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ABSTRACT

This paper proposes an iterative deep variational approach for image segmentation in a fusion manner: it
is not only able to realize selective segmentation, but can also alleviate the issue of parameter/initialization
dependency. Moreover, it possesses a refinement process designed to handle challenging scenarios, such as
images containing obscured, damaged, or absent objects, or those with complex backgrounds. Our proposed
approach consists of two main procedures, i.e., selective segmentation and shape transformation. The first
procedure works as a stem in a totally unsupervised way. A convolutional neural network (CNN) based
architecture is properly incorporated into the selective weighting constrained variational segmentation model.
The second procedure is to further refine the outputs. This part can be achieved in two ways: one direction
is to establish a joint model with the semantic shape constraint. The other technical direction is to make the
shape descriptor separated from the joint model and work as an individual unit. In the proposed approach,
the minimization problem is transformed from iterative minimization for each variable to automatically
minimizing the loss function by learning the generator network parameters. This also leads to a good inductive
bias associated with classic variational methods. Extensive experiments have demonstrated the significant

advantages.

1. Introduction

Selective segmentation [1,2] is one important technique in image
processing. Unlike standard segmentation, it does not require the iden-
tification of all objects in an image. As shown in Fig. 1, standard
segmentation will segment all four objects in (a), while selective seg-
mentation will only segment the region (c) based on the selected points
(by mouse clicks) given in (b).

Although selective image segmentation has received relatively less
attention in research, recent advances [3-13] in this field demon-
strated its success in medical and real applications. Among the research
works, [3-9] adopted variational methods. The research [3-6] centered
on exploring effective approaches. [3] proposed a two-step approach
for medical images, which included the use of a weighted function
and a subsequent thresholding procedure. [4] tried to partition all
objects using a global level set function, while segmenting the selected
item using a different level set function with a more local focus.
Spencer et al. [5] investigated parameter-free selective segmentation to

* Corresponding author.

alleviate the user’s burden by simplifying the input requirements. [6]
employed a newly designed model to smooth the given image and
a modified Gout’s model [14] to detect the target boundary. [7-9]
emphasized on new model design. A penalty term was introduced
in [7], which involved the edge-weighted geodesic distance from a
marker set. In [8], a model was developed that relied on a region-
based approach. It combined edge information and statistical data to
effectively capture the desired object, whether the object had a single
region or multiple regions. [9] combined the Chan-Vese model with
elastica and landmark constraints. As for [10-12], they utilized deep
learning techniques. [10] incorporated global contextual information
into each local region of interest to enhance feature representation. And
a click discounting factor to facilitate the effective end-to-end training
of their model. In [11], a CNN architecture was introduced, wherein
the four extreme locations were represented as an additional heatmap
input channel to the network. The key of [12] lies in the discovery
that a coarse-to-fine structure is essential for achieving more accurate
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Fig. 1. Our proposed approach for selective shape with a missing parL

segmentation masks, while adding extra layers does not contribute
greatly. The thesis work [13] explored the use of variational and deep
learning methods for selective segmentation, providing insights into
designing models that consider specific criteria in the segmentation
output. Current selective segmentation largely focused on segmenting
real regions of interest or necessitated precise initialization. In this
paper, our proposed approach not only addresses segmentation for
objects with actual boundaries but also for objects with illusory or
ambiguous boundaries. And some inherent limitations of variational
methods are also considered.

As stated in [3,9,15], variational methods are highly effective in
producing outputs without sacrificing essential features while also de-
manding less computational memory. Remarkably, it can be seamlessly
integrated with other advanced theories. For example, stochastic pro-
gramming derived from probability theory [16] has been employed in
image processing. However, there exist limitations in the minimization
of the energy functional: alternating directional optimization strategy
based fast algorithms [9,16-18] is the widely adopted solution, con-
sidering both simplification and effectiveness. But they will introduce
additional auxiliary variables, leading to an increased number of hyper-
parameters that require manual tuning. Besides, these solutions exhibit
sensitivity to predefined parameters and dependence on their initial
settings.

