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Abstract

Deep neural network is a powerful tool for many tasks. Understanding why it
is so successful and providing a mathematical explanation is an important prob-
lem and has been one popular research direction in past years. In the literature
of mathematical analysis of deep neural networks, a lot of works is dedicated to
establishing representation theories. How to make connections between deep neural
networks and mathematical algorithms is still under development. In this paper,
we give an algorithmic explanation for deep neural networks, especially in their
connections with operator splitting. We show that with certain splitting strate-
gies, operator-splitting methods have the same structure as networks. Utilizing
this connection and the Potts model for image segmentation, two networks inspired
by operator-splitting methods are proposed. The two networks are essentially two
operator-splitting algorithms solving the Potts model. Numerical experiments are
presented to demonstrate the effectiveness of the proposed networks.

1 Introduction

In past decades, deep neural network has emerged as a very successful technique for
various fields. It has demonstrated impressive performances in many tasks, such as image
processing, object detection, and natural language processing. In some tasks, deep neural
networks even outperform humans.

Due to great successes of neural networks, over the past several years, a lot of works has
been devoted to the mathematical understanding of neural networks and explaining their
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success. Representation theories for function learning are studied in [4, 17, 38, 46, 65]
for feedforward neural networks, in [69, 70] for convolutional neural networks, and in
[36, 37, 54] for convolutional residual networks. Recently, theoretical results for learning
operators are developed in [5, 33, 44]. The works mentioned above show that as long as
the network depth and width are sufficiently large, deep neural networks can approximate
any function or operator within a certain class to arbitrary accuracy. These works focus on
the existence of a good approximator with desired approximation error and use techniques
from approximation theory. In this paper, we investigate the power of neural networks
from another perspective: the network structure. We will give an algorithmic explanation
of neural networks, especially in their connections with operator-splitting algorithms.

The operator-splitting method is a class of powerful methods for numerically solving
complicated problems. The general idea is to decompose a difficult problem into sev-
eral subproblems which will be solved sequentially or simultaneously. Operator-splitting
methods have been widely used on solving partial differential equations [24, 26, 47, 49, 63],
image processing [21, 22, 40, 41], surface reconstruction [30], obstacle problem [43], in-
verse problem [25], and computational fluid dynamics [6, 52], etc. We refer readers to
[28, 48] for some survey discussions.

Image segmentation is an important subject in many fields, such as medical imaging
and object detection. Many mathematical models and algorithms have been developed
for image segmentation [10, 11, 13, 14, 15, 31, 53, 62]. In [2, 67], the segmentation
problem is formulated as a min cut or max flow problem. One important model for image
segmentation is the Potts model, which was first proposed for statistical mechanics [56].
In fact, the well-known Chan-Vese model [15] is a special case of the Potts model. In [64],
detailed explanations are given to show that the Potts model is equivalent to a continuous
min cut and max flow problem [64]. Efficient algorithms for the Potts model are studied
in [59, 67]. We suggest readers to survey [60] for a comprehensive discussion on the Potts
model. Recently, many deep learning methods for image segmentation are also proposed
[23, 57, 71].

Following [61] and [39], we focus on the building block of neural networks and operator-
splitting methods and make connections between them. We first introduce the structure
of a standard neural network in this work. Then we discuss popular operator-splitting
strategies: sequential splitting and parallel splitting. We show that for certain splitting
strategies, the resulting splitting algorithm is equivalent to a neural network, whose depth
and width are determined by the splitting strategy. Such a connection is also observed
and utilized in [32], which is used to solve nonlinear partial differential equations by neural
networks. We will apply this connection to the Potts model for image segmentation, and
propose two networks inspired by operator-splitting methods. As the proposed networks
are derived from the Potts model, they contain explicit regularizers that have physical
meaning. The effectiveness of the proposed networks are demonstrated by numerical
experiments.

