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Abstract: Hyperspectral images often have hundreds of spectral bands of different wavelengths 1

captured by aircraft or satellites that record land coverage. Identifying detailed classes of pixels 2

becomes feasible due to the enhancement in spectral and spatial resolution of hyperspectral images. 3

In this work, we propose a novel framework that utilizes both spatial and spectral information for 4

classifying pixels in hyperspectral images. The method consists of three stages. In the first stage, the 5

pre-processing stage, Nested Sliding Window algorithm is used to reconstruct the original data by 6

enhancing the consistency of neighboring pixels and then Principal Component Analysis is used to 7

reduce the dimension of data. In the second stage, Support Vector Machines are trained to estimate 8

the pixel-wise probability map of each class using the spectral information from the images. Finally, 9

a smoothed total variation model is applied to ensure spatial connectivity in the classification map 10

by smoothing the class probability tensor. We demonstrate the superiority of our method against 11

three state-of-the-art algorithms on six benchmark hyperspectral data sets with 10 to 50 training 12

labels of each class. The results show that our method gives the overall best performance in accuracy 13

even with very small set of labeled pixels. Especially, the gain in accuracy with respect to other 14

state-of-the-art algorithms increases when the number of labeled pixels decreases, and therefore our 15

method is more advantageous to be applied to problems with small training set. Hence, it is of great 16

practical significance since expert annotations are often expensive and difficult to collect. 17

Keywords: hyperspectral image classification; semi-supervised learning; nested sliding window; 18

support vector machines; smoothed total variation; image reconstruction. 19

1. Introduction 20

Hyperspectral images (HSIs) often have hundreds of electromagnetic bands of re- 21

flectance collected by aircraft or satellites that contain rich spectral and spatial information. 22

HSIs can be represented by a tensor X ∈ RM×N×B, where M, N are the numbers of rows 23

and columns in each spectral band and B is the number of bands of the HSI [1]. In general, 24

each distinct material has its own spectral signature owing to its unique chemical composi- 25

tion. The enhancement in spectral resolution makes it more feasible to explore the HSIs 26

using machine learning approaches in various applications, such as land coverage mapping, 27

change recognition, water quality monitoring, and mineral identification [2–8]. The rich 28

information in HSIs enables the algorithms to distinguish more detailed categories for land 29

cover clustering and classification, and thus HSIs play a vital role in detecting different 30

natural resources and monitoring vegetation health [9–16]. These applications typically 31

require the results to be as accurate as possible for subsequent analysis, assessments and 32

actions. Therefore, HSI classification methods are always measured based on accuracies 33

[17]. 34

A variety of algorithms with and without manual annotations have been developed for 35

pixel-wise classification of HSIs. Compared with unsupervised methods, semi-supervised 36

methods require a few labeled data for training, and produce considerable improvement 37

in performance. The classical pixel-wise semi-supervised algorithms, such as support 38
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vector machines (SVMs) [18], k-nearest-neighbor (kNN) classifier [19], multinomial logistic 39

regression [20], and random forest [21,22], were extensively studied in the past. 40

However, these classifiers only explore and analyze the spectral information of HSIs, 41

whereas the spatial information is ignored, which leads to a poor classification result. For 42

instance, for regions that are spatially homogeneous but with a variety in the spectra, 43

these methods may produce a noisy classification map (see e.g., Figure 3(d)). A common 44

theoretical assumption in HSI classification is local spatial connectivity in certain regions, 45

which means spatially nearby pixels have a higher probability belonging to the same class 46

[23,24]. Thus, pixel-wise classification methods can be enhanced by incorporating the 47

spatial dependency of the pixels. In recent years, the spatial features of HSI have been 48

explored in the pre-processing and post-processing steps to provide more information for 49

various classification or recognition tasks. 50

In the extreme sparse multinomial logistic regression framework, the extended multi- 51

attribute profile is adopted for spatial feature extraction [25]. Gao et al. [26] propose a 52

new approach that extracts spatial feature by applying linear prediction error and the local 53

binary pattern. It then combines the spatial and spectral information by using a vector 54

stacking method before feeding into the Random Multi-Graphs model, which is proposed in 55

[27]. The K-means algorithm and principal component analysis (PCA) are adopted in [28] to 56

extract spatial features, and then a SVM is trained to produce the classification results. The 57

authors in [29] redefine a pixel in both spectral domain and spatial domain by extracting 58

features in its neighboring region. Then Mercer’s kernels are adopted in SVM to combine 59

spectral and spatial information. Structural filtering methods, for instance, the Gabor 60

filter, can extract spatial texture features of adjacent pixels in different scales and directions 61

[30,31]. Mathematical morphology can be used to obtain the morphological profile, such as 62

the orientation or size of the spatial structures of images [32]. Fang et al. [33] propose an 63

adaptive sparse representation (MFASR) method based on four spatial and spectral features 64

where spatial information is extracted by the Gabor filter, extended morphological profiles 65

and differential morphological profiles, resulting in an improved accuracy compared with 66

several excellent classifiers in the filed of both qualitative and quantitative results. Gan 67

et al. [34] propose a multiple feature kernel sparse representation-based classifier, which 68

transforms each feature into a low-dimensional space with a nonlinear kernel. 69

Chan et al. [35] incorporate segmentation techniques in their 2-stage method to 70

incorporate spatial information in the post-processing step. After acquiring the class 71

probability vector for each pixel by SVM, a convex variant of the Mumford-Shah method 72

(equivalent to a smoothed total-variational method) is used to denoise the probability 73

vectors. Their 2-stage method achieves good results, with better accuracy and relatively 74

shorter time compared with five well-known methods. Experiments show that this method 75

improves the accuracy significantly, see Figure 3(f). Ren et al. [36] propose the Nested 76

Sliding Window (NSW) pre-processing method to extract spatial information from original 77

HSI data. The NSW algorithm determines the optimal sub-window position based on 78

the largest average Pearson correlation coefficient of the target pixel and its neighboring 79

pixels, and then the pixels are reconstructed depending on the pixels in the sub-window 80

and their correlation coefficients. PCA is used to further process the reconstructed data 81

for dimensionality reduction and denoising. Finally the reconstructed data are fed into 82