Among the substantial research conducted by deep learning net-
works in recent years, convolutional neural networks (CNNs) [19-21]
have made significant achievements with promising outcomes. Some
work [22] exhibited enhanced segmentation performance while still
relying on fully annotated masks as supervision. We believe that the
remarkable ability of learning realistic image priors from large data
is a crucial factor in CNNs, as learning is the primary driver behind
the outstanding performance of deep networks. A good example given
in [223] demonstrated that the structure of the network should corre-
spond well with the structure of the data. Similarly, authors in [21]
put forward that image statistics can be adequately captured by the
structure of a single CNN generator network in an unsupervised way.
Good examples [19,24] presented that unified frameworks can be
built on top of [21] by coupling multiple CNN generator networks to
handle seemingly unrelated computer vision tasks. Taking inspiration
from the studies by [25-28], incorporating diverse shape priors into
existing deep architectures proves to be a pragmatic and successful ap-
proach for improving performance. Additionally, several other studies,
including [29-31], have demonstrated the effectiveness of leverag-
ing traditional methods, such as clustering models, in combination
with end-to-end representation learning based on specific optimization
principles to facilitate segmentation tasks.

Another challenge in segmentation is for images with the oc-
cluded/damaged objects or complex backgrounds. To the best of our
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knowledge, only a limited number of segmentation techniques can
address the issue of missing information in such cases. Presently, most
existing approaches primarily focus on detecting the visible objects
within the image and do not consider whether the missing portions
should be reconstructed.

Motivated by these challenges, we propose a novel framework that
integrates classical variational functionals with deep networks and deep
priors. This integration eliminates the need for traditional optimization
algorithms in solving variational functionals while effectively address-
ing the aforementioned computational difficulties. A key contribution
of our work is establishing a meaningful connection between these
two approaches, demonstrating their mutual benefits. Specifically, we
propose a deep learning method for selective segmentation using a
variational framework, with an optional refinement procedure for cases
where preliminary results are suboptimal. This refinement capability
distinguishes our approach from common selective segmentation meth-
ods [3-13]. Our framework uniquely unifies CNNs in a variational way
and incorporates prior shape technique without additional annotations.
The integration of these three components — variational methods,
deep priors, and shape context — is motivated by their complemen-
tary strengths: variational methods enable self-supervised modeling of
energy functionals with multiple variables, the CNN-based deep image
prior (DIP) [21] effectively captures image statistics through a single
CNN generator structure, and shape context serves as a highly dis-
criminative descriptor, imposing semantic shape priors during output
generation.

Our contributions are briefly summarized as: (1) We propose a
novel two-procedure approach by deep variational priors, which can
achieve a coarse-to-fine selective segmentation for different situations.
(2) It allows to overcome inherent drawbacks existed in variational
methods, such as manual hyper-parameter tuning, sensitivity to nu-
merous predefined values, and heavy dependence on initial settings.
(3) Our approach does not impose strict requirements on the point
positions. Furthermore, it technically permits the unlimited repetition
of the individual module until the correction reaches a satisfactory
level.

The rest of this paper is structured as: our approach is elaborated in
Section 2. Experiments with evaluation, comparisons and analysis are
given in Section 3. Section 4 draws the conclusion.

2. The proposed approach

The feasibility and flexibility of our proposed approach lie in:
assuming the desired results are obtained from Procedure I, one can
directly ignore the refined method in Procedure IL In case that the re-
fined procedure is required, one has two ways to incorporate the shape
context based transformation technique: within a joint formulation or
an individual module. Procedure II allows it to simultaneously address
tasks such as completing missing boundaries, reconstructing occluded
object structures, and elevating segmentation accuracy by adding more
points. The model and implementation are illustrated in Fig. 2. Our
theoretical foundation leverages the connection between variational
methods and deep learning. As shown in Fig. 2, let 2 be the image
domain, and u or ¢: 2 — R be the desired segmentation function that
minimizes the variational energy. Instead of directly optimizing in the
infinite-dimensional function space, we parameterize the solution space
using a CNN architecture. Specifically for the segmentation function u,
we represent it through a CNN parameterized by #: u = DI Py(z), where
z is the random input. This parameterization is theoretically justified
by the Universal Approximation Theorem — given sufficient network
capacity, CNNs can approximate any continuous function on a compact
domain to arbitrary precision. Formally, for any ¢ > 0, there exists a
parameter set 6 such that |ju — DIFy(z)||, < e. This guarantees that
our CNN-based representation is sufficiently expressive to approximate
optimal solutions in the variational framework. For the related work,
see Sec. 1 of the Supplementary Material.
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Fig. 2. The modeling and process of our proposed approach.