This paper is structured as follows: We briefly introduce deep neural networks and
operator-splitting methods in Section 2 and 3, respectively. The Potts model for image
segmentation is discussed in Section 4. We present the two networks inspired by operator-
splitting methods in Section 5 and 6, respectively. This paper is concluded in Section
7.
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2 Deep neural networks

Deep neural networks have been successfully applied to many problems and have achieved
remarkable performances. There are many networks architectures, such as feedforward
neural networks (FNN) [20], convolutional neural networks (CNN) [34] and residual neural
networks (ResNet) [29]. It is easy to show that any CNN and ResNet can be realized by
FNN [37, 54, 69, 70]. In this paper, we focus on FNN and show their connections with
operator-splitting methods.

The building blocks of FNNs are layers. An FNN is a composition of multiple layers,
each of which takes an input x ∈ Rd and outputs a vector in Rd′ for some integers
d, d′ > 0. Each layer has the form of

L(W,b, σ;x) = σ(Wx+ b), (1)

where W ∈ Rd×d′ is a weight matrix, b ∈ Rd′ is a bias term, and σ(·) is the activation
function. Popular choices of σ include the rectified linear unit (ReLU), sigmoid function
and tanh function. The computation of a layer consists of two parts, a linear part Wx+b
and a nonlinear part σ(·). These two parts are conducted sequentially. Later we will show
the similarity between this structure and operator splitting methods.

An FNN with depth L is a composition of L− 1 layers followed by a fully connected
layer:

f(x) = WLLL(WL−1,bL−1, σL−1) ◦ · · · ◦ L1(W1,b1, σ1;x) + bL, (2)

where Wl ∈ Rdl−1×dl , bl ∈ Rdl and σl denote the weight matrix, bias and activation
function in the l-th layer with d0 = d being the input dimension and dL being the output
dimension. We call maxl dl the width of f . The computation of f(x) can be taken as
passing the input x to L layers sequentially.

3 Operator-splitting methods

The operator-splitting method is a powerful method for solving complicated problems,
such as time evolution problems and optimization problems. The general idea is to
decompose a complicated problem into several easy-to-solve subproblems, so that each
subproblem can be solved explicitly or efficiently. The first operator-splitting method
according to [19] is the famous Lie scheme introduced in [35] to solve the initial problem
from the dynamical system:

dX

dt
+ (A+B)X = 0 in (0, T ],

X(0) = X0,
(3)

where X0 ∈ Rd for some integer d > 0, and A,B ∈ Rd×d. In the Lie scheme, one solves
(3) by decomposing A and B into two subproblems. In each subproblem, X is governed
by one operator and evolves for a small time step. One can show that this scheme is
first-order accurate in time. Later, a second order splitting scheme, the Strang scheme,
was introduced in [58]. We refer this type of splitting scheme as sequential scheme as
the subproblems are solved sequentially. Another type of splitting strategy is parallel
splitting [47], which solves the subproblems simultaneously and then takes the average.
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Such a method is proved to be first-order accurate in time. Due to the simplicity of the
ideas and versatility, operator-splitting methods have been widely used in solving partial
differential equations [6, 9, 26, 47, 49] in which the operators in the PDE are decomposed
into subproblems.

The operator-splitting method is also a popular choice to solve optimization problems.
Consider an optimization problem in which one needs to minimize a functional. One may
first derive the optimality condition of the minimizer and associate it with an initial
value problem in the flavor of gradient flow. Then solving the optimization problem is
converted into finding the steady-state solution of the initial value problem. The initial
value problem can be solved by operator-splitting methods. Such a strategy has been used
in [21, 22, 30, 41, 42]. For optimization problems, the alternating direction method of
multipliers (ADMM) has been extensively studied in past decades [1, 59, 66, 67]. Indeed,
ADMM is a special type of operator-splitting methods. We suggest readers to [27, 28]
for a comprehensive discussion on operator-splitting methods.

In the rest of this section, we focus on the following initial value problem
∂u

∂t
=

K∑
k=1

(Aku+Bk(u) + gk) on Ω× (0, T ],

u(0) = u0,

(4)

whereK > 0 is a positive integer, Ω is our computational domain, Aku is a linear operator
of u, Bk(u) is an operator on u that might be nonlinear, and gk’s are functions defined
on Ω. We will discuss sequential splitting and parallel splitting schemes for solving (4),
and show their connections to deep neural networks. In the following, assume the time
domain is discretized into N subintervals. Denote ∆t = T/N and tn = n∆t. We use un

to denote our numerical solution at tn.

