2 integration. We can see the comparison of the PINN solution and the numerical solution by 
the MacCormack scheme in Fig. 11. The PINN solution solved using the loss function 𝐿𝑃𝐼𝑁𝑁 is very close to the solution of the 
13

MacCormack scheme.



Journal of Computational Physics 519 (2024) 113380L. Li, X.-C. Tai and R.H.-F. Chan

Fig. 11. Comparison of the PINN solution and the finite difference solution (MacCormack).

We also calculate the relative error:‖‖‖‖‖𝑃 − 𝑃𝜃
𝑃

‖‖‖‖‖1 ≈ 0.30%

and ‖𝑄̂−𝑄𝜃‖1‖𝑄̂‖∞ ≈ 0.67%.

These two metrics are also used in [50] to measure the error of their numerical solutions for the Navier-Stokes equation. From 
Fig. 11, we can observe that the error of the PINN solution is larger near the dicrotic notch where the solution is near singular. This 
case is very common when using the standard PINN method to solve PDEs, and it can be improved by using some adaptive sampling 
scheme [56]. We may consider this direction in our future work.

6. Numerical experiments of proposed methods on clinical data

6.1. Dataset description

We conducted our experiments on the MIMIC dataset [57], the largest and most commonly used dataset for cuffless blood pressure 
estimation. We use the pre-processed version of the MIMIC data from [58], which contains recordings of 12,000 subjects after simple 
pre-processing. Each recording consists of continuous ECG, PPG, and ABP waveform data. The length of each recording is within 10 
minutes. All these data are collected from ICU patients, and the invasive method collects the ABP waveform data. Furthermore, we 
also apply some extra pre-processing steps to these data:

1. Use a bandpass filter to remove noise from PPG and ABP signals.

2. Align the PPG and ABP signals.

3. Randomly select 75% of subjects for training and 25% for testing.

4. 20% of the training set is selected as the validation set.

5. The first 15% of data in each testing subject is used for calibration.

6. Split each recording into many 4-second segments without overlapping.

7. Remove those segments that are highly non-periodic.

8. Remove subjects whose number of valid segments is less than 10.

9. Apply some peak detection algorithms to detect all peaks in each PPG segment, then calculate the average length of intervals 
14

between two consecutive peaks.
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Fig. 12. One segment of ECG, PPG, and ABP signals.

After pre-processing, the total number of training and testing samples is about 70,000. Step 5 is also called individual fine-tuning 
[59], and it is a necessary process to calibrate and improve the blood pressure measurement. The segments for calibration will not 
be used when calculating the testing error. One segment of the recording is shown in Fig. 12.

6.2. Training procedures

For the training of the BP-DeepONet and the hyper BP-DeepONet, we apply the standard Adam optimizer with a scheduled learning 
rate to train the network. The initial learning rate is set to be 1e-4, and decays by a factor of 0.9 every 5 epochs. After 200 epochs, we 
restart the learning rate with 1e-4 and continue to train with the same learning rate schedule. After 3 rounds of learning rate cycles, 
we choose the best model based on the performance evaluated on a validation set. All the training is done in an NVIDIA RTX A6000 
gpu. It takes 90.9 hours for the BP-DeepONet and 110.0 hours for the hyper BP-DeepONet.

When training the BP-DeepONet, we need first to determine all the hyper-parameters in the NS model, so we set hyper-parameters 
based on the reference values of the radial artery described in [60] and estimate the Windkessel parameters using the method provided 
in [50]: 𝐴0 = 8 ×10−6 𝑚2, 𝛽 = 529 𝑘𝑔∕𝑠2, 𝐿 = 0.25𝑚, 𝐾𝑟 = 8 ∗ 𝜋 ∗ 0.01 ≈ 0.251, 𝜌 = 1.06 𝑘𝑔∕𝑚3, 𝑃𝑒𝑥𝑡 = 6.67 𝑘𝑃𝑎, 𝑅1 = 12.37 𝑃𝑎 ⋅𝑠∕𝑚3, 
𝑅2 = 137.5 𝑃𝑎 ⋅ 𝑠∕𝑚3, 𝐶 = 0.01 𝑚3∕𝑃𝑎. In the hyper BP-DeepONet, we also use these values as referenced values for the predicted 
hyper-parameters. We restrict the deviation of the predicted hyper-parameters from the referenced values to be less than or equal to 
20% so that the estimation of the hyper-parameters will always be reasonable.

