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Abstract: Three-dimensional (3D) point source recovery from two-dimensional (2D) data is a14

challenging problem with wide-ranging applications in single-molecule localization microscopy15

and space-debris localization telescopy. Point spread function (PSF) engineering is a promising16

technique to solve this 3D localization problem. Specifically, we consider the problem of 3D17

localization of space debris from a 2D image using a rotating PSF where the depth information is18

encoded in the angle of rotation of a single-lobe PSF for each point source. Instead of applying a19

model-based optimization, we introduce a convolution neural network (CNN)-based approach to20

automatically localize space debris in full 3D space. A hard sample training strategy is proposed21

to further improve the performance of CNN. Contrary to the traditional model-based methods,22

our technique is efficient and outperforms the current state-of-the-art method by more than 11%23

in the rate of precision with a comparable improvement in the rate of recall.24

© 2023 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement25

1. Introduction26

Three-dimensional localization of point sources is an indispensable part of applications in27

different fields. One example is 3D single-molecule localization microscopy (SMLM), which28

localizes individual fluorophores in 3D structures to render super-resolution images or facilitate29

analyses of fluorescent molecules [1–6]. When the images of individual fluorophores do not30

overlap, the coordinates of each fluorophore can be located with high precision. By activating31

and imaging subsets of fluorophores with non-overlapping images from which a composite image32

is reconstructed, SMLM overcomes the diffraction limit and can image biological structures near33

the molecular scale. Another example is detecting and localizing space debris in the vicinity of a34

space asset, such as a satellite, by using active illumination and 3D imaging modules mounted on35

it. The inclination and altitude of operational satellite orbits can be changed, if necessary, to36

mitigate collisions with space debris if the latter can be 3D-tracked accurately. Active space debris37

removal will, in fact, become increasingly critical as space technology becomes increasingly38

widely used. According to the NASA Orbital Debris Program Office, currently, there are more39

than 26,000 objects in orbit around Earth, including both operational and defunct satellites and40

other human-made debris [7]. The natural decay of space debris can take months to years, a41

rate that is dwarfed by the typical rates at which fresh debris are being generated [8]. Radar42

systems can sometimes detect such space objects, but can, at best, localize them with lower43

precision than the shorter-wavelength optical systems. A stand-alone optical system based on44

the use of a light-sheet illumination and scattering concept [9] for spotting debris within meters45
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of a spacecraft has been proposed. A second system can localize all three coordinates of an46

unresolved, scattering debris [10, 11] by utilizing either the parallax between two observations, a47

pulsed laser ranging system, or a hybrid system. However, to the best of our knowledge, there48

is no other proposal of either an optical or an integrated optical-radar system to perform full49

3D debris localization and tracking in the range of tens to hundreds of meters. Prasad [12] has50

proposed engineering point spread functions for 3D localization that exploits off-center image51

rotation.52

Point spread function (PSF) engineering is a promising technique for solving the 3D localization53

problem, particularly in microscopy. The PSF morphology in a single 2D snapshot can be used to54

encode the depth information of a point source by using a selected phase pattern. The phase mask55

makes defocused images of point sources depth-dependent without excessive blurring. Different56

kinds of phase masks yield different kinds of depth-dependent PSFs, including the astigmatic57

PSF [13], tetrapod PSF [14], double-helix PSF [15] and single-lobe rotating PSF [12, 16, 17].58

Our work only focuses on the single-lobe rotating PSF proposed by Prasad [12], which exploits59

off-center image rotation to encode both the range 𝜁 and lateral coordinates (𝑥, 𝑦) of point sources.60

Such idealized sources can model small, sub-centimeter class space debris, which, when actively61

illuminated, scatter a fraction of laser irradiance back into the imaging sensor.62

Model-based approaches [18–21] have been explored to recover 3D coordinates of point63

sources via a rotating PSF imager. In general, these algorithms recover source locations by64

solving an optimization problem with an objective function consisting of a data-fitting term and a65

regularization term. For images corrupted by Poisson noise, the KL-NC algorithm, proposed66

in [18], consists of Kullback-Leibler (KL) divergence based data-fidelity term and a non-convex67

(NC) regularization term. It outperforms other combinations, such as ℓ2-ℓ1, the least-squares68

fitting-term model with the convex ℓ1 regularization model, which is also considered in [18]. For69

the case of Gaussian noise, the CEL0 algorithm [20] using an ℓ2 fitting term and an approximate70

ℓ0 regularization term is proposed. Other multi-emitter fitting algorithms [1, 2, 22] exist in71

the field of super-resolution microscopy localization. However, these methods may require72

considerable computational time and careful adjustment of parameters in different situations.73

Data-driven methods [3, 5, 6, 23] are also used for the localization problem in the field of74

microscopy, with fewer custom parameters. Over the past decade, deep learning-based data75

analytic methods have gained considerable attention in various fields. In recent years, this trend76

has reached the single-molecule imaging community. Generating a sufficiently large training77

dataset is very fast for SMLM experiments compared to other deep learning applications. To do78

this, related works usually employ a well-characterized forward model of the specific PSF to79

simulate the desired image pattern. Models trained on simulated data are then applied to real data,80

such as images acquired from microscopy. DeepSTORM3D [5] is a typical example of using a81

well-defined tetrapod PSF model to train a neural network with simulated data, which is then82

validated using both simulated and experimental data. It is applied to localization microscopy to83

render a super-resolution image of micro-tubules from images composed of single or overlapping84