3.1 Sequential splitting

For sequential splitting, a simple one is the Lie scheme. Given un, we can update un+1

by K substeps:
For k = 1, ..., K, solve

∂v

∂t
= Akv +Bk(v) + gk on Ω× (tn, tn+1],

v(tn) = un+ k−1
K ,

(5)

and set un+ k
K = v(tn+1). One can show that when Bk’s are linear operators and (5) is

time-discretized by the forward Euler method, scheme (5) is first-order accurate in time.
Equation (5) is the building block for this scheme. Note that to solve (5), we can

further apply a Lie scheme. Starting from un+ k−1
K , we update un+ k

K by two parts un+ k−1
K →

ūn+ k
K → un+ k

K :
Part 1: Solve 

∂v

∂t
= Akv + gk on Ω× (tn, tn+1],

v(tn) = un+ k−1
K ,

(6)

and set ūn+ k
K = v(tn+1).
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Part 2: Solve 
∂v

∂t
= Bk(v) on Ω× (tn, tn+1],

v(tn) = ūn+ k
K ,

(7)

and set un+ k
K = v(tn+1).

By time-discretizing (6) by the forward Euler method, we get

ūn+ k
K − un+ k−1

K

∆t
= Aku

n+ k−1
K + gk, (8)

implying that

ūn+ k
K = un+ k−1

K +∆tAku
n+ k−1

K +∆tgk

= (I +∆tAk)u
n+ k−1

K +∆tgk, (9)

where I denotes the identity operator: Iu = u.
By time-discretizing (7) using the backward Euler method, we get

un+ k
K − ūn+ k

K

∆t
= Bk(u

n+ k
K ). (10)

Denoting the resolvant operator for un+ k
K by ρk, i,e. ρk = (I −∆tBk)

−1, we have

un+ k
K = ρk(ū

n+ k
K ) = ρk((I +∆tAk)u

n+ k−1
K +∆tgk). (11)

Connections to FNN. Comparing (11) and (1), we see that they have the same
structure. By choosing,

L = K + 1,Wk = (I +∆tAk), bk = ∆tgk, σk = ρk (12)

and WK+1 = I, bK+1 = 0, the sequential splitting scheme is an FNN with K + 1 layers,
where the k-th substep corresponds to the k-th layer. In other words, any FNN with
WK+1 = I, bK+1 = 0 and activation functions ρk’s is a sequential splitting scheme
solving some initial value problem.

3.2 Parallel splitting

Using parallel splitting [47], we solve (4) by first solving K parallel substeps:
For k = 1, ..., K, solve

∂v

∂t
= KAkv +KBk(v) +Kgk on Ω× (tn, tn+1],

v(tn) = un
(13)

and set un+1,k = v(tn+1). Then compute

un+1 =
1

K

K∑
k=1

un+1,k. (14)
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One can show that when Bk’s are linear operators and (13) is solved by the forward
Euler method, the parallel splitting scheme is first-order accurate in time. Note that the
number of operators K is multiplied into the right hand side of (13).

Similar to (6)–(7), we can use the same idea to solve (13). After some derivations, we
get

un+1,k = ρk ((I +∆tKAk)u
n +∆tKgk) (15)

and

un+1 =
1

K

K∑
k=1

ρk ((I +∆tKAk)u
n +∆tKgk) . (16)

Connections to FNN. Again, (15) and (1) have the same structure. Set L = 2,

W1 =


A1 0 · · · 0
0 A2 · · · 0
... · · · . . .

...
0 · · · · · · AK

 , b1 =

 g1...
gK

 σ1 =

ρ1...
ρK

 , W2 =
1

K
I, b2 = 0, (17)

where σ1 is applied elementwise:

σ1


u1

...
uK


 =

 ρ1(u1)
...