SVM for classification. In their experiments, the addition of NSW and PCA led to a better 83

accuracy in comparison with several SVM-based algorithms. 84

The convolutional neural network (CNN) is becoming popular these years which 85

can extract spatial information internally by convolutional kernels. The original CNNs 86

[37] learn spatial features naturally from the original images by applying convolutional 87

layers. Gao et al. [38] employ a new CNN architecture that also takes the spatial features 88

extracted from the original image as input and achieves a significant improvement of 89

accuracy compared with the original CNN framework. Zhang et al. [39] create a diverse 90

region-based CNN which learns spatial features based on inputs from different regions. 91

The recurrent 2-D CNN and recurrent 3-D CNN achieve higher accuracies and faster 92
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convergence rates with its convolutional operators and the recurrent network structure 93

[40]. Nonetheless, these CNNs have millions of parameters that need to be tuned. Thus 94

they require powerful machines to train the model and a large number of expert labels that 95

are expensive to get. 96

All the methods mentioned above explore both spatial and spectral information, and 97

have achieved quite good results with a certain number of labeled pixels. However, in 98

practical classification tasks, the most difficult part is to collect the labeled points, which 99

requires a lot of time and resources. The insufficient number of samples is an inherent 100

challenge. Therefore, it is more feasible and preferable to only incorporate a few labeled 101

pixels for training in the semi-supervised learning methods [36]. In this work, we propose a 102

3-stage method for HSI classification, which fully explores spatial and spectral information 103

of HSI, so that we only need a very small number of labeled pixels to obtain higher accuracy 104

than other methods. The first stage is a pre-processing step where we first apply the NSW 105

algorithm [36] to find the most correlated nested window and then reconstruct the data 106

based on the Pearson correlation for each pixel. Then we use PCA to reduce the dimension 107

of the reconstructed data. In the second stage, we train an SVM-type method νSVC (ν- 108

support vector classifier) [41] for semi-supervised classification and produce an estimated 109

probability tensor consisting of the probability maps for all classes. In the last stage, to 110

incorporate the spatial information, a smoothed total variation model [35] is applied to 111

post-process the probability maps to remove isolated misclassified pixels. 112

To demonstrate the efficacy of our method, we test it against the classical SVM method 113

and three state-of-the-art methods on six widely used benchmark hyperspectral data sets 114

with 10 to 50 training labels of each class. The results show that our method gives the best 115

overall accuracy on all six data sets with very small number of labeled pixels. Besides, we 116

emphasize that the gain in accuracy comparing with the four algorithms is higher when the 117

number of labeled pixels is smaller. Our method is therefore of great practical significance 118

since expert annotations are often expensive and difficult to collect. 119

The superiority of our method stems from the fact that the spatial information of 120

the image is extensively explored. The pre-processing step enhances the consistency of 121

spectral signatures of adjacent pixels, especially for those pixels which are located in a large 122

homogeneous area and have varying inner-class spectra. Through the reconstruction, the 123

similarity of spectral information of the pixels in the same category can be utilized so that 124

we only need a smaller set of training pixels for each class to achieve a pleasant result. This 125

step is useful for data sets which do not have sufficiently good spectral information. The 126

post-processing step further improves the classification result by ensuring the connectivity 127

across spatial homogeneous regions using the spatial positions of the pixels. The smoothed 128

total variation model used here can simultaneously enhance the spatial homogeneity by 129

denoising while segmenting the image into different classes. 130

This paper is organized as follows. Section 2 introduces the three stages of our method. 131

Sections 3 and 4 give the numerical results and discussions on six benchmark HSI data sets. 132

Section 5 concludes the experiments and discusses the limitation and the planned future 133

work. 134

2. The proposed method 135

The method proposed in this work comprises the following three stages: (i) pre- 136

processing stage: the HSI data set is reconstructed by NSW and then projected linearly 137

to a lower-dimensional space by PCA. The step effectively use spatial information and 138

reduce the Gaussian white noise in HSIs [36,42]; (ii) pixel-wise classification stage: the 139

νSVC, which uses mainly the spectral information in the data set, is applied to get the 140

probability maps where each map gives the probability of the pixels belonging to a certain 141

class [35,41,43–45]; (iii) smoothing stage: a smoothed total variation (STV) model is used to 142

ensure local spatial connectivity in the probability maps so as to increase the classification 143

accuracy [35,46]. In the following subsections, we introduce the three stages in detail. The 144

outline of the whole method is illustrated in Figure 1. 145
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Figure 1. The outline of the proposed method, where d is the reduced dimension and c is the number
of classes.

2.1. The pre-processing stage 146

The pre-processing step of the HSI data sets can effectively improve the quality of the 147

data, leading to a better performance in classification with less number of training pixels 148

[36]. In pre-processing, spatial features are usually extracted by analyzing the similarity 149

between the spectral signatures of the pixels in local regions. Wu et al. [47] construct a 150

shape-adaptive region for each target pixel by applying LPA-ICI method [48,49], and then 151

put them together into the joint sparse representation classifier, which effectively explores 152

the spatial information. On this basis, in [50], a shape-adaptive reconstruction method is 153

proposed to pre-process the data based on the shape-adaptive region. Bazine et al. [51] 154

propose a CDCT-WF-SVM model where the original data is pre-processed by applying 155

spectral DCT and spatial filtering adaptive Wiener filter to extract the most significant 156

information before using SVM. The NSW method in [36] is to find the best nested sliding 157

window for each pixel with the largest mean Pearson correlation coefficient and then 158

reconstruct the given pixel’s spectral signature by weighting spectral information of pixels 159

using normalized correlation coefficients in the best window. Then PCA is used to reduce 160

the dimension of the reconstructed data. We adopt this approach in our pre-processing 161

stage and explain it briefly in the following two subsections, see details in [36]. 162