PSFs. In [3], different representations of ground-truth labels are used. Given a 2D image, the85

neural network directly outputs a collection of fluorophore coordinates. In [6], recurrent layers86

are used to replace convolution layers to extract features more efficiently and save computational87

costs. A deeper framework called DECODE is proposed in [23]. DECODE allows input of88

multiple consecutive frames and concatenates features from multiple frames, based on the fact89

that emitters can persist in multiple subsequent frames. Compared with conventional model-based90

optimizations, data-driven methods require minimal refinements of parameters. However, the91

lack of interpretability prevents us from discussing the trade-off between precision and recall.92

In order to dispense with careful and expensive adjustments of parameters that are specific93

to each situation, we introduce here a localization network to localize space debris using a94

rotating PSF. As the performance of the localization network shows a certain bias, a hard-sample95



strategy [24, 25] is additionally integrated into the network structure to refine the dataset and96

improve performance by adjusting the trade-off between the precision and recall evaluation97

metrics. This also improves the interpretability of the network. To the best of our knowledge, our98

algorithm is the first developed so far for snapshot 3D localization and tracking of space debris99

via a rotating PSF approach within the deep learning framework. Our technique is efficient,100

and outperforms the current state-of-the-art model-based KL-NC method by more than 11% in101

precision with a comparable improvement of the recall rate. In addition, the proposed learning102

pipeline can be easily adapted to 3D SMLM applications.103

The rest of this article is organized as follows: In Section 2, we first introduce the physical-optics104

model underlying the rotating PSF and subsequently calculate the minimum variance of unbiased105

estimation of the position coordinates of a point source by inverting the Fisher information106

matrix with respect to those coordinates. A localization network that incorporates a hard-sample107

strategy is proposed in Section 3. We then present a series of computer-simulation-based results108

in Section 4 to illustrate our approach and finally provide conclusions in Section 5.109

2. Rotating point spread function110

In this section, the physics model for the single-lobe rotating PSF is formulated, and the111

Cramer-Rao lower bound (CRLB) analysis is used to calculate the minimum variance of unbiased112

estimation of the source coordinates using such PSF. We use the CRLB as a criterion for choosing113

the only adjustable parameter in the original rotating-PSF design, namely the Fresnel zone count114

𝐿, and for evaluating the performance of the rotating PSF.115

2.1. Physics model for single-lobe rotating PSF116

The PSF describes the image of a point source created by an imaging system. Here we specifically117

consider the single-lobe rotating PSF, which encodes the depth coordinate of the point source118

into the amount of PSF rotation [12]. In the paraxial scalar-field approximation, which is accurate119

for low-NA microscopy and telescopic imaging being considered here, the rotating PSF A𝜁 for a120

point source with unit flux 𝑓 = 1, source lateral location r0 = (𝑥0, 𝑦0), and defocus parameter 𝜁121

is given by122

A𝜁 (s) =
1
𝜋

����∫ 𝑃(u)exp
[
𝜄(2𝜋u · s + 𝜁𝑢2 − 𝜓(u))

]
𝑑u

����2 , (1)

where 𝜄 =
√
−1 and s = r

𝜆𝑧𝐼/𝑅 is the scaled version of image plane position vector r as measured123

from the Gaussian image point that is located at r𝐼 = 𝑧𝐼r0
𝑙0+𝛿𝑧 and about which the PSF rotates in124

the transverse image plane. Here 𝜆 is the imaging wavelength, and 𝛿𝑧 , 𝑙0, 𝑧𝐼 are the distances125

from the object to the in-focus object plane, in-focus object plane to the object-side principal126

plane, and image-side principal plane to the image plane, respectively. We denote the indicator127

function for the telescope exit pupil as 𝑃(u), with u being the scaled pupil-plane position vector128

obtained from the physical pupil-plane position vector 𝝆 by dividing it by the pupil radius 𝑅. In129

addition, 𝜓(u) is the spiral phase profile defined in terms of the polar coordinates u = (𝜙u, 𝑢) in130

the pupil plane as131

𝜓(u) = 𝑙𝜙u, for
√︂
𝑙 − 1
𝐿

≤ 𝑢 ≤
√︂
𝑙

𝐿
, 𝑙 = 1, · · · , 𝐿, (2)

where 𝐿 represents the number of annular zones in the phase mask.132

The rotating PSF performs one complete rotation in the depth-misfocus range 𝜁 ∈ [−𝜋𝐿, 𝜋𝐿],133

before it disintegrates unacceptably. In the paraxial-imaging regime, the physical depth misfocus134

distance, 𝛿𝑧 , from the plane of Gaussian focus is related to the dimensionless parameter, 𝜁 , by135



the relation,136

𝜁 = − 𝜋𝛿𝑧𝑅
2

𝜆𝑙0 (𝑙0 + 𝛿𝑧)
. (3)