ρK(uK)

 , (18)

then the parallel splitting scheme is an FNN with 2 layers. In other words, any 2-layer
FNN with σ1,W2,b2 given in the format of (17) is a parallel splitting scheme solving
some initial value problems.

4 Potts model and image segmentation

We next focus on image segmentation and utilize the relations between operator-splitting
methods and FNNs to derive new networks.

We start with the Potts model which has close relations to a large class of image
segmentation models. Let Ω be the image domain. The continuous two-phase Potts
model is given as [3, 7, 8, 12, 68]min

Σ0,Σ1

{
1∑

k=0

∫
Σk

fk(x)dx+
1

2

1∑
k=0

Per(Σk)

}
,

Σ0 ∪ Σ1 = Ω, Σ0 ∩ Σ1 = ∅,
(19)

where Per(Σk) is the perimeter of Σk, and fk’s are nonnegative weight functions. In (19),
the first term is a data fidelity term which depends on the input image f . The second
term is a regularization term which penalizes the perimeter of the segmented region.

A popular choice of fk is

fk(x) = (f(x)− ck)
2,
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where ck is the estimated mean density of f(x) on Σ∗
k. Here we use Σ∗

k to denote the
‘optimal’ segmentation region. With this choice and the use of a binary function v to
represent the foreground of the segmentation results, we rewrite the two-phase Potts
model as

min
v∈{0,1}

{∫
Ω

(f(x)− c0)
2v + (f(x)− c1)

2(1− v)dx+ λ

∫
Ω

|∇v|dx
}

(20)

for some constant λ > 0. Model (20) is the well-known Chan-Vese model [16].
The first integral in (20) is linear in v. As one can take ck and Σ∗

k as functions
depending on f , in this case, fk’s in (19) are functions of the input image f only. We can
thus rewrite the Potts model as

min
v∈{0,1}

∫
Ω

F (f)vdx+ λ

∫
Ω

|∇v|dx, (21)

where F (f) is a region force depending on the input image f . In the following sections,
we will discuss two relaxations of the Potts model (21) and correspondingly propose two
new networks for image segmentation.

5 Operator-splitting method inspired networks for

image segmentation: Model I

Our first model utilizes (21) and the double-well potential and follows [39].

5.1 Model formulation

Model (21) requires the function v to be binary. One relaxation of (21) using the double-
well potential is

min
v

∫
Ω

F (f)vdx+ λLε(v)dx, (22)

with

Lε(v) =

∫
Ω

[
ε

2
|∇v|2 + 1

ε
v2(1− v)2

]
dx.

It is shown in [50, 51] that Lε(v) converges to CPer(Σ1) in the sense of Γ-convergence as
ε → 0 for some constant C.

Denote the minimizer of (22) by u. It satisfies the optimality condition

F (f)− λε∇2u+
2λ

ε
(2u3 − 3u2 + u) = 0 in Ω. (23)

The gradient flow equation for minimization problem (22) is:
∂u

∂t
+ F (f)− λε∇2u+

2λ

ε
(2u3 − 3u2 + u) = 0 in Ω× (0, T ],

∂u

∂n
= 0 on ∂Ω,

u(0) = G(f),

(24)
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for some initial condition G(f), which is a function of f . Then solving (23) is equivalent
to finding the steady state solution of (24). As was done in [61], We add control variables
to (24) so that we can use these control variables to lead the final state u(T ) of the
following equation to some desired targets:

∂u

∂t
+ F (f)− λε∇2u+

2λ

ε
(2u3 − 3u2 + u) +W (t) ∗ u+ b(t) = 0 in Ω× (0, T ],

∂u

∂n
= 0 on ∂Ω,

u(0) = u0.

(25)

Normally, the function F (f) is a complicated function of f . We use a subnetwork to
represent F (·). As usual, here and later ∗ denote the spatial convolution operator.