During the training of both BP-DeepONet and hyper BP-DeepONet, we use a batch size of 100. All the training is done on a GPU 
server with 4 NVIDIA RTX A6000 GPUs.

6.3. Numerical results

After finishing the training of DeepONet, we can obtain the prediction of the BP waveform at any given location 𝑧 by evaluating 
the DeepONet at (𝑧, 𝑡0), (𝑧, 𝑡1), . . . , (𝑧, 𝑡𝑁ℎ

), where {𝑡𝑗}
𝑁ℎ

𝑗=0 is a uniform discretization of the domain [0, 𝑇 ].
We first evaluate the waveform prediction at the outlet side 𝑧 = 𝐿. Since we have the measured BP wave at 𝑧 = 𝐿 by 

the invasive method, we can compute the prediction error of our method at this location. We evaluate the error using sev-

eral metrics: waveform MAE, SBP MAE, DBP MAE, and MBP MAE, where MAE is short for mean absolute error. Suppose 𝑃𝑖 =
(𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡0)), 𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡1)), … , 𝑃𝜃(𝑠𝑖, 𝛿𝑖, (𝐿, 𝑡𝑁ℎ

))) ∈ℝ𝑁ℎ is the predicted waveform and 𝑝𝑖 ∈ℝ𝑁ℎ is the ground true BP wave-

form. Then, the four metrics are defined as follows:

• Waveform MAE: 1
𝑁

1
𝑁ℎ

∑𝑁

𝑖=1 |𝑃𝑖 − 𝑝𝑖|1,

• SBP MAE: 1
𝑁

∑𝑁

𝑖=1 | max(𝑃𝑖) −max(𝑝𝑖)|,
• DBP MAE: 1

𝑁

∑𝑁

𝑖=1 | min(𝑃𝑖) −min(𝑝𝑖)|,
• MBP MAE: 1

𝑁

∑𝑁

𝑖=1 |mean(𝑃𝑖) − mean(𝑝𝑖)|,
where | ⋅ |1 denotes the standard vector 𝑙1 norm. In Table 1, we listed the error metrics for both BP-DeepONet and hyper BP-DeepONet. 
We also compared our results with the IEEE standard for wearable, cuffless blood pressure measuring devices [61]. The suggested 
grading is also shown in Table 1. We can see the hyper BP-DeepONet achieves better accuracy on the MAE of SBP, DBP, and MBP, 
while the BP-DeepONet achieves better accuracy on the waveform MAE. According to the IEEE standard for wearable cuffless blood 
pressure measuring devices, the device or algorithm will be graded as A when the MAE is within 5 mmHg and graded as B when the 
MAE is within 5 to 6 mmHg. Based on this criterion, the hyper BP-DeepONet is graded as A-level in all metrics, while the BP-DeepONet 
is graded as A-level except on the SBP measurement. We also visualize the MAE distribution in Fig. 13 and Fig. 14.

Since our methods can predict the blood pressure 𝑃 (𝑧, 𝑡) and blood flow rate 𝑄(𝑧, 𝑡) in the whole domain (𝑧, 𝑡) ∈ [0, 𝐿] × [0, 𝑇 ], 
15

we also want to evaluate the errors in the interior of this domain. We choose two different metrics to evaluate the error in (𝑧, 𝑡) ∈
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Table 1

The prediction error of two proposed methods and their grading according to the IEEE standard.

Methods Waveform SBP DBP MBP

MAE (mmHg)
BP-DeepONet 4.406 5.057 2.581 2.881

Hyper BP-DeepONet 4.555(±3.26) 4.934(±5.80) 2.574 2.871

Grading
BP-DeepONet A B A A

Hyper BP-DeepONet A A A A

Fig. 13. Error distribution of the BP-DeepONet on the MIMIC test set. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

[0, 𝐿] × [0, 𝑇 ]. The first metric is the residual errors 𝑝𝑑𝑒 . The residual error is usually used to estimate the total error when the true 
solution is unknown. For the BP-DeepONet, the residual error is defined as:

𝑅𝐸1(𝑃𝜃,𝑄𝜃) =
1
𝑁

𝑁∑
𝑖=1

‖‖‖‖‖
(
𝜕𝐴𝜃

𝜕𝑡
+
𝜕𝑄𝜃

𝜕𝑧

)
(𝑠𝑖, 𝛿𝑖, (⋅, ⋅))

‖‖‖‖‖𝐿2([0,𝐿]×[0,𝑇 ])

𝑅𝐸2(𝑃𝜃,𝑄𝜃) =
1
𝑁

𝑁∑
𝑖=1

‖‖‖‖‖‖
(
𝜕𝑄𝜃

𝜕𝑡
+ 𝜕

𝜕𝑧
(
𝑄2
𝜃

𝐴𝜃
) +

𝐴𝜃

𝜌

𝜕𝑃𝜃

𝜕𝑧
+𝐾𝑟

𝑄𝜃

𝐴𝜃

)
(𝑠𝑖, 𝛿𝑖, (⋅, ⋅))

‖‖‖‖‖‖𝐿2([0,𝐿]×[0,𝑇 ])

where 𝐴𝜃 =
(
𝐴0
𝛽
(𝑃𝜃 − 𝑃𝑒𝑥𝑡) +

√
𝐴0

)2
. For the hyper BP-DeepONet, the residual error is defined as:

1
𝑁∑‖‖(𝜕𝐴𝜃,𝑖 𝜕𝑄𝜃

) ‖‖

16

𝑅𝐸1(𝑃𝜃,𝑄𝜃, 𝛾𝜃) =
𝑁

𝑖=1
‖‖‖ 𝜕𝑡

+
𝜕𝑧

(𝑠𝑖, 𝛿𝑖, (⋅, ⋅))‖‖‖𝐿2([0,𝐿]×[0,𝑇 ])
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Fig. 14. Error distribution of the hyper BP-DeepONet on the MIMIC test set.

Table 2

The residual error of two proposed methods.

𝑅𝐸1(
√
𝐿) 𝑅𝐸2(

√
𝑑𝑚 ∗𝐿∕𝑠)

BP-DeepONet 1.11×1e-4 2.65×1e-2

Hyper BP-DeepONet 0.22×1e-4 1.14×1e-2

𝑅𝐸2(𝑃𝜃,𝑄𝜃, 𝛾𝜃) =
1
𝑁

𝑁∑
𝑖=1

‖‖‖‖‖‖
(
𝜕𝑄𝜃

𝜕𝑡
+ 𝜕

𝜕𝑧
(
𝑄2
𝜃

𝐴𝜃,𝑖
) +

𝐴𝜃,𝑖

𝜌𝑖

𝜕𝑃𝜃

𝜕𝑧
+𝐾𝑟𝑖

𝑄𝜃

𝐴𝜃,𝑖

)
(𝑠𝑖, 𝛿𝑖, (⋅, ⋅))

‖‖‖‖‖‖𝐿2([0,𝐿]×[0,𝑇 ])

where 𝐴𝜃,𝑖 =
(
𝐴0,𝑖
𝛽
(𝑃𝜃 − 𝑃𝑒𝑥𝑡,𝑖) +

√
𝐴0,𝑖

)2
. In [41], the authors show that the error of solutions to the Navier-Stokes by neural networks 

can be bounded by the residual errors. The residual errors of the two methods are shown in Table 2.

The second metric we used to evaluate the error is the relative error compared to a fine-tuned BP-DeepONet (or hyper BP-

DeepONet) on each test sample. Though we do not know the ground true solution, we have shown in Section 5 that a well-trained 
PINN solution is reasonably accurate compared to the simulated true solution. Therefore, we can fine-tune the network on each test 
sample, i.e., minimize the PDE residual loss of this particular sample only, and use this fine-tuned network as an approximation to 
the true solution. During the fine-tuning stage, we fix the parameters in the branch net and only train the parameters in the trunk net 
so that predictions of hyper-parameters will not change. The error metric is defined as:

𝑁∑
𝑖=1

‖‖‖(𝑃𝑡𝑢𝑛𝑒𝑑 − 𝑃𝜃) (𝑠𝑖, 𝛿𝑖, (⋅, ⋅))‖‖‖𝐿1([0,𝐿]×[0,𝑇 ])‖‖‖𝑃𝑡𝑢𝑛𝑒𝑑 (𝑠𝑖, 𝛿𝑖, (⋅, ⋅))‖‖‖𝐿1([0,𝐿]×[0,𝑇 ])
17

and
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Table 3

The relative error of two proposed methods.

error of 𝑃𝜃 error of 𝑄𝜃

BP-DeepONet 4.10×1e-2 5.35×1e-2

Hyper BP-DeepONet 4.18×1e-2 1.03×1e-1

Fig. 15. Visualization of the workflow of BP-DeepONet and hyper BP-DeepONet on one testing sample.