For microscopy, typically 𝛿𝑧 ≪ 𝑙0, but for remote sensing applications of interest here, 𝛿𝑧 may137

be of comparable order to 𝑙0 or even much larger than 𝑙0. In the latter case, as Eq. (3) shows,138

𝜁 becomes essentially independent of 𝛿𝑧 and the rotating PSF no longer carries any signature139

of source depth. This would tend to limit the range of performance of a practical rotating-PSF140

system for 3D localization of space debris under active illumination to depths of a few meters to141

a few hundreds of meters.142

Figure 1 shows the comparison of the Gaussian PSF with the single-lobe rotating PSF. We143

generate the former PSF by using a Gaussian phase mask. The dimensionless parameter, which is144

proportional to the physical depth in the small misfocus limit, 𝛿𝑧 ≪ 𝑙0, is changing in the range145

[−𝜋𝐿, 𝜋𝐿], where 𝐿 is the number of Fresnel zones used in rotating PSF, which is set to be 7146

here. It can be seen that rotating PSF maintains, on average, a smaller footprint while encoding147

depth (𝛿𝑧) information in its angle of rotation throughout this misfocus range. Its smaller average148

footprint allows it to continuously concentrate its intensity near the center of rotation, the latter149

being the (𝑥, 𝑦) position of the source. By contrast, the peak brightness of the Gaussian PSF150

decreases and its width increases rapidly as the point source moves away from the focus.151

The observed image 𝐼 with 𝑀 point sources is then generated as152

𝐼 (𝑥, 𝑦) = P
(
𝑀∑︁
𝑖=1

A𝑖 (𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖) 𝑓𝑖 + 𝑏
)
, (4)

where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), and 𝑓𝑖 are, respectively, the 3D coordinates and the radiant flux of the 𝑖th point153

source. The information about the source depth, 𝑧𝑖 , is encoded in the rotating PSF A𝑖 via the154

dimensionless defocus parameter 𝜁𝑖 . Here 𝑏 is the spatially uniform mean background count per155

pixel, and P is the operator for adding data-dependent Poisson noise to the image.156

Gaussian	PSF

Rotating PSF

; = −24 −16 −8 0 8 16 24

Fig. 1. Images of a single point source generated using the Gaussian PSF and the
rotating PSF. The shape of PSFs is a function of the axial position of the point source.
The Gaussian PSF is generated by inserting a Gaussian phase mask. The axial distance
represented by the dimensionless parameter 𝜁 of the two rows of images is in the range
[−𝜋𝐿, 𝜋𝐿], where the number of zones is 𝐿 = 7.

2.2. Cramér-Rao lower bounds for rotating PSF157

The minimum possible error variance for unbiased estimation of a parameter from statistical158

data is called the Cramér-Rao lower bound (CRLB) [26,27]. We now calculate the CRLB for159



estimating the coordinates of a point source by considering its rotating PSF image, ℎ(r), where r160

denotes the position vector with respect to the location of the Gaussian image of the source. For161

notational brevity, we omit the 𝜁 coordinate of the source from the list of arguments in its image162

ℎ.163

Let the square pixel pitch be 𝑎, pixel array size 𝑁 × 𝑁 , and the average total signal and164

background photon counts distributed over the entire array be 𝐾 and 𝐵, respectively. Let the165

background counts be uniform on average, with 𝑏 = 𝐵/𝑁2 being the average background count166

per pixel. The mean photon count at the (𝑖, 𝑗) pixel then has the value,167

E(𝐾𝑖 𝑗 ) = 𝐾ℎ𝑖 𝑗 (r)𝑎2 + 𝑏, (5)

where we have assumed that the PSF is properly normalized over the image plane,168 ∫
𝑑𝐴𝐼 ℎ𝐼 (r) ≈

∑︁
𝑖, 𝑗

ℎ𝑖 𝑗 (r)𝑎2 = 1, (6)

and the sampling pixel size is fine enough that ℎ(r) when integrated over the 𝑖 𝑗 th pixel may be169

accurately replaced by its value at the pixel center, ℎ𝑖 𝑗 , times the pixel area, 𝑎2. Note that the170

sum condition in Eq. (6), when combined with Eq. (5), implies the sum rule,171 ∑︁
𝑖, 𝑗

E(𝐾𝑖 𝑗 ) = 𝐾 + 𝐵. (7)

We will henceforth use a lexicographic single-index remapping of the pixels, (𝑖, 𝑗) ↦→ 𝑛, as the172

actual square arrangement of the pixel array is irrelevant for our subsequent calculations.173

The probability of detection of a count 𝐾𝑛 at the 𝑛-th pixel follows the Poisson distribution,174

𝑃(𝐾𝑛 |ℎ, 𝐾, 𝐵) =
[E(𝐾𝑛)]𝐾𝑛

𝐾𝑛!
exp[−E(𝐾𝑛)], E(𝐾𝑛) = 𝐾ℎ𝑛 𝑎2 + 𝑏. (8)

Thus under the assumption of pixels performing statistically independent detections, the joint
probability of detection of a set of counts, {𝐾1, 𝐾2, . . . , 𝐾𝑁2 }, has the product form,

𝑃({𝐾𝑛}|ℎ, 𝐾, 𝐵) =
𝑁 2∏
𝑛=1

[E(𝐾𝑛)]𝐾𝑛

𝐾𝑛!
exp[−E(𝐾𝑛)]

= exp[−(𝐾 + 𝐵)]
𝑁2∏
𝑛=1

(𝐾ℎ𝑛 (𝒓)𝑎2 + 𝑏)𝐾𝑛

𝐾𝑛!
. (9)

Hence its logarithm has the following form:175

ln 𝑃 = −(𝐾 + 𝐵) +
∑︁
𝑛

[
𝐾𝑛 ln(𝐾ℎ𝑛 (r) 𝑎2 + 𝑏) − ln𝐾𝑛!