5.2 An operator splitting method to solve (25)

We use the Lie scheme to solve (25). Still discretize the time variable as in Section 3.
Given un, we update un → un+1/2 → un+1 in the following way:
Substep 1: Solve

∂v

∂t
+ F (f)− λε∇2v +W (f, t) ∗ u+ b(t) = 0 in Ω× (tn, tn+1],

∂v

∂n
= 0 on ∂Ω,

v(tn) = un,

(26)

and set un+1/2 = v(tn+1).
Substep 2: Solve 

∂v

∂t
+

2λ

ε
(2v3 − 3v2 + v) = 0 on Ω× (tn, tn+1],

v(tn) = un+1/2,
(27)

and set un+1 = v(tn+1).

5.3 Time discretization

We use a one-step forward Euler scheme to time-discretize (26) and a one-step backward
Euler scheme to time-discretize (27):

un+1/2 − un

∆t
+ F (f)− λε∇2un +W n ∗ un + bn = 0,

∂un+1/2

∂n
= 0,

(28)

un+1 − un+1/2

∆t
+

2λ

ε
(2(un+1)3 − 3(un+1)2 + un+1) = 0. (29)

In image processing, the periodic boundary condition is widely used. Here we replace the
Neumann boundary condition in (28) by the periodic one. In (28), index n is used at the
superscript of W n and bn to differentiate control variables at different time.

8



Model I UNet UNet++ MANet
accuracy 95.91% 94.79% 95.66% 95.33%
dice score 0.9048 0.8776 0.8992 0.8936

Table 1: Comparison of Model I with other networks in terms of accuracy and dice score.

In our algorithm, we choose G(f) as a convolution layer of f , i.e., a convolution of f
with a 3× 3 kernel followed by a sigmoid function. Suppose we are given a set of images
{fi}Ii=1 and the corresponding segmentation masks {hi}Ii=1. Note that both F and G
are networks and contain learnable parameters. Denote the set of control variables by
θ1 = {{W n, bn, }Nn=1, θF , θG}, where θF , θG denote the all network parameters in F and G.
Denote the procedure of numerically solving (38) with N time steps and control variables
θ1 by

N1(θ1; ·) : f → u0 → u1 → · · · → uN .

We will learn θ1 by solving

min
θ1

1

I

I∑
i=1

ℓ(N1(θ1; fi), hi), (30)

where ℓ(·, ·) is some loss function, such as the cross entropy.

5.4 Connections to neural networks

The building block for scheme (26)–(27) consists of a linear step (28) and a nonlinear step
(28). Thus a time stepping of un corresponds to a layer of a network with (29) being the
activation function. Unlike the commonly used neural networks, the equivalent network
of Model I has a heavy bias term F (f) which is chosen as a subnetwork in this paper.
The process (30) of learning θ1 is the same as training a network.

5.5 Numerical experiments

We demonstrate the effectiveness of Mode I. In our experiments, we choose G(f) as a
convolution layer of f . The functional F (f) needs to be complicated enough to approx-
imate the probability function in the Potts model. Here we set F (f) as a UNet [57]
subnetwork of f , i.e., F has the same architecture as a UNet, takes f as the input and
ouputs a matrix having the same size as u with elements in [0, 1], see [39] for details. The
W n’s and bn’s are convolution kernels and biases, respectively. For parameters, we set
∆t = 0.2, λε = 1, λ/ε = 15.

We use the MSRA10K dataset [18] which contains 10000 salient object images with
manually annotated masks. We choose 2500 images for training and 400 images for
testing. All images and masks are resized to 192× 256.

We compare Model I with UNet [57], UNet++ [71] and MANet [23]. All models are
trained with 400 epochs. The comparison of accuracy and the dice score are shown in
Table 1. We observe that Model I has higher accuracy and dice score than other networks.
Some segmentation results are presented in Figure 1. Model I successfully segments the
targets from images with complicated structures.
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Images Given Mask Mask by Model I
Segmented Image

by Model I

Figure 1: Some results by Model I.

6 Operator-splitting method inspired networks for

image segmentation: Model II

As in [61], our second model incorporates (21) and the threshold dynamics ideas in
approximating the perimeter of a region.