2.1.1. The Nested Sliding Window (NSW) Method 163

For two pixels x, y ∈ RB in an HSI tensor X ∈ RM×N×B, where M, N represent the
spatial size of HSI and B is the number of bands, the Pearson correlation coefficient is
defined as:

corr(x, y) =
Cov(x, y)√

Var(x) · Var(y)
, (1)

where Cov(x, y) represents the covariance between x and y, and Var(·) is the variance. We
define the neighboring pixels of a target pixel xij with a window size ω as

N (xij) = {xmn | m ∈ [i − a, i + a], n ∈ [j − a, j + a]},

where a + 1 ≤ i ≤ M − a, a + 1 ≤ j ≤ N − a, and a = (ω − 1)/2 represents the distance 164

between the target pixel xij and the window boundary. For target pixels on or near the 165

boundary of the image, we use zero-padding to extend the image outside the boundary so 166

as to obtain a window of the same size ω for these pixels. 167

Then we create a series of sliding windows inside N to search for some neighboring
pixels which are most similar to the target pixel xij. In order to calculate the correlation
coefficients between the target pixel and its neighboring pixels, each sliding window should
contain the target pixel, that is, the size of the sliding window should be ((a + 1),(a + 1)).
Then the neighboring pixels with a sliding window can be expressed as the 3-D tensor:

Spq(xij) = {xmn | m ∈ [i − a + p, i + p], n ∈ [j − a + q, j + q]}∈ R(a+1)×(a+1)×B,



Version August 1, 2022 submitted to Remote Sens. 5 of 22

where a + 1 ≤ i ≤ M + a and a + 1 ≤ j ≤ N + a. Here 0 ≤ p, q ≤ a determine the position 168

of the sliding window, see the green window (tensor) in Figure 2. 169

Thus, the Pearson correlation coefficient between the target pixel and each neighboring
pixel in the sliding window can be computed by (1). Together, the correlation coefficients
in each sliding window form a matrix, denote as Cpq(xij):

Cpq(xij) = {cmn|m ∈ [i − a + p, i + p], n ∈ [j − a + q, j + q]}.

It is reshaped as a vector cpq(xij) with size((a + 1)× (a + 1), 1). After going through all
the sliding windows, we set Sum(ckl) ≡ max(Sum(cpq)) where Sum(cpq) is the sum of the
elements of the vector cpq(xij). The maximal correlation coefficient vector ckl(xij) is then
normalized by

c̃kl(xij) = ckl(xij)/Sum(ckl(xij)). (2)

Then the corresponding 3D tensor Skl(xij) is re-shaped to a 2D matrix Skl(xij) with
size ((a + 1)× (a + 1), B). The reconstruction of the pixel xij at the (i, j) location is given
by the B-vector:

rij = Skl(xij)
⊤ c̃kl(xij). (3)

We can view rij as a weighted spectrum of the target pixel xij from its nearby pixels’ spectra, 170

with weights determined by the importance of the corresponding Pearson’s coefficients. 171

After the reconstruction for all pixels in the HSI, we obtain a new tensor R ∈ RM×N×B
172

with vectors along the third axis being rij, representing the spectra of reconstructed pixels. 173

In the following, we re-shape the tensor R into a matrix R ∈ RB×MN . 174

Figure 2 illustrates the NSW method, where we assume the target pixel is x33 with 175

ω = 5, a = 2, and the largest sum of Pearson’s coefficients is obtained at c02. 176

Figure 2. The illustration diagram of the NSW method.

2.1.2. Principal Component Analysis (PCA) 177

PCA [52] is one of the most commonly used dimensionality reduction algorithms.
Assume that we need to reduce the re-shaped data R ∈ RB×MN obtained by NSW al-
gorithm from B dimensional to d dimensional, then the purpose of PCA is to find a 2D
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transformation matrix W ∈ RB×d in arg maxW tr(W⊤RR⊤W) where tr(·) represents the
trace of the matrix and W⊤W = I. The maximization of W can be solved by using the
Lagrangian multiplier method. Finally, we get the dimension-reduced data

D = W⊤R ∈ Rd×(MN). (4)

2.2. The pixel-wise classification stage 178

Support vector machines (SVMs) have been used successfully in pattern recognition 179

[53], object detection [54,55], and financial time series forecasting [56,57] etc., to separate 180

two classes of objects. SVM and νSVC are two types of SVM classifiers. The main difference 181

between the two classifiers is that SVM contains a parameter C, which determines the 182

margin between two classes of training samples and C can take any positive value; while 183

the parameter ν in νSVC controls the number of support vectors, usually between 0 and 1. 184

Here we adopt νSVC for classification since the parameter C in SVM is difficult to choose 185

optimally. 186

Suppose we have t labeled pixels, then the formulation of νSVC is given as follows:

min
w,b,ξ,ρ

1
2∥w∥2

2 − νρ + 1
t

t
∑

i=1
ξi

s.t.
yi(w⊤ϕ(di) + b) ≥ ρ − ξi, i = 1, 2, ..., t,
ξi ≥ 0, i = 1, 2, ..., t,
ρ ≥ 0,

(5)

where di ∈ Rd is the column in the matrix D in (4), i represents the i-th labeled pixel, 187

yi ∈ {−1, 1} represents corresponding binary label. The function ϕ is a feature map that 188

maps the data to a higher dimensional space in order to improve the separability between 189

the two classes, w and b are the normal vector and the bias of the hyperplane respectively, 190

ν is the upper bound for the error rate of training pixels and the lower bound of the fraction 191

of support vectors, ξi is the slack variable which allows training errors, and ρ/∥w∥2 is the 192

distance between the hyperplane and the support vector. 193

Model (5) can be solved by its Lagrangian dual. Finally we obtain the hyperplane 194

function w⊤ϕ(d) + b which is then used to classify each test pixel d ∈ Rd (which are 195

columns of D in (4)), see [58]. In the experiments, we follow [58] and use radial basis 196

functions for ϕ(·) where its parameter is determined by a 5-fold validation. Under the 197

one-against-one strategy, there are [c(c − 1)]/2 such pairwise hyperplane functions where 198

c is the number of classes. We use them to estimate the probability pk that a non-labeled 199

pixel d is in class k, see [44,45]. Finally, we obtain a 3D tensor V ∈ RM×N×c where Vi,j,k 200

denotes the probability that the pixel d at the (i, j) location is in class k, and V:,:,k denotes 201

the probability map for class k. In particular, if a pixel (i, j) is a training pixel belonging to 202

the l-th class, then Vi,j,l = 1 while Vi,j,k = 0 for all other k’s. 203

2.3. The smoothing stage 204

Post-processing the probability maps can further improve the performance. Markov 205