]
. (10)

The 𝜇, 𝜈 element of the Fisher information matrix, 𝐽𝜇𝜈 , is defined [26, 27] as the statistical176

expectation,177

𝐽𝜇𝜈 = E

(
𝜕 ln 𝑃
𝜕𝑥𝜇

𝜕 ln 𝑃
𝜕𝑥𝜈

)
, 𝜇, 𝜈 = 1, 2, 3, (11)

in which 𝑥𝜇 is the 𝜇-th component of the source location vector r. Since ln 𝑃 given by Eq. (10)178

depends on r only through the dependence of ℎ on r, we can see that the above expression for FI179

simplifies to the following expectation of a double sum over the pixels:180

𝐽𝜇𝜈 = 𝐾
2𝑎4

∑︁
𝑛

∑︁
𝑚

E(𝐾𝑛𝐾𝑚)𝜕𝜇ℎ𝑛 𝜕𝜈ℎ𝑚
(𝐾𝑎2ℎ𝑛 + 𝑏) (𝐾𝑎2ℎ𝑚 + 𝑏)

, (12)



in which 𝜕𝜇, 𝜕𝜈 are each a shorthand symbol for the partial derivative of the quantity that
immediately follows it with respect to 𝑥𝜇, 𝑥𝜈 , respectively. Since the detections by different
pixels, indexed by 𝑚 ≠ 𝑛, are statistically independent, while for the 𝑛th pixel, under Poisson
statistics, E(𝐾2

𝑛) = [E(𝐾𝑛)]2 + E(𝐾𝑛), we may see that by dividing the double sum in expression
(12) into a double sum over all 𝑚 ≠ 𝑛 terms and a single sum over 𝑚 = 𝑛 terms, we have

𝐽𝜇𝜈 =𝐾
2𝑎4

∑︁
𝑛

∑︁
𝑚

E(𝐾𝑛) E(𝐾𝑚)𝜕𝜇ℎ𝑛 𝜕𝜈ℎ𝑚
(𝐾𝑎2ℎ𝑛 + 𝑏) (𝐾𝑎2ℎ𝑚 + 𝑏)

+ 𝐾2𝑎4
∑︁
𝑛

E(𝐾𝑛) 𝜕𝜇ℎ𝑛 𝜕𝜈ℎ𝑛
(𝐾𝑎2ℎ𝑛 + 𝑏)2

=𝐾2𝑎4

[(∑︁
𝑛

𝜕𝜇ℎ𝑛

) (∑︁
𝑚

𝜕𝜈ℎ𝑚

)
+

∑︁
𝑛

𝜕𝜇ℎ𝑛 𝜕𝜈ℎ𝑛

𝐾𝑎2ℎ𝑛 + 𝑏

]
=𝐾2𝑎4

∑︁
𝑛

𝜕𝜇ℎ𝑛 𝜕𝜈ℎ𝑛

𝐾𝑎2ℎ𝑛 + 𝑏
. (13)

To arrive at the second equality in Eq. (13), we used the relation in Eq. (5) to cancel out all factors181

except for the partial derivatives of the PSF in the double sum and to simplify the single sum.182

The final equality in Eq. (13) follows from the fact that the sum
∑
𝑛 ℎ𝑛 is fixed at 1/𝑎2 according183

to the normalization condition (Eq. (6)) on the PSF and thus its derivative must vanish, i.e.,184

𝜕𝜇

∑︁
𝑛

ℎ𝑛 =
∑︁
𝑛

𝜕𝜇ℎ𝑛 = 0,∀𝜇. (14)

The CRLBs on the estimation of the 𝑥, 𝑦, 𝑧 coordinates of the point source are the corresponding185

diagonal elements of the inverse of the 3 × 3 FI matrix, i.e.,186

CRLB(𝑥) = 𝐽−1
11 , CRLB(𝑦) = 𝐽−1

22 , CRLB(𝑧) = 𝐽−1
33 . (15)

Let us write the rotating PSF as187

ℎ(r) = 𝐸 (r) 𝐸∗ (r), (16)

where 𝐸 denotes the complex amplitude PSF that may be expressed as the pupil area integral188