2.1. Procedure I: Weighted segmentation

As shown in Fig. 2, each variable is obtained by a DIP network
instead of being calculated based on its corresponding partial differ-
ential equation. With the incorporation of CNN, the original minimiza-
tion problem of energy functional is transformed into an optimization
problem with the new loss below:

Lossy, = a|VDIPy(z)| + w*(DIPy(z)— f)~. (€h)]

From Fig. 2, u = DI Py(z), z is the randomly initialized input (uniform
noise) of the DIP and « is the output reconstructed from the original
image f with the same size as f. The definition of @’(x) including d(x)
and g(x) is given in [3]. V is the gradient operator for smooth output.
When |V(-)| is used with DIP, it helps balance detail preservation and
noise reduction, improving overall performance. Here, this term is
sufficient for Procedure I to obtain desired results, thus |V(-)|> used
in [3,32] is omitted. The architecture details can be found in the
Supplementary Material.

2.2. Procedure II: Refined method

Different from the existing work [33,34], we aim to produce refined
results for interactive segmentation with the shape matching technique
in two modes: (1) if no additional points are provided except the
selected ones for the weighting constraint (Section 2.1), shape context
is used for enhancing performance. (2) if more points are provided (one
or two), shape context can achieve the recovery of occluded/damaged
objects. As shown in Fig. 2, if “no”, shape context is used for a semantic
constraint of shape (if necessary). If “yes”, a few more points will
be added iteratively to learn the shape prior which can achieve the
completion of the object shape. A workflow illustration is available in
Section 2 of the Supplementary Material.

Procedure IIA — A joint model with semantic shape constraint:
From the full version of our framework in Fig. 2, our proposed refined
method can be formulated in a joint model. In particular, the loss
function for this deep variational model is:

Loss joi = 7IVDIPy (2)| + R(c, DIy (2) (2

L5 )
'

Lossg,,

+ C(DI Py (2).® 1, ) DI Py (2),
A -

v

Loss gpape

where Loss,,, maintains geometric constraints and Loss gy, enforces
semantic priors, making the optimization well-posed. ¢ = DI Py, (2) and
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C(target, prior)= E‘. C(target,, priory) (n(i) is a permutation) refers to
the matching from target to prior, which is achieved via minimization.
Target should contain the extra points beyond the ones from Procedure
1 if available. And R(c, DI P%(z)) in (2) is

R(e. DIPy (2)) = ay(¢; — /)* DI Py (2) 3
+ ay(ey — (1 - DIP, (2)),

which keeps the same definition as in [16,19], a binary representation
for the mask is required, and the advantage is that we can achieve
this automatically with no more need for the extra regularization loss
as used in [19] and the threshold method used in [16]. Moreover, it
naturally gives the knowledge (¢;, and ¢, are dynamically updated)
for image foreground and background. Thus the extra optimization
procedure to guarantee fore/back-ground as did in [19] is not required.

Procedure IIB — An individual module: Beyond the joint model
proposed above, the shape transformation can work as an individual
module. After this separation, it can be deduced that (2) will naturally
reduce into a pure segmentation approach: L"-"Ssgg =y|VDI P%(z)|+
R(c, DI ng(z)). This reduced version of (2) can also be replaced by
the simple thresholding used in [3] or any other different threshold
by trial and error. Based on the binary results by thresholding, the
shape transformation is then applied with/without extra points given
for refinement.