Random Field regularization is applied to post-process the classification results by consid- 206

ering spatial and edge information in [59]. In [60], Fuzzy-Markov Random Field is adopted 207

to smooth the classification result predicted by SVM. In our previous work [50], a smoothed 208

total variation (STV) model is proposed to denoise the probability maps V:,:,k that νSVC 209

produces by ensuring local spatial connectivity in the maps. We adopt the same model here 210

in our method. 211

Let Vk = V:,:,k, k = 1, ..., c. In this stage, we enforce the local connectivity by minimiz-
ing: {

min
Uk

1
2∥Uk − Vk∥2

2 + β1∥∇Uk∥1 +
β2
2 ∥∇Uk∥2

2

s.t. Uk|Ω = Vk|Ω
(6)
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where β1 and β2 are the regularization parameters and Ω denotes the training set so that 212

the constraint can keep the classifications of the training pixels unchanged. The operator ∇ 213

means the discrete gradient of the matrix Uk when considering it as a 2-D image. 214

This is an ℓ1-ℓ2 problem and can be solved by the alternating direction method of 215

multipliers (ADMM) [61]. The minimizer Uk is the enhanced probability map for class 216

k. When the probability map for each class is obtained, we get a 3D tensor U where each 217

layer of the tensor is the corresponding 2D enhanced probability map, i.e., Ui,j,k is the 218

value of Uk at the (i, j)th location. The final classification for the pixel (i, j) is then given by 219

arg max
k∈{1,...,c}

Ui,j,k. 220

3. Experimental Results 221

In this section, we quantitatively compare our method with the classical νSVC and 222

three other state-of-the-art methods on six widely used data sets using three metrics. 223

Besides, we also present heatmaps for different data sets under different methods to 224

visually compare the classification results of classes with various shapes and sizes. 225

3.1. Data Sets 226

In order to test the superiority of our method, six widely used publicly available 227

hyperspectral data sets are chosen for testing. They are the Indian Pines, Salinas, Pavia 228

Center, Kennedy Space Center (KSC), Botswana, and University of Pavia (PaviaU) data sets. 229

They have different sizes and different number of spectral bands of different wavelengths, 230

and they are commonly used these years in the study of hyperspectral images. In the 231

following we introduce them one by one. 232

The Indian Pines data set was collected in the test site located in the Northwest 233

India by the AVIRIS sensor. It consists of 145×145 pixels and each pixel has 220 spectral 234

reflectance bands with the wavelength from 0.4 to 2.5 µm. After eliminating the effect of 235

water absorption, the number of bands finally is 200. Its ground-truth consists of 16 classes. 236

The Salinas data set was collected over Salinas Valley in California by the AVIRIS 237

sensor with high spatial resolution of 3.7m per pixel. The size is 512×217 pixels with 224 238

spectral reflectance bands. Same as the Indian Pines data set, due to the water absorption, 239

the number of band decreases to 204 after discarding the 108th–112th, 154th–167th, and 240

224th bands. There are 16 classes in Salinas data set. 241

The Pavia Center data set and PaviaU data set were acquired by the ROSIS sensor 242

over Pavia in Italy with spatial resolution of 1.3m. The data set sizes are 1096×715×102 243

and 610×340×103 respectively, where 102 and 103 represent the numbers of the spectral 244

bands respectively. Both data sets have 9 classes. 245

The KSC data set was acquired over the Kennedy Space Center in Florida by the NASA 246

AVIRIS sensor. It has 224 bands with wavelength from 0.4 to 2.5 µm but after removing 247

water absorption and low SNR bands, it has 176 bands totally. The size is 512×614 pixels 248

and there are 13 classes. The sensor has a spatial resolution of 18m. 249

The Botswana data set was collected by the Hyperion sensor on NASA EO-1 satellite 250

over Botswana with 30m resolution. It has 145 bands after removing 97 bands because 251

of water absorption and covers the wavelength from 0.4 to 2.5 µm. The area is of size 252

1476×256, and there are 14 classes in the ground-truth. 253

3.2. Comparison Methods and Evaluation Metrics 254

We compare our new method with several currently used methods: ν-support vector 255

classifier (νSVC) [41], multiple-feature-based adaptive sparse representation (MFASR) [33], 256

the 2-stage method [35], and NSW-PCA-SVM [36]. We remark that in [35,36] there are 257

comprehensive comparisons of the last two methods with many other methods which 258

show the superiority of these two methods with others. 259

In this paper, we use Overall Accuracy (OA), Average Accuracy (AA) and kappa 260

coefficient (kappa) [62] to quantitatively evaluate the performance of these five methods. 261
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Table 1. Average classification accuracies over 10 trials for the Indian Pines data set with 10 random
training pixels for each class.

Class νSVC MFASR 2-stage
method

NSW-PCA-
SVM Our method

Alfalfa 82.22% 97.50% 98.89% 97.50% 100%
Corn-no till 39.32% 70.87% 75.05% 77.35% 82.53%

Corn-mill till 49.05% 79.38% 91.26% 89.68% 92.06%
Corn 63.83% 87.49% 100% 89.74% 98.19%

Grass/pasture 77.61% 84.84% 88.37% 86.17% 90.87%
Grass/trees 80.97% 92.35% 99.04% 97.44% 99.51%