𝐸 (r) = 1
√
𝜋

∫
𝑑𝐴 𝑃(𝒖) exp[𝑖(2𝜋𝒖 · r + 𝜁𝑢2 + Ψ(𝒖))], (17)

in which 𝑃(𝒖) is the pupil indicator function, taking the value 1 inside the circular pupil of189

normalized radius 1 and 0 outside, 𝒖 · r = (𝑢1𝑥 + 𝑢2𝑦) is the 2D inner product in the transverse190

plane, 𝜁 is the defocus coordinate, and Ψ(𝒖) is the 𝐿−zone spiral phase mask that produces191

the PSF rotation. The dimensionless position coordinates 𝑥, 𝑦, 𝜁 are related to the physical192

image-plane position coordinates of the source by the following scaling transformations (for193

𝛿𝑧 ≪ 𝑙𝑂):194

𝑥 ↦→ 𝑥(𝜆𝑧𝐼/𝑅), 𝑦 ↦→ 𝑦 (𝜆𝑧𝐼/𝑅), 𝛿𝑧 = −𝜁 (𝜆𝑙2𝑂/(𝜋𝑅
2), (18)

as we already know.195

From the form of the rotating PSF in Eq. (16), it follows that196

𝜕𝜇ℎ = 𝐸∗𝜕𝜇𝐸 + 𝐸𝜕𝜇𝐸∗ = 2ℜ(𝐸∗𝜕𝜇𝐸), (19)

where ℜ denotes the real part of the quantity that follows it. The amplitude PSF has the following197

partial derivatives with respect to 𝑥, 𝑦, 𝜁 :198

𝜕𝜇𝐸 =
1
√
𝜋


𝑖2𝜋

∫
𝑑𝐴 𝑃(𝒖) 𝑢𝜇 exp[𝑖(2𝜋𝒖 · r + 𝜁𝑢2 + Ψ(𝒖))], 𝜇 = 1, 2

𝑖

∫
𝑑𝐴 𝑃(𝒖) 𝑢2 exp[𝑖(2𝜋𝒖 · r + 𝜁𝑢2 + Ψ(𝒖))], 𝜇 = 3.

(20)



Each of the area integrals in Eqs. (17) and (20) is readily evaluated using the MATLAB199

function “integral2”, which, in view of Eq. (19), thus computes the three partial derivatives200

needed inside the sum (12) that represents the FI matrix elements.201

The associated CRLBs for the rotating PSF, given by Eq. (15), then yield the minimum202

variances for any unbiased estimation of the dimensionless source coordinates (𝑥, 𝑦, 𝜁). They203

are used as a criterion to evaluate the localization error performance when comparing different204

localization methods.205

3. Localization network206

In this section, we propose a supervised localization network for obtaining the point source207

positions. In addition, we explore a hard-sample strategy in the training set preparation to improve208

the interpretability of results.209

3.1. Architecture and the pipeline of LocNet210

Inspired by recent developments in deep learning for the 3D SMLM [5, 23], we propose a211

CNN-based method for our specific single-lobe rotating PSF with applications to telescope212

imaging. We implement the network structure on the deep learning platform PyTorch. We will213

henceforth refer to our CNN-based localization framework as LocNet.214
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Fig. 2. A visualization of the LocNet framework.

A schematic of LocNet is shown in Figure 2. The framework consists of a network that is215

followed by a post-processing part. The network architecture comprises feature extraction parts,216

one interpolation layer, and one final prediction layer. For feature extraction parts, the first217

residual convolution layer [28] is used to increase the number of channels from the input gray218

image. We then set dilation rates for the subsequent five residual convolution layers following219

the hybrid dilated scheme [29], namely, 1, 2, 5, 9, 17, to avoid the gridding issue. Residual220

convolution layers are represented by blue arrows in Figure 2. Each of these layers consists of221

a 2D convolution layer (Conv2D) with the filter size being 3 × 3 × 𝑐, where 𝑐 is the channel222

number, a batch normalization (BN) layer, a rectified linear unit (ReLU) working as activation223

layer and an addition operator to implement the summation of input and output that estimate the224

residual. The interpolation layer is represented by a green arrow that first upsamples the input225

features by two times using nearest neighbor interpolation, followed by Conv2D, BN, and ReLU226

operations. The final prediction layer is represented by an orange arrow consisting of Conv2D227

and the HardTanh function as the activation layer. The HardTanh function limits each entry228

to the range [0, 𝑠], which is consistent with the entry values of point sources in ground truth229

labels mentioned below. The white blocks represent the intermediate features. The output of the230

network is a 3D discretized grid. The post-processing block, which follows the prediction layer,231

is represented as a gray arrow. Comprised of clustering and thresholding protocols, it controls232

the sparsity of the network output, producing a 3D grid with fewer nonzero entries.233



Given the observed image 𝐼 ∈ Rℎ×𝑤 as the input, the LocNet outputs the corresponding234

up-sampled 3D grid X̂ ∈ R2ℎ×2𝑤×𝑑′ , with each entry value indicating the possibility of the235

existence of a point source. Both the width and height of X̂ are upsampled by a factor of 2, and236