In summary, a two-step segmentation approach is proposed based
on deep neural networks and variational approaches. By utilizing use-
ful regularization terms and semantic shape transformations, we can
provide valuable guidance for deep neural network design and estab-
lish new constraints. Moreover, the proposed formulations maintain
the mathematical properties of the original variational problem while
leveraging the CNN’s representation power. In implementation, we
employed multiple strategies to improve convergence: (1) random ini-
tializations of network parameters, (2) the Adam optimizer to better
handle saddle points, and (3) repeated training attempts to select the
best performing model. While these approaches enhanced the optimiza-
tion process, gradient descent on # can achieve better convergence
behavior, though convergence to a favorable local minimum remains
probabilistic rather than guaranteed.

3. Experiments

Experiments are conducted using GTX 1050Ti GPU. Synthetic and
natural images (resized into 256 x 256 or 512 x 512) are set as testing
images, which are synthesized or chosen from public datasets of MPEG-
7, BSD500, PASCAL, RVSC and Weizmann'. In Section 3.4, the training
dataset is from PROMISE12 challenge and the testing dataset is from
the Brigham and Women'’s Hospital®. In our implementation, we set the
weighting parameters « and y in Egs. (1) and (2) to 0.1, while «; and
a, in Eq. (3) are set to 1 by default. The weighting parameters « and y
were empirically determined. While these parameters are not critical to
the core contribution of our method, we set them through experimental
exploration. With these settings, our model demonstrated stable behav-
ior and effective feature extraction capability. Similar performance can
be achieved with a reasonable range of parameter values, indicating
the robustness of our approach.

3.1. Selective segmentation only using Procedure I

Several experimental examples obtained by selective segmentation
model [3], double-DIP [19] and our proposed model (1) are given.
In Fig. 3, the original images, selected points used by [3] and results
obtained by [3] are presented in (a) and (c). (b) and (d) show the

! http://www.wisdom.weizmann.ac.il/~vision/Seg Evaluation DB/
2 Prostate MR image database, http://prostatemrimagedatabase.com/
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(c) ori & points, result by selective (d) oni & points, result by our ap-
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Fig. 3. Comparison between model [3] and our approach (1)-Procedure I. Please note
that images and results in (b) and (f) were presented in [3].
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(a) original images

(b) ground truth
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L Y

(¢} via double-DIP [19]

BN

{d) via our approach (1) only using Procedure I

& selected points

Fig. 4. Comparison between double-DIP [19] and our proposed approach (1). Here
images of (¢) were directly taken from [19].

related ones of our approach (1) only using Procedure I. We choose
the same point locations for a fair comparison. Compared between (a)
and (b), competitive performance can be achieved by our model (1) by
only using Procedure 1. From (c) and (d), it can be observed that our
model can capture more detailed information, especially on preserving
the corner. However, the three corners in (c) are smeared. Furthermore,
our approach requires significantly less computational overhead and
minimal hyper-parameter tuning compared to the existing method [3].
While these improvements might appear subtle at first glance, they
represent significant advances in detail preservation, achieved with
markedly lower computational complexity and fewer hyper-parameters
to tune.

In Fig. 4, the complicated background causes difficulty for both [19]
and our approach. In our approach, an approximate region of inter-
est can be provided in advance through the interactive segmentation
technique, then the background that may affect the final result is
excluded. This simple technique can also benefit [19], but [19] is not a
good backbone for interactive segmentation since prior information for
foreground and background is needed in advance and should be added
to the loss of the first optimization (two optimizations in total) for
stable segmentation. That would lead to extra effort. On the contrary,
this preliminary procedure is not necessary for our model (1).

Then our comparison with double-DIP [19] has been strengthened
through a comprehensive evaluation framework. In Table 1, we present
detailed quantitative metrics across diverse image types, including:

« Natural objects (chopper: FM 0.954 vs 0.865)

PDF.js viewer
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{a) ori & priors for hybrid model [34] and ours

(b) initial settings and results by hybrid model [34]
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(c) results obtained by double-DIP [19]

B T

(d) selected points and results by our approach

Fig. 5. Comparison with the hybrid model [34], double-DIP [19] and ours. Images,
priors and results shown in (b) were taken from [34].