Grass/pasture-
mowed 93.33% 100% 100% 100% 100%

Hay-
windrowed 72.12% 99.38% 100% 99.83% 100%

Oats 96.00% 100% 100% 100% 100%
Soybeans-no

till 52.92% 81.70% 85.21% 87.43% 90.88%

Soybeans-
mill till 42.76% 69.79% 66.72% 78.00% 91.04%

Soybeans-
clean 36.59% 83.05% 90.81% 80.57% 91.75%

Wheat 92.36% 99.49% 99.59% 98.67% 100%
Woods 67.55% 92.77% 94.96% 95.24% 95.88%

Bridg-Grass-
Tree-Drives 41.81% 95.35% 97.23% 96.54% 96.73%

Stone-steel
lowers 93.61% 99.16% 99.88% 97.23% 100%

OA 54.31% 81.54% 84.42% 86.48% 92.24%
AA 67.63% 89.60% 92.94% 91.96% 95.59%

kappa 49.00% 79.15% 82.54% 84.68% 91.16%

These three metrics are all based on the confusion matrix G [63], where the element gij ∈ G 262

means the number of pixels which truly belong to class i are classified in class j. Thus OA 263

represents the percentage of correctly classified pixels: 264

OA =
tr(G)

∑c
i=1 ∑c

j=1 gij
,

AA represents the average percentage of correctly classified pixels in each class:

AA =
1
c

c

∑
i=1

gii

∑c
j=1 gij

,

and kappa represents the integrative reflections of OA and AA:

kappa =
∑c

i=1 ∑c
j=1 gij × ∑c

i=1 gii − ∑c
k=1(∑

c
i=1 gik × ∑c

j=1 gkj)

(∑c
i=1 ∑c

j=1 gij)2 − ∑c
k=1(∑

c
i=1 gik × ∑c

j=1 gkj)

For each method, ten runs were conducted. In order to ensure the reliability of the 265

experiments, the training set was randomly selected for each run and finally the average of 266

the results obtained from the ten runs was taken for comparison. In each figure, there is 267

an error bar (the color bar) which represents the number of misclassification for each pixel 268

in the image over the ten runs. As in [33] and [36], we assume the background pixels are 269

given and we do not classify them. We only compare the accuracies on the non-background 270

pixels. 271

All the tests were run on a computer with an Intel Core i7-9700 CPU, 32 GB RAM and 272

the software is MATLAB R2021b. 273
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3.3. Classification Results 274

Table 1 shows the average classification results of each method for the Indian Pines data 275

set, which has large homogeneous regions with more regular shapes. In each experiment, 276

10 training pixels for each class were randomly selected and the remaining pixels were 277

used for testing. The table shows the average accuracy over 10 runs, and we use boldface 278

font to denote the best results among the methods. We see that our method generates the 279

best results for all three metrics (OA, AA and kappa) and is at least 2.65% higher than 280

the results of all other methods. For some classes with a small number of pixels, like 281

Alfalfa, Grass/pasture-mowed and Oats, the results of our method achieve the highest 282

accuracy, reaching 100%. For classes like Corn-no till and Soybeans-mill till with higher 283

misclassification rate under the 2-stage method, the rates are enhanced a lot in our method. 284

This illustrates the power of the the pre-processing stage in our method. 285

Figure 3. Results for the Indian Pines data set. (a) The false color image. (b)–(c) The ground truth
and the corresponding label colors. (d)–(h) The misclassification counts of different methods. (i) The
colorbar representing the misclassification counts.

Figure 3 shows the ground-truth and error maps of misclassifications for the Indian 286

Pines data set. Among them, νSVC, which uses only spectral information, produces the 287

largest portion of misclassification and almost all classes have serious misclassification. 288

The 2-stage method has poor classification results in the upper-left, upper-right and bottom 289

regions, and the corresponding materials of these regions are Corn-mill till, Corn-no till, 290

Soybeans-mill till and Soybeans-no till respectively. These classes have similar spectra, 291

and the 2-stage method cannot distinguish them very well. MFASR method has a similar 292

degree of misclassification as the 2-stage method. We see from Figure 3(h) that our method, 293

with the pre-processing stage, produces the best result because it enhances the consistency 294

of adjacent pixels, especially those pixels located in a large homogeneous area with various 295

inner-class spectra. Finally, when compared with NSW-PCA-SVM method, our method 296

improves the result in most areas, especially for the Soybeans-mill till class. This shows 297
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Table 2. Average classification accuracies over 10 trials for the Salinas data set with 10 random
training pixels for each class.

Class νSVC MFASR 2-stage
method

NSW-PCA-
SVM Our method

Brocoli-
green-weeds-

1
98.02% 99.14% 99.84% 99.86% 100%

Brocoli-
green-weeds-

2
97.70% 97.75% 99.78% 99.82% 100%

Fallow 92.84% 99.06% 99.35% 99.92% 99.99%
Fallow-

rough-plow 98.64% 99.65% 98.17% 99.92% 97.83%

Fallow-
smooth 95.57% 98.89% 99.00% 98.80% 99.64%

Stubble 97.90% 99.70% 99.32% 96.89% 99.94%
Celery 98.74% 97.02% 99.12% 99.71% 99.96%
Grapes-

untrained 55.77% 70.16% 70.26% 88.95% 96.12%

Soil-vinyard-
develop 97.35% 99.47% 99.78% 98.80% 99.21%

Corn-
senesced-

green-weeds
79.17% 89.54% 98.54% 95.77% 98.44%

Lettuce-
romaine-4wk 92.02% 97.58% 99.36% 99.40% 94.24%

Lettuce-
romaine-5wk 97.52% 99.54% 99.73% 99.79% 92.61%

Lettuce-
romaine-6wk 98.18% 97.74% 99.64% 97.70% 99.01%

Lettuce-
romaine-7wk 89.58% 92.87% 97.78% 92.59% 96.06%

Vinyard-
untrained 57.49% 82.98% 64.19% 89.79% 94.42%

Vinyard-
vertical-

trellis
93.71% 92.06% 97.79% 98.12% 99.54%

OA 81.82% 89.78% 88.47% 95.33% 97.69%
AA 90.01% 94.57% 95.10% 97.24% 97.94%

kappa 79.85% 88.66% 87.18% 94.81% 97.43%

that the smoothing TV step is very effective in enforcing spatial connectivity to increase the 298

accuracy of the classification. 299

Table 2 shows the average classification results over 10 trials on the Salinas data set 300

using 10 random pixels per class for training in each trial. Our method also achieves the 301