𝑑 ′ denotes the number of slices with evenly distributed 𝜁 . We adopt the mean square error as our237

loss function for localizing objects in our task. To evaluate the accuracy of our predictions, we238

compare them with the simulated ground truth using the 𝑙2 distance between their respective239

heatmaps. Specifically, we compute the following expression,240

𝑙 (X̂,XGT) = ∥G ∗ X̂ − G ∗ (𝑠XGT)∥2
𝐹 , (21)

where XGT ∈ R2ℎ×2𝑤×𝑑′ is denoted as the ground truth, and G is a 3D Gaussian kernel with241

a standard deviation of 1 voxel. The Frobenius norm of a 3D tensor A is defined as ∥A∥𝐹 =242 √︃∑
𝑖 𝑗𝑙

��𝑎𝑖 𝑗𝑙 ��2. The ground-truth grid XGT indicates the existence of point sources,243

(XGT)𝑢𝑣𝑤 =

{
1, (𝑢, 𝑣, 𝑤) = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖),
0, otherwise,

(22)

where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) are the 3D coordinates of the 𝑖th point source. When we consider the 3D244

localization problem as a classification problem of entries, it is highly unbalanced, with only a245

few entries having point sources. We use a large value 𝑠 = 800 as the weight of those entries246

with existing point sources in the ground truth grid X𝐺𝑇 to prevent gradient clipping [5]. The247

last activation layer HardTanh also limits the entries of output X̂ to the same range. Since the248

output of our model X̂ is unsampled, we rescale the ground-truth coordinates by the same factor249

and round them up and down to entries that match the discretized grid XGT. Additionally, we add250

a small blur, via G, to each ground-truth point source to compensate for minor shift errors that251

may occur while transforming actual point source coordinates onto a 3D lattice.252

Since we focus on the rotating PSF and the loss function does not require sparsity of prediction,253

we use Algorithm 4.2 in [18] for post-processing, which contains two steps. The first step clusters254

point sources within a certain distance into a single point source, significantly reducing false255

positives. The second step removes point sources with intensity lower than 5% of the highest256

value. In this way, a list of coordinates
{
(𝑥 ′1, 𝑦

′
1, 𝑧

′
1), (𝑥

′
2, 𝑦

′
2, 𝑧

′
2), ..., (𝑥

′
𝑛′ , 𝑦

′
𝑛′ , 𝑧

′
𝑛′)

}
is obtained as257

the final set of predicted point-source locations.258

3.2. Data preparation and network training259

We simulate both datasets used to train the LocNet and test the performance using the well-260

calibrated forward model of rotating PSF via Eq. (4). For comparison with KL-NC, we set261

the same number of zones 𝐿 = 7 in rotating PSF and generate images with size 96 × 96.262

Considering the image center as the origin, all point sources in images have lateral coordinates263

(𝑥, 𝑦) ∈ (−34, 34) × (−34, 34) in pixel units, and the dimensionless parameter 𝜁 ∈ [−7𝜋, 7𝜋],264

which is proportional to the depth misfocus of the point sources. The magnitude of the maximum265

lateral coordinate relative to the image center is set to be smaller than half of the image size,266

which prevents the PSF from being cropped by the boundaries of the images. In the test set, 9267

different source-density values following the uniform distribution in the range of 5 to 45 point268

sources, are considered. The photon numbers emitted by each point source follow a Poisson269

distribution with a mean of 2000 photon counts, which follows the setting in [18], as shown in270

Figure 3. It does not depend on different density cases. The uniform background noise is set to271

5. For each density case, we generate 100 test images and take the average precision and recall272

rate to evaluate localization performance. In the training set, 10,000 images are simulated, with273

90% used for training and the remaining 10% used for validation during the training of LocNet.274

The number of point sources in these 10,000 images follows a uniform distribution from 5 to 45,275

which covers all of the source densities tested.276



Fig. 3. The count number of point sources in each range of photon numbers out of
10,000 point sources, when the photon numbers follow the Poisson distribution with a
mean of 2000.

The model is optimized by the Adam optimizer with an initial learning rate being 5 × 10−4,277

which is found in the middle of the descending loss curve. The learning rate decays by a factor of278

2 after every three epochs that the loss does not improve. The training stops when the learning279

rate is lower than 1 × 10−7 or the loss does not improve within 15 epochs. The training ran over280

300 epochs with a total of 9,000 images, which took about one day on a computer equipped with281

an NVIDIA GeForce RTX 2080 Ti GPU and an Intel Xeon Silver Processor 4210 (2.20 GHz).282
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Fig. 4. Simulation-based results at different point source densities. (a) Average recall
rate for 100 test images from KL-NC and LocNet. (b) Average number of final predicted
point sources for 100 test images from KL-NC and LocNet.