= Textured scenes (tendrils: FM 0.894 vs 0.457)

« Architectural images (house: FM 0.901 vs 0.553, tower: FM 0.957
vs 0.511)

+ Organic shapes (tree: FM 0.902 vs 0.734)

+ Complex backgrounds (snow: FM 0.734 vs 0.660)

This systematic evaluation demonstrates our method’s consistent supe-
rior performance across different image categories, while also requiring
significantly fewer computational steps (average 458 vs 5583) and less
processing time (average 59.9s vs 429.6s). The improved FM scores
and computational efficiency validate our approach’s robustness across
diverse visual scenarios.

Observed from the experimental results on medical and natural
images presented in this part, our proposed Procedure I model (1) gives
promising performance for selective segmentation. Although our pro-
posed model (1) with only Procedure I cannot capture any semantics,
it is still able to obtain high-quality interactive segmentation without
the need of the foreground and background information in a totally
unsupervised way. There will be no need for any refinement when
desired outputs have been produced by our proposed model (1). For
semantic preserving capability, satisfactory outputs via Procedure II
will be given in the following subsections.

3.2. Interactive segmentation without extra points

Here the performance of our interactive segmentation approach
with semantic preservation is presented. The results obtained by hybrid
model with semantic constraint [34] using pure variational methods
and unsupervised double-DIP model [19] with pure deep learning
approach are used for comparison. In Fig. 5, original images, shape
priors used by hybrid model [34] and our proposed approach are
given in (a). (b), (c) and (d) display the results obtained by the hybrid
model [34], double-DIP [19] and our approach. The results show that
our approach could obtain competitive performance compared with the
hybrid model [34]. In addition, the high computational cost in one
iteration is still kept as described in [34]. As it still needs to design
variational based algorithms for efficiency improvement, the inherent
problems of parameter increase and parameter sensitivity are inevitable
in the hybrid model [34]. But these drawbacks will not impact our
work since the introduction of CNN architecture completely changes
the traditional optimization. Furthermore, random input is used by our
deep variational framework, the necessary contour initialization in the
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Fig. 6. Comparison between CVEL [9] and our approach for object with a small
damage. Images and results in (a)-(d) were presented in [9].

(a) original (b) points used (c) CVEL (d) ourapproach (only 1

for CVEL [9] 9 point}

Fig. 7. Comparison between CVEL [2] and our approach for object with a large
damage. Images and results in (a)-(c) were taken from [9].

(a) 1 correction

TIIIY

(b) repeatable correction in detail

Fig. 8. The whole process of our repeatable refinement.

hybrid model [34] (which is also a traditional process in variational
methods) shown in Fig. 5(b) no longer exists. Apart from these inherited
defects, [34] can only accomplish the task discussed in this subsection.
There is no other correction or refinement designed for occlusions or
damages.

As for the related work double-DIP [19], since it can only achieve
segmentation task without the use of semantic cues, it is not able to
extract the region of interest as our proposed approach achieves. As
far as we know, our proposed approach is the first attempt for deep
unsupervised learning to achieve interactive segmentation augmented
with semantic shape prior, making it applicable in a wide range of
scenarios. Quantitative comparisons are shown in Tables 1-4.

3.3. Interactive segmentation with extra points

3.3.1. Experiments by Procedure 1 & Il-joint form

Objects with damages: The Chan-Vese model with Elastica and
Landmark constraints (CVEL) [9] is used for comparison with our
model in Fig. 6. (a)-(d) show the results obtained by different landmark
points via CVEL model [9]. (e) presents the results by approach. Red
rectangle gives the initialized contour, and blue ones present zoomed
regions for observing clear differences. There are some limitations in
CVEL model [9] based on Fig. 6: landmark points are required to
be exact on the object boundaries and corners, such strict conditions

PDF.js viewer

Table 1
Varieties between deep neural networks [19], variational methods [34] and our
proposed approach on accuracy and efficiency.

double-DIP [19] — Fig. 4 (c)

Image FM Steps Time (s) Time/Steps
chopper 0.865 6000 467.3 0.078
tendrils 0.457 5500 401.9 0.073
house 0.553 6000 474.2 0.079
tower 0.511 5500 4235 0.077

tree 0.734 6000 468.3 0.078
SOW 0.660 4500 3422 0.076
Average 0.630 5583 429.6 0.077