best performance in OA, AA and kappa when compared with the other four methods with 302

a gain of at least 0.7% in the accuracies. For Grapes-untrained class and Vinyard-untrained 303

class, νSVC yields less than 60% accuracy, indicating that the spectra of these two classes 304

cannot provide enough information for discrimination. In comparison, the accuracies of 305

our method for these two classes are enhanced a lot, nearly 40%. 306

Figure 4 shows the ground-truth and error maps of misclassifications for the Salinas 307

data set. In Figure 4(d)–(f), we see that the νSVC, MFSAR and the 2-stage method all have 308

large areas of misclassification in the Salinas data set. NSW-PCA-SVM method (Figure 4(g)) 309

has a great improvement over the first three methods due to the pre-processing step, but 310

there is still a serious misclassification in the Grapes-untrained class and Vinyard untrained 311

class. Our method solves most of the problem by adding the denoising step to enhance local 312

spatial homogeneity, see Figure 4(h). As a whole, the results show that the pre-processing 313
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Figure 4. Results for the Salinas data set. (a) The false color image. (b)–(c) The ground truth and
corresponding label colors. (d)–(h) The misclassification counts of different methods. (i) The colorbar
representing the misclassification counts.

and post-processing stages have a great effect on those classes with large homogeneous 314

regions and insufficient spectral information. 315

Table 3 shows the average classification results of the Pavia Center data set over 10 316

trials with 10 random labeled pixels per class in each trial. It consists of more small regions 317

and slender categories, see Figure 5(b). Our method is also the best one in all OA, AA and 318

kappa coefficient. For those classes which do not have greatly ample spectral information, 319

like Bricks and Soil classes, our method earns highest accuracies among these methods. 320

In Figure 5, which shows the misclassification map of the Pavia Center data set, we 321

see that νSVC has distinct misclassification in the middle of water class. Obviously, MFASR 322

method has a worse result in Trees class where νSVC has great classification results only 323

using spectral information. The 2-stage method and NSW-PCA-SVM method both have 324

higher degree of misclassification in Bitumen class, mainly in the middle part of the image. 325

Our method smooths the result, particularly for water class and Bitumen class in the middle 326

of the image, which again shows the strength of the pre-processing step and post-processing 327

step. 328
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Table 3. Average classification accuracies over 10 trials for the Pavia Center data set with 10 random
training pixels for each class.

Class νSVC MFASR 2-stage
method

NSW-PCA-
SVM Our method

Water 99.02% 99.78% 99.56% 100% 99.48%
Trees 81.58% 75.56% 76.29% 85.99% 91.15%

Meadows 80.78% 78.63% 88.21% 89.64% 90.41%
Bricks 75.65% 92.40% 92.70% 81.42% 96.03%

Soil 78.80% 88.57% 84.58% 89.90% 91.97%
Asphalt 89.26% 85.62% 97.70% 93.40% 97.96%
Bitumen 80.64% 89.92% 87.64% 88.30% 94.08%

Tiles 95.33% 94.01% 99.18% 99.15% 98.26%
Shadows 99.74% 97.13% 99.30% 99.27% 96.62%

OA 93.86% 94.38% 96.53% 97.04% 97.70%
AA 86.76% 89.07% 91.68% 91.90% 95.11%

kappa 91.37% 92.09% 95.09% 95.80% 96.75%

Figure 5. Results for the Pavia Center data set. (a) The false color image. (b)–(c) The ground truth
and corresponding label colors. (d)–(h) The misclassification counts of different methods. (i) The
colorbar representing the misclassification counts.

Figure 6 show the overall accuracy (OAs) of different methods on the six data sets 329

with different numbers of training pixels. Our method achieves the best performance for 330
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(a) OA on the Indian Pines data set (b) OA on the Salinas data set (c) OA on the Pavia Center data set

(d) OA on the KSC data set (e) OA on the Botswana data set (f) OA on the PaviaU data set

Figure 6. OAs (y-axis) for different data sets with different number of training pixels (x-axis).

all cases except for one situation, i.e., 20 pixels per class for PaviaU data set. Pavia Center, 331

KSC and Botswana data sets have more effective spectral information since νSVC already 332

reaches more than 80% accuracy. Our method is still enhanced a lot after adding steps for 333

spatial information extraction, reaching more than 99% accuracy with the increment of the 334

training pixels. One can see that the gain of accuracy of our method over the other methods 335

increases when the number of labeled pixels decreases. This shows the advantage of our 336

method as getting labeled data is always the most difficult part of any HSI classification 337

problem. 338

Figure 7 shows the average accuracy (AAs) of different methods on the six data sets 339

with different numbers of training pixels. Our method performs the best on the first five 340

data sets, no matter how many labeled pixels are utilized. For Salinas, KSC and Botswana 341

data set, the AAs are around 98% even in the case that 10 labeled pixels are available and 342

attain more than 99% once there are more labeled pixels available for training. Only for 343

the last data set, PaviaU data set, see Figure 7(f), our method attains the second highest 344

accuracy, where the MFASR is the best. However, we note that MFASR generally fares only 345

better than νSVC in the other five data sets. 346

Figure 8 shows the kappas of different methods on the six data sets when different 347

numbers of labeled pixels are used for training. Similar to the results of OAs, our method 348

achieves the best performance for all cases except for one situation, i.e., 20 labeled pixels 349

per class for PaviaU data set. 350

To sum up, these figures clearly show the advantages of our method over the other four 351

methods on six data sets in three different error metrics (OA, AA, and kappa), especially 352

for a smaller training set (10 pixels per class). Comparing the results of all the experiments, 353

we are only second to MFASR in the PaviaU data set. However, MFASR fares the worst 354

for all the other five data sets except when compared to νSVC. The figures also show that 355
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(a) AA on the Indian Pines data set (b) AA on the Salinas data set (c) AA on the Pavia Center data set

(d) AA on the KSC data set (e) AA on the Botswana data set (f) AA on the PaviaU data set

Figure 7. AAs (y-axis) for different data sets with different number of training pixels (x-axis).