3.3. Hard sample strategy283

When considering telescope imaging, we want to guarantee that ground-truth point sources are284

predicted while accepting a small number of false positives. However, we found that the results of285

CNN-based methods exhibit specific biases, see Figure 4. For all the different densities, LocNet286

tends to generate fewer point sources than KL-NC. In some cases, LocNet has a lower recall than287

KL-NC.288

Hard sample mining [30–33] is a promising approach to improve the performance of CNN289

based on considering the hardness of each sample. Resampling is one of the hard sample methods.290

It is widely used in dealing with highly unbalanced datasets, which helps prevent the network bias291



toward learning information from the majority class and categorizing it into the majority class in292

the image classification task. It consists of adding more examples in the minority class by data293

augmentations such as rotating and flipping and/or removing some examples in the majority class.294

Inspired by these techniques, we propose a hard sample strategy customized for LocNet. The295

hard sample selection criteria focus on the index that is of the greatest concern in an application.296

As shown in Table 1, LocNet has lower recall rates than KL-NC [18] for most of the density cases.297

Hence it is natural to set the recall rate as a criterion to evaluate the hardness of each sample.298

Instead of resampling from the existing training data, we obtain hard samples from a mock set299

Λ, newly generated from the forward model, since our images can be generated quickly based300

on the forward model of rotating PSF engineering [12]. Therefore, we enlarge the training data301

with some hard samples from a new mock set in each iteration. In general, for the 𝑘th iteration,302

we train the LocNet on a training set Ω(𝑘) and validate it on a mock set Λ(𝑘) . The recall rate303

is then calculated for each sample. Those samples whose recall rate is lower than the given304

threshold 𝜏 and thus prove to be difficult (“hard") to be predicted by the network, are moved into305

a hard-sample set Λ(𝑘)
𝜏 . The training set Ω(𝑘) is updated by adding those hard samples into it,306

namely, Ω(𝑘+1) = Ω(𝑘) ∪ Λ
(𝑘)
𝜏 . After sufficient training iterations, a refined dataset for training307

and a trained model can be obtained. Figure 5 and Algorithm 1 summarize the workflow for308

training LocNet using a hard sample strategy. The model is then used for the prediction of test309

images with different point source densities to evaluate the performance.310

Fig. 5. Workflow of LocNet training with hard sample strategy. After each training
iteration, a mock set Λ is validated. Samples with lower recall rates are selected into a
hard sample set Λ𝜏 . The training set Ω is updated by adding those hard samples.

4. Results311

In this section, we apply our CNN-based approach on rotating PSF for localizing point sources312

and compare results to KL-NC [18], which uses a variational optimization method.313

We use recall and precision rate as metrics to judge the quality of 3D localization of point
sources on 2D observed images. The recall and precision rate are calculated by,

Recall rate =
Number of identified true positive point sources

Number of all true point sources
,

Precision rate =
Number of identified true positive point sources

Number of all point sources identified by algorithm
.



Algorithm 1: LocNet with Hard Sample Strategy for 3D Localization.
Input: Training set Ω(0) , the maximum iteration number kMax, threshold 𝜏, and set 𝑘 = 0

1 while 𝑘 ≤ kMax do
2 Train LocNet with Ω(𝑘)

3 Generate a mock set Λ(𝑘)

4 Estimate 3D localization for each sample in Λ(𝑘)

5 Do the evaluation to get recall rates
6 Select hard-sample set Λ(𝑘)

𝜏 corresponding to the recall rate being lower than 𝜏
7 Ω(𝑘+1) = Ω(𝑘) ∪ Λ

(𝑘)
𝜏

8 𝑘 = 𝑘 + 1
9 end

True positive point sources are determined by considering the distance threshold between pairs314

of predicted and ground-truth point-source locations. According to our choice of the pupil-plane315

side length used in our FFT-based simulation of the rotating PSF, point sources within two-pixel316

units in the transverse dimensions from the ground-truth locations meet the Abbe-Rayleigh317

criterion of minimum transverse-resolvability threshold. Sources meeting this threshold still have318

to be within one unit of 𝜁 in the axial dimension of the ground-truth source locations before we319

regard them as accurate estimations.320

Table 1. Evaluation results of KL-NC [18], LocNet, and its variants. The result of
LocNet with hard sample strategy is shown in columns of LocNet-HS. A control group
of LocNet is trained on the same volume of samples as LocNet-HS but without using a
hard sample strategy.

Number of
Point Sources

KL-NC [18] LocNet LocNet-HS Control Group

Precision Recall Precision Recall Precision Recall Precision Recall

5 96.40% 99.80% 98.80% 99.80% 99.33% 100.00% 98.80% 99.60%

10 95.00% 99.20% 96.28% 98.90% 98.19% 99.10% 97.22% 98.20%

15 89.18% 98.80% 95.54% 98.87% 96.74% 99.20% 96.23% 98.67%

20 85.02% 97.55% 94.45% 98.00% 95.17% 98.10% 95.07% 97.80%

25 82.55% 96.72% 93.17% 97.04% 94.48% 97.60% 93.87% 97.00%

30 79.54% 97.30% 93.97% 96.87% 94.37% 97.47% 94.01% 96.70%

35 77.78% 95.26% 92.06% 95.80% 92.15% 96.14% 92.00% 95.66%

40 73.64% 95.58% 90.59% 95.00% 90.89% 95.20% 90.21% 94.98%

45 72.42% 94.31% 88.59% 93.93% 89.14% 94.51% 89.15% 93.89%

Average 83.50% 97.17% 93.71% 97.13% 94.49% 97.48% 94.06% 96.94%

321

4.1. Comparison with the model-based method322

Table 1 shows the performance on test sets for 9 different point source densities, where the323

number of point sources is uniformly distributed between 5 and 45. The best precision and recall324

rates in each case are marked in bold. It can be seen that LocNet achieves higher precision than325

the KL-NC algorithm [18], but with lower recall, especially in high-density cases. However,326



using a hard sample strategy, our method yields comparable recall by adjusting the training327

dataset. Since the hard sample strategy adds new samples to the training dataset, we also generate328

a control group to demonstrate that the increase in training dataset samples is not the main reason329

for the improved performance. The training dataset for the control group is the same size as330