6.1 Model formulation

In (21), when v is binary,
∫
Ω
|∇v|dx gives the perimeter of Ω1, the support of v. Replacing∫

Ω
|∇v|dx by Per(Ω1) in (21), we get

min
v∈{0,1}

∫
Ω

F (f)vdx+ λPer(Ω1). (31)

Then we use a threshold dynamics idea to approximate the perimeter term:

Per(Ω1)≈
√

π

δ

∫
Ω

v(x)(Gδ ∗ (1− v)(x)dx, (32)

where Gδ is the two-dimensional Gaussian filter (the covariance matrix of x being an
identity matrix)

Gδ(x) =
1

2πδ2
exp

(
−∥x∥2

2δ2

)
. (33)

It is shown in [55] that the approximation in (32) Γ–converges to Per(Ω1) as δ → 0.
Replacing Per(Ω1) by the approximation given in (32), the functional we are minimizing
becomes

min
v∈{0,1}

∫
Ω

F (f)vdx+ λ

∫
Ω

v(x)(Gδ ∗ (1− v)(x)dx. (34)
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Model (34) requires v to be binary. We relax this constraint to v ∈ [0, 1] and consider
the following functional instead

min
v∈[0,1]

∫
Ω

F (f)vdx+ ε

∫
Ω

v ln v + (1− v) ln(1− v)dx+ λ

∫
Ω

v(x)(Gδ ∗ (1− v)(x)dx (35)

for some small ε > 0. Such an approximate is a smoothed version of the binary constraint,
and it converges to the original problem (34) as ε → 0, c.f. [45].

If u is a minimizer of (35), it satisfies the optimality condition

ε

(
ln

u

1− u

)
+ λGδ ∗ (1− 2u) + F (f) = 0.

The gradient flow equation for this problem is:
∂u

∂t
+ ε

(
ln

u

1− u

)
+ λGδ ∗ (1− 2u) + F (f) = 0,

u(0) = u0.
(36)

We then introduce control variables to (36) and solve
∂u

∂t
+ ε

(
ln

u

1− u

)
+ λGδ ∗ (1− 2u) + F (f) + A(t) ∗ u+ g(t) = 0,

u(0) = u0 = G(f)
(37)

for some initial condition G(f) which is a function applied on f . Here we used a different
notation from Section 5 to differentiate the different control variables.

Unlike Model I which treats F (f) and b(t) as two functions, we use a different strategy
to treat Model II. Since the term F (f) and g are just constant terms with respect to u,
we can combine them and denote them by g which depends on f . The new problem is
written as 

∂u

∂t
+ ε

(
ln

u

1− u

)
+ λGδ ∗ (1− 2u) + A(t) ∗ u+ g(f, t) = 0,

u(0) = u0 = G(f).
(38)

6.2 An operator splitting method to solve (38)

We decompose the operator A and the function g as a sum of K terms for some positive
integer K:

A =
K∑
k=1

Ak, g =
K∑
k=1

gk (39)

for some operators Ak’s and functions gk’s. We then use a Lie scheme to solve (38). Given

un, we update un → · · · → un+ k
K → · · · → un+1 via K substeps:

For k = 1, ..., K − 1, solve
∂v

∂t
+ ε

(
ln

v

1− v

)
+ Ak(t) ∗ v + gk(f, t) = 0 in Ω× (tn, tn+1],

v(tn) = un+ k−1
K ,

(40)
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and set un+ k
K = v(tn+1).

For k = K, solve
∂v

∂t
+ ε

(
ln

v

1− v

)
+ λGδ ∗ (1− 2v) + AK(t) ∗ v + gK(f, t) = 0 in Ω× (tn, tn+1],

v(tn) = un+K−1
K ,

(41)

and set un+1 = v(tn+1).
For (40), we further apply a Lie scheme to decompose it into two substeps:

Substep 1: Solve 
∂v

∂t
+ Ak(t) ∗ v + gk(f, t) = 0 in Ω× (tn, tn+1],

v(tn) = un+ k−1
K ,

(42)

and set ūn+ k
K = v(tn+1).

Substep 2: Solve 
∂v

∂t
+ ε

(
ln

v

1− v

)
= 0 in Ω× (tn, tn+1],

v(tn) = ūn+ k
K ,

(43)

and set un+ k
K = v(tn+1).