(a) kappa on the Indian Pines data set (b) kappa on the Salinas data set (c) kappa on the Pavia Center data set

(d) kappa on the KSC data set (e) kappa on the Botswana data set (f) kappa on the PaviaU data set

Figure 8. kappas (y-axis) for different data sets with different number of training pixels (x-axis).
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Figure 9. Results for the PaviaU data set. (a) The false color image. (b)–(c) The ground truth and the
corresponding label colors. (d)–(e) The misclassification counts of MFASR and our method. (f) The
colorbar representing the misclassification counts.

the gain of our method over the other methods increases as the number of training pixels 356

decrease, which attest to the importance of our method. 357

One may wonder what is so special about the PaviaU data set. According to Figure 9(b), 358

in the PaviaU data set, the distribution of the pixels in the same category is relatively 359

scattered, especially for the classes of Asphalt, Meadows, Gravel, Bricks and Shadows. In 360

addition, the shapes of many regions are slender and long where MFASR performs better, 361

see Figure 9(d). Our method has a poor classification result in Gravel class and Bricks class 362

while MFASR performs better, which leads to a lower AA. 363

From Figure 9 we notice that no method has a good classification result for the 364

Meadows class in the middle part of the image. Based on the ground-truth in Figure 9(b), 365

Meadows are in three different locations in the image: upper, middle, and lower parts as 366

marked by the pink boxes in the figure. Their corresponding spectra are shown in Figure 10 367

which shows that the spectra of the Meadow pixels in the middle part of the image vary 368

greatly from the Meadow pixels in the other parts of the image, and this results in the 369

difficulty in correctly classifying them. 370
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Figure 10. The spectra of the Meadows class in the PaviaU data set: (a) In the upper part of the
image. (b) In the middle part of the image. (c) In the bottom part of the image. They show that the
spectra of the Meadows class in the middle part of the image vary significantly from the spectra of
the Meadows class in other parts of the image.

4. Discussions 371

In this section, we present a further explanation of our method and results, including 372

the effect of the parameters on our results, the importance of the smoothing stage, and the 373

execution time for all methods. Finally, we conclude the advantages and limitations of each 374

method. 375

4.1. Parameters for each method 376

Table 4 shows the number of parameters for all methods mentioned in this paper. In 377

the experiments, the parameters are chosen as follows. For νSVC method and the first 378

stage of the 2-stage method (which is also a νSVC method), there are two parameters and 379

they are obtained by a 5-fold cross validation [64]. For the 2-stage method, the remaining 380

three parameters in the second stage are chosen by trial-and-error such that it gives the 381

highest classification result. For MFASR method, the ten optimal parameters are chosen 382

by trial-and-error as mentioned in [33]. For NSW-PCA-SVM method, the optimal window 383

size and the optimal number of principal components are chosen by trial-and-error, while 384

the parameters of SVM are chosen by a 5-fold cross validation. 385

For our method, there are 7 parameters in total. The window size ω and the number of 386

principal components d in the pre-processing stage are chosen by trial-and-error. The two 387

parameters ν and σ in νSVC (classification stage) are obtained automatically by a 5-fold 388

validation. In the post-processing stage (see (6)), the regularization parameters β1 and β2 389

are fixed as 0.2 and 4, respectively, as the solution is robust against these parameters. When 390

(6) is solved by ADMM, there is a parameter µ governing the convergence rate and we set it 391

always to 5. Thus in essence, there are only two parameters (ω and d) in the pre-processing 392

stage to be tuned by hand. Table 5 shows the values of two parameters for the different 393

data sets with 10 training pixels per class. 394

Table 4. The number of parameters in different methods.

νSVC MFASR 2-stage
method

NSW-PCA-
SVM Our method

Number of
parameters 2 10 5 4 7
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(a) OA versus window size ω (b) OA versus number of principal components d

Figure 11. Influence of parameters in the pre-processing stage on six data sets.

Table 5. The values of the parameters in our method for different data sets with 10 training pixels.

size of window (ω) principal component number
(d)

Indian Pines 19 52
Salinas 39 24

Pavia Center 9 25
KSC 9 45

Botswana 15 11
PaviaU 5 39

4.2. The influence of the two parameters in pre-processing stage 395

For our method, there are two parameters ω and d in the pre-processing stage, which 396

can influence the classification result and the subsequent post-processing stage. The 397

parameters, introduced in Section 2.1, represent the size of the window and the number 398

of principal components, respectively. In this section, we discuss how to choose them in 399

practice. 400

Figure 11(a) shows the OAs of our method against different ω on the six data sets. 401

Except for the PaviaU data set, the curves in the figure are very flat, implying the accuracy 402

is robust against ω. One can generally choose ω > 15 to get a good OA. According to 403

Figure 9(b), in the PaviaU data set, the distribution of the pixels in the same category is 404

relatively scattered, especially for the classes of Asphalt, Meadows, Gravel, Bricks, and 405

Shadows. In addition, the shapes of many regions are slender and long, so a smaller 406

window size fits the data better. 407

In order to test the effect of d on the classification results, we fix ω for each data set 408

as the optimal value showed in Table 5. Figure 11(b) gives the OAs of our method versus 409

d on the six data sets. It shows that OA increases sharply at first and then more or less 410

flatten out after d > 40. Therefore, the accuracy is robust for large d, and in practice, one 411

can choose d around 50 to ensure that the OA will be reasonably good. 412

4.3. The quality of post-processing step 413

The post-processing smoothed-TV stage is to smooth and denoise the probability
tensor obtained by νSVC. Thus we can use peak signal-to-noise ratio (PSNR) to measure
the quality of this stage:

PSNR(Pk, P̃k) = −10 log(MSE(Pk, P̃k)),
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where Pk and P̃k are the k-th spectral bands of the true probability tensor P and the predicted 414

probability tensor P̃ , and MSE denotes the mean squares error. In Table 6, PSNRV and 415

PSNRU represent the average PSNR value over c bands of V and U in 10 trials. A higher 416

PSNR value means the probability tensor is closer to the true probability tensor. The 417

gain is the difference between PSNRU and PSNRV . The gains clearly indicate the superb 418

performance of the post-processing stage. 419

Table 6. Quantitative comparisons of the probability tensors before and after denoising stage in terms
of the PSNR (in dB) value on the six data sets in ten trials.