LocNet-HS but uses randomly generated new data instead of the hard sample strategy. The331

performance of the control group is comparable to LocNet without significant improvement.332

Figure 6 shows an example of the 25-point-source case. A comparison of the first two columns333

illustrates how the estimates from LocNet incurred fewer false positives but missed a ground-truth334

point source, the latter pointed out via a red arrow in Figure 6. This missed point source was335

recovered with the hard sample strategy, as seen in the third column. Examples of two other336

source densities are also shown in supplementary material.337

Fig. 6. 3D localizations for the 25-point-source case. The first row is 2D snapshots
where “o” is the ground-truth point source, and “x” is the estimated point source. The
second row is the locations shown in 3D grids. where the ground-truth point sources
are in red markers with red “Δ” being false-negative and red “o” being true-positive.
The estimated ones are in blue, with blue “Δ” being false-positive and blue “x” being
true-positive.

338

4.2. Localization error339

We next analyze the localization error for a single-point source using models pre-trained in340

Section 4.1. We sample the value of 𝜁 in the whole range [−𝜋𝐿, 𝜋𝐿] with step size =1. For341

each sampled value of 𝜁 , a test set of 100 images are generated. Each image contains only one342

point source with random 𝑥 and 𝑦 coordinates and the fixed 𝜁 . Figure 7 shows the root mean343

square error (RMSE) for KL-NC, LocNet, and LocNet-HS based localizations, compared with344

the theoretical lower bound from unbiased estimation. It can be seen that using a CNN-based345

framework significantly reduces the localization error, while LocNet-HS achieves still smaller346

localization errors in most sampled zeta values. In addition, since the output of KL-NC and347

LocNet are discretized 3D grids, the accuracy of their output will be limited by the spacing of the348

grids. However, after post-processing clustering, the center obtained from the cluster does not349

have to be on the grid, and the localization error can be much lower than the grid spacing, as can350

be seen in Figure 7.351



Fig. 7. Localization error of single point source in pixel unit computed from LocNet-HS,
LocNet, and KL-NC [18], compared with CRLB. The discretization error of LocNet-
HS/LocNet (the purple curve) is the grid spacing in the discretized output lattice, which
shows the limitation of network prediction.

4.3. Higher noise level352

To assess the robustness of our approach, we have also examined datasets with a higher noise353

level. In particular, we set the uniform background noise per pixel at the mean value of 𝑏 = 10, as354

opposed to 5 in the previous experiments. The results of the experiment, compared with KL-NC,355

are presented in Table 2. These findings reveal that in a more noisy and challenging scenario, our356

LocNet-HS model yields an even greater improvement, about 1.85% in precision and 1.25% in357

the recall rate.358

359

5. Conclusions360

In [18], KL-NC was shown to outperform other variational methods. In this work, we use a361

localization network with a hard sample strategy to localize positions of 3D point sources from a362

2D snapshot generated using rotating PSF. Our new approach further enhances the performance363

by removing false-positive point sources.364

Our future work will be focused on further improving both the performance and interpretability,365

using other tools such as physics-informed neural networks and associated loss terms and366

unrolling in combination with the hard-sample strategy of the present work. In addition, we will367

consider multi-frame images [34] to track the motion of space debris from the perspective of368

deep learning.369
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Table 2. Evaluation results of KL-NC [18], LocNet, and its variants when background
noise has the mean value, 𝑏 = 10. The result of LocNet with hard sample strategy is
shown in columns labeled as LocNet-HS. A control group of LocNet is trained on the
same volume of samples as LocNet-HS but without using a hard sample strategy.

Number of
Point Sources

KL-NC [18] LocNet LocNet-HS Control Group

Precision Recall Precision Recall Precision Recall Precision Recall

5 95.62% 98.40% 97.87% 99.60% 99.50% 98.60% 96.45% 99.40%

10 90.86% 97.60% 95.53% 97.50% 97.05% 98.60% 94.91% 97.50%

15 87.24% 97.27% 93.05% 96.93% 96.14% 98.13% 94.21% 96.40%

20 79.79% 96.55% 91.33% 96.20% 94.00% 97.65% 92.80% 93.25%

25 75.59% 96.12% 90.48% 94.60% 92.49% 96.20% 91.31% 91.72%

30 76.26% 94.73% 89.25% 94.57% 91.89% 95.43% 89.15% 95.13%

35 75.28% 94.94% 89.27% 92.47% 90.34% 94.54% 87.47% 94.10%

40 70.04% 93.90% 87.60% 91.83% 88.33% 93.60% 86.74% 93.10%

45 70.11% 92.56% 86.44% 90.69% 87.69% 92.84% 85.81% 92.49%

Average 80.09% 95.79% 91.20% 94.93% 93.05% 96.18% 90.98% 94.78%
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