Similarly, we solve (41) by the following two substeps:
Substep 1: Solve

∂v

∂t
+ AK(t) ∗ v + gK(f, t) = 0 in Ω× (tn, tn+1],

v(tn) = un+K−1
K ,

(44)

and set ūn+1 = v(tn+1).
Substep 2: Solve

∂v

∂t
+ ε

(
ln

v

1− v

)
+ λGδ ∗ (1− 2u) = 0 in Ω× (tn, tn+1],

v(tn) = ūn+1,
(45)

and set un+1 = v(tn+1).

6.3 Time discretization

Problem (42)–(45) are only semi-constructive as we still need to solve these initial value
problems. In our algorithm, we time-discretize (42) and (44) by the forward Euler method
and discretize (43) and (45) by the backward Euler method. The discretized scheme is
given as follows: For (40), we use the following time discretization to solve it

ūn+ k
K − un+ k−1

K

∆t
+ An

k ∗ un+ k−1
K + gnk = 0, (46)

un+ k
K − ūn+ k

K

∆t
+ ε

(
ln

un+ k
K

1− un+ k
K

)
= 0. (47)
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For (41), we use the following time discretization to solve it

ūn+1 − un+K−1
K

∆t
+ An

K ∗ un+K−1
K + gnK = 0, (48)

un+1 − ūn+1

∆t
+ ε

(
ln

un+1

1− un+1

)
+ λGδ ∗ (1− 2un+1) = 0. (49)

In our algorithm, we choose G(f) as a convolution layer of f , i.e., a convolution of f
with a 3× 3 kernel followed by a sigmoid function. We will also choose gn’s as networks.
Suppose we are given a set of images {fi}Ii=1 and the corresponding segmentation masks
{hi}Ii=1. Denote the set of control variables by θ2 = {An, θgn , θG}Nn=1, where θgn and θG
denote the parameters in gn and G, respectively. Denote the procedure of numerically
solving (38) with N time steps and control variables θ2 by

N2(θ2; ·) : f → u0 → u1 → · · · → uN .

We will learn θ2 by solving

min
θ2

1

I

I∑
i=1

ℓ(N2(θ2; fi), hi), (50)

where ℓ(·, ·) is some loss function, such as the cross entropy.

6.4 Connections to neural networks

The building block of scheme (40)–(41) is (46)–(49). Note that the first substep (46)

(resp. (48)) is a linear step in ūn+ k
K (resp. ūn+1). The second step (47) (resp. (49)) is

a nonlinear step. Thus this procedure is the same as a layer of a neural network, which
consists a linear step and a nonlinear step (activation step). The numerical scheme for
(40)–(41) that maps f → u0 → u1 → · · · → uN is a neural network with KN layers
and activation functions specified in (47) and (49). The process (50) of learning θ2 is the
same as training a network.

6.5 Numerical experiments

In this section, we demonstrate the robustness of Model II against noise. We show that
one trained Model II can provide good segmentation results on images with various levels
of noise. In our experiments, we choose G(f) as a convolution layer of f . We set An

k ’s
as learnable convolution kernels at different scales that extract various image features.
We set gnk ’s as the convolution layers that are applied to f . For parameters, we use
∆t = 0.5, ε = 2, λ = 80.

We use the MSRA10K data again while resizing all images to a size of 192 × 256.
In our training, we train our model on images with noise standard deviation (SD) 1.0.
This noise is big. Many existing algorithms cannot handle so big amount of noise. Some
segmentation results are presented in Figure 2. For various levels of noise (even with
very large noise), the trained model segments the target well. Refer to [61] for more
experiments and explanations.
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Figure 2: Results by Model II.
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7 Conclusion

In this paper, the relations between deep neural networks and operator-splitting meth-
ods are discussed, and two new networks inspired by the operator-splitting method are
proposed for image segmentation. The two proposed networks are derived from the Potts
model, with certain terms having physical meanings as regularizers. Essentially, the two
networks are operator-splitting algorithms solving the Potts model. The effectiveness of
the proposed networks is demonstrated by numerical experiments.
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