Ours (Procedure I) — Fig. 4 (d)

Image FM Steps Time (s) Time/Steps
chopper 0.954 300 39.7 0.132
tendrils 0.894 400 52.3 0.130
house 0.901 300 31.8 0.106
tower 0.957 350 46.2 0.132

tree 0.902 1000 136.1 0.136

SIOW 0.734 400 53.2 0.133
Average 0.890 458 59.9 0.128

hybrid model [34] — Fig. 5 (b)
Image FM Steps Time (s) Time/Steps
bird 0.973 20 101.7 5.09
medical 0.938 15 345 2.30
Average 0.956 17.5 68.1 3.70
double-DIP [19] — Fig. 5 (e)
Image FM Sleps Time (s) Time/Steps
bird 0.682 6000 448.1 0.075
medical 0.702 6000 456.2 0.076
Average 0.692 6000 452.2 0.076
Qurs — Fig. 5 (d)

Image FM Steps Time (s) Time/Steps
bird 0.915 700 70.7 0.10
medical 0.952 600 65.3 0.11
Average 0.934 650 67.8 0.105

(a) Original images

(b) Ground truth

(c) V-Net [35]

{d) Our proposed approach without extra points

(e) Our proposed approach in the joint form

(f) Our proposed approach in the individual form

Fig. 9. Different segmentation approaches on Patient 46.

usually consume much more time for convergence. Good performance
of the CVEL model [9] is decided by giving more points. However, [9]
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Table 2
Varieties between variational methods and ours.
Varielies Sel. seg [3] Hybrid [34] CVEL [9] Ours
No iniL v * x® s
No reinil. 4 b4 v 4
Parameler no fixed no fixed no fixed fixed
Semantic X v % v
Refine x X 4 v
Point 8 (Fig. 6) 1 (Fig. 6)
num N/A N/A 17 (Fig. 7) 1 (Fig. 7)
Table 3
Varieties between deep archilectures and ours.
Varielies dblL-DIP [19] I-0 model [12] Qurs
No hint % N/A e
CNN num 3 N/A 1(seg),2(refine)
Unsupervised e X '
Refine x s v
Shape compl N/A N/A v
Table 4

Evaluation metrics on (a) V-Net [35], (b) our approach withoul extra points, (¢) our
approach-joint form, (d) our approach-individual form.

Metrics V-Net Ours Ours Ours
(no extra) (joint) (indiv.)
Dice Coeff. 0.2452 0.7870 0.7968 0.7940
Jaccard Coelf. 0.1397 0.6488 0.6622 0.6584
Vs 0.1400 0.7108 0.7005 0.6971
Adj. Rand Idx 0.1664 0.6331 0.6475 0.6496
AUC 0.4987 0.5793 0.5714 0.5690
Mahala. Dist. 1.1694 0.6456 0.6862 0.6837
Haussdorfl Dist. 3.2161 1.3632 1.3379 1.2274

fails to reconstruct the contour with only one point provided. On the
contrary, much fewer points with approximate positions are sufficient
for our proposed approach to producing desired outputs. (e) shows
an extreme situation: one point with an estimated location, the final
contour is reconstructed.

In Fig. 7, one example of an object with large damage is given.
The damaged circle, initialized contour with key landmarks and results
obtained by the CVEL model [9] are shown in (a)-(c). (d) gives the
results obtained by our proposed approach. Through the comparison
of extra points provided as well as the results in (c) and (d), we see
that much more points with exact locations on the edge are required
for the CVEL model [9] to tackle large damages. For this case, we still
use only one point.

3.3.2. Experiments by Procedure I & II-individual form

In Procedure II, the difference between the two types of fusing
semantic shape prior is the dynamical adjustment in each refinement
process. Individual unit allows to repeatedly correct the final result
rather than redo the whole thing from the beginning. In Fig. 8, two
examples in real life are used to introduce the whole process of re-
peatable refinement of our proposed approach. It is clear that the
repeatable power of our approach can produce more accurate outputs
with the help of the iterative interactive segmentation, and shape
transformation.