𝑁∑
𝑖=1

‖‖‖(𝑄̂𝑡𝑢𝑛𝑒𝑑 −𝑄𝜃

)
(𝑠𝑖, 𝛿𝑖, (⋅, ⋅))

‖‖‖𝐿1([0,𝐿]×[0,𝑇 ])‖‖‖𝑄̂𝑡𝑢𝑛𝑒𝑑 (𝑠𝑖, 𝛿𝑖, (⋅, ⋅))
‖‖‖𝐿∞([0,𝐿]×[0,𝑇 ])

where 𝑃𝑡𝑢𝑛𝑒𝑑 and 𝑄̂𝑡𝑢𝑛𝑒𝑑 denote the solution after fine-tuning. The relative errors are given in Table 3. We can see the BP-DeepONet 
can predict the PDE solution better than the hyper BP-DeepONet. This result is not surprising because the BP-DeepONet assumes all 
samples satisfy the same PDE, which greatly simplifies the problem.

We also visualize the workflow of both methods for one test sample in Fig. 15 and the predicted waveforms at different locations 
in Fig. 16. The predicted hyper-parameters differ from the reference values used for the BP-DeepONet, but it does not deviate too 
much because of the regularization techniques we used during training. We can observe that the predictions of both the BP-DeepONet 
and the hyper BP-DeepONet are very close to the ground truth data at the outlet side 𝑧 = 𝐿 (Fig. 16 (a)). The pulse pressure, i.e., the 
difference between the maximum and minimum of the waveforms, also increases when 𝑧 increases. Because the hyper BP-DeepONet 
18

uses different hyper-parameters for each sample, its prediction differs from BP-DeepONet in 𝑧 ∈ (0, 1).
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Fig. 16. Predictions of ABP waveforms at different locations 𝑧.

7. Conclusions and future works

In this work, we propose two methods based on the physics-informed DeepONet to predict the blood pressure waveform: the 
BP-DeepONet and the hyper BP-DeepONet. We incorporate the Navier-Stokes equation with time-periodic conditions and Windkessel 
boundary conditions into the physics-informed training procedure and provide efficient implementation algorithms. The proposed 
methods are the first ones that can predict waveforms at different locations which may better reflect the cardiovascular status. For 
example, we can directly predict the brachial blood pressure to indicate the risk of hypertension.

During our numerical experiments, the proposed methods can predict blood pressure waveforms at reasonable accuracy and 
preserve some physical properties consistent with the clinical observations. Though the training and testing data used in this work 
are obtained from ICU patients, we still expect our methods can be generalized to some non-ICU patients. When the patients are 
in a stationary state, our method should still be able to predict the blood flow dynamics reasonably well. Even though the direct 
measurement of arterial blood pressure is not available, physiological signals like ECG and PPG are still easy to measure accurately. 
However, it would be difficult to make predictions when patients are in a non-stationary state since the measurements of ECG and 
PPG are not accurate and the blood flow dynamics may have a significant shift from the training set.

This work only considers very standard DNN models for trunk and branch nets. We may try implementing different DNN architec-

tures in the future, like the transformer, which is very powerful in processing time-series data. Besides, the inputs to the DeepONet 
are just the pre-processed physiological signals. We may also try including some morphological features in the inputs, effectively 
improving the prediction accuracy.

We know the arterial system of humans is very complicated. As the first work in this direction, we only consider a simple cylindrical 
segment of an artery. Still, we may generalize our methods to more complex geometry afterward—for example, a simple arterial tree 
with bifurcations.

In the future, we will also consider generating a simulated dataset to validate better the accuracy of both BP-DeepONet and hyper 
BP-DeepONet methods.
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