PSNRV PSNRU gain

Indian Pines 22.68 33.37 12.32
Salinas 21.05 27.16 6.11

Pavia Center 24.78 28.90 4.12
KSC 35.10 47.38 12.28

Botswana 38.21 54.65 16.44
PaviaU 23.12 28.35 5.23

4.4. Computation times for each method 420

We test the computation times for all data sets with different methods, which only 421

represent the running time of different algorithms and do not include the time needed 422

to find the optimal parameters. All these tests were run on a computer with an Intel 423

Core i7-9700 CPU, 32 GB RAM and the software is MATLAB R2021b, without applying 424

parallelism. 425

Table 7 shows the computation time of six data sets in the case of 10 training pixels 426

for each class. νSVC requires the least amount of time when compared with the other four 427

methods since it does not need to pre-process or post-process the data. The 2-stage method 428

needs a little more extra time compared with νSVC because of the denoising step. However, 429

it has much higher accuracy than that of νSVC, see Figure 6. MFASR needs longer time, 430

which is because of the inner product between feature dictionaries and feature matrices. 431

Relatively speaking, the most time-consuming part for NSW-PCA-SVM method and 432

our method is the pre-processing (NSW) step where we need to calculate the correlation 433

coefficients of pixels. Therefore, for same window size ω, our method needs just a little 434

more time than NSW-PCA-SVM because of the additional denoising stage. In general, 435

the larger the window size selected, the more variance to be kept and the more pixels 436

need to be reconstructed, and therefore the more time these two methods will take. For 437

example, in the Salinas data set, there are more large homogeneous areas, see Figure 4 (b), 438

thus a large window size ω is needed to achieve higher accuracy, which result in much 439

longer time for calculating the correlation coefficients in both methods. In Table 7, for those 440

cases where our method requires less running time compared with NSW-PCA-SVM, it is 441

because our method requires a smaller window to achieve the best accuracy. Regardless of 442

time, the accuracy of our method is enhanced a lot once we add the pre-processing and 443

post-processing stages, see Figures 6–8. 444

We emphasize that although our method is not the fastest (the fastest is νSVC), the 445

accuracy of our method, especially for very small training data sets, can more than offset 446

this drawback since the most time-consuming task in HSI classification is usually the 447

labeling of the training pixels. 448

Further, it is worth mentioning that the reconstruction and classification stages in our 449

method can be done in parallel to greatly reduce the running time. The NSW algorithm is 450

to reconstruct pixels in their square neighborhoods; thus the reconstruction process of each 451

target pixel is independent and can be done in parallel. In addition, in νSVC, since we use 452

the one-against-one strategy, the c(c − 1)/2 binary classifiers can be done in parallel too. 453
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Table 7. Comparison of computation times (in seconds) for 10 training pixels.

νSVC MFASR 2-stage NSW-PCA-
SVM Our method

Indian Pines 4.330 279.069 9.220 2767.587 1943.242
Salinas 16.595 1477.910 95.119 49277.255 153536.181

Pavia Center 36.954 3183.543 255.212 4081.842 4168.063
KSC 2.152 69.498 57.687 640.146 157.427

Botswana 1.708 81.848 65.990 583.016 329.433
PaviaU 5.045 893.491 58.547 271.707 350.894

4.5. Summary of each method 454

In this subsection, we summarize the advantages and limitations for all five methods 455

that were compared in this paper, see Table 8. In summary, νSVC method only considers 456

the spectral information in HSI and thus produces the lowest accuracy. After adding 457

the denoising second stage, the 2-stage method improves the result quite a lot and only 458

a short time is required for the additional denoising stage. However, as the denoising 459

process completely depends on the probability tensor, it can be greatly influenced by the 460

misclassifications caused by the classification stage. MFASR needs more time to run and 461

performs only better than νSVC in most cases though it has relatively better results for 462

PaviaU data set. NSW-PCA-SVM and our method needs more time to obtain the results 463

but generate better results compared with other methods. What’s more, the result of our 464

method is the best and it is robust against the parameters in the method. 465

Table 8. The advantages and limitations of five methods with a small set of training pixels available.

Methods Features Advantages Limitations
νSVC spectral shortest running time lowest accuracy

MFASR spectral, spatial better performance for PaviaU data set lower accuracy,
longer running time

2-stage spectral, spatial shorter running time misclassification of classes
with similar spectra

NSW-PCA-SVM spectral, spatial higher accuracy with limited labeled pixels longer running time

Our method spectral, spatial highest accuracy with limited labeled pixels,
robust to parameters longer running time

5. Conclusion 466

In this paper, we propose a new method which makes full use of the spatial and 467

spectral information. Before classification, NSW and PCA are used to extract spatial 468

information from the HSI and reconstruct the data. They enhance the consistency of the 469

neighboring pixels so that we only need a smaller training set. After that, νSVC is used to 470

estimate the pixel-wise probability map of each class. Finally, a smoothed total variation 471

model, which enhances spatial homogeneity in the probability tensor, is applied to classify 472

the HSI into different classes. Compared with the other methods, our new method achieves 473

the best overall accuracy, average accuracy, and kappa on six data sets except only for the 474

PaviaU data set where we achieve the second best in some cases. The gain in accuracy of 475

our method over the other methods increases when the number of training pixels available 476

decreases. For many applications that need to use the classification results for research, 477

analysis and assessment, our method has obvious advantages and achieves better results 478

with very limited labeled pixels. Our method is therefore of great practical significance 479

since expert annotations are often expensive and difficult to collect. 480

The limitation of our method is that, the pre-processing step extract spatial information 481

using square windows, which is not suitable for small-size data sets with long and thin 482

regions, like the PaviaU data set. In the future, we will try to improve and develop new 483
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methods for adaptively selecting neighborhood pixels, which will be more useful for those 484

data sets that contain more irregular regions like the PaviaU data set. In addition, different 485

spatial filters will also be considered to extract spatial information and combine them with 486

our method here. 487
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