As for work proposed in [12], maybe more points are used by our
approach, but the inside-outside model [12] relies on fully labeled
samples, which means it cannot work well based on very few train-
ing samples or when only a few simple shape priors are provided.
Although there is a stage in [12] for further correction, its excellent
performance primarily centers on capturing actual object boundaries
in the image. It cannot achieve shape completion of objects with
occluded/damaged/missing parts as the Procedure II of our proposed
work can do.

PDF.js viewer

3.4. Experiments on objects with vague areas/obscure edges

Experiments on prostate MRI with limited resolution and low-
quality problems are conducted in this part. A comparison with the
V-Net [35] on Patient 46 of the test dataset from the Brigham and
Women'’s Hospital is provided. The training dataset of PROMISE12 with
50 patients is used to train the V-Net. Among metrics for evaluating
the performance of segmentation approaches, we selected six prevalent
ones: overlap-based Dice Coefficient, Jaccard Coefficient, volume-based
Volumetric Similarity (VS), pair-counting-based Adjusted Rand Index,
probabilistic-based Area Under the ROC Curve (AUC), Mahalanobis
Distance and Haussdorff Distance (HDgs).

In Fig. 9, the original MRI images as well as the corresponding
ground truth are presented in the first two rows. The last four rows
show results from V-Net [35], our proposed approach without extra
points, our proposed approach in the joint form and our proposed
approach in the individual form. Observations from these selected
examples of 2D visualization demonstrate that our segmentation can
achieve better prostate shape reconstruction from the whole image. The
quantitative comparison between our proposed fusion approach and
the classical V-Net model is presented in Table 4, using six evaluation
metrics. We chose V-Net as a representative supervised learning frame-
work for this comparison, as it demonstrates how our unsupervised
method can effectively complement supervised approaches. While more
recent supervised architectures exist, the complementary principles
demonstrated with V-Net would apply similarly to these newer models.
The experimental results show that our method achieves high accuracy,
making it particularly valuable in scenarios with limited training data
or when additional refinement is needed beyond the initial supervised
segmentation.

Regarding joint form vs individual form choice: the empirical com-
parison between joint and individual formulations reveals comparable
performance quality, as demonstrated in Fig. 9. This equivalence in out-
comes offers practitioners implementation flexibility tailored to their
specific requirements. The joint formulation facilitates end-to-end opti-
mization, while the individual approach enables modular refinement of
components. The selection between these formulations can be guided
by application-specific constraints, particularly when considering the
necessity of iterative refinement in the development pipeline. For in-
stance, as illustrated in Fig. 8(b), when multiple iterative refinements
are needed, the individual form offers clear advantages — it allows
for localized adjustments and step-by-step refinements without recom-
puting the entire model, which would be computationally intensive in
the joint form. This flexibility in the individual form is particularly
valuable for applications requiring fine-tuning of specific regions or
multiple refinement iterations. In contrast, the joint form may be more
suitable for applications requiring one-time, global optimization. More
discussion are in Sec. 3 of the Supplementary Material.

4. Conclusion

This paper presents a two-step deep variational framework that
successfully combines CNN architectures with variational methods for
image segmentation. Our approach offers several key strengths: the
CNN-based dynamic generator enhances image representation while
reducing computational complexity and parameter sensitivity; the two-
step mechanism effectively handles challenging scenarios including
missing boundaries and occluded structures; and the variational energy
functional provides proper guidance for architecture parameter tuning.
However, our approach does face certain limitations in fine detail
segmentation scenarios, particularly with retinal vessel images. In these
cases, Procedure I tends to misidentify detailed structures as noise,
resulting in disconnected or missing vessel segments, while Procedure II
struggles with generating appropriate priors for non-uniform, intricate
structures, making shape prior generation computationally expensive
and often ineffective. Despite these challenges, extensive experimental
results demonstrate that our method achieves comparable or superior
performance to state-of-the-art approaches, especially in cases with
incomplete or obscured object boundaries.
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