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Abstract

As a fundamental task, medical image reconstruction has attracted growing attention in clinical diagnosis. Aiming at promising per-
formance, it is critical to deeply understand and effectively design advanced model for image reconstruction. Indeed, one possible
solution is to integrate the deep learning methods with the variational approaches to absorb benefits from both parts. In this paper,
to protect more details and a better balance between the computational burden and the numerical performance, we carefully choose
the multi-level wavelet convolutional neural network (MWCNN) for this issue. As the tight frame regularizer has the capability
of maintaining edge information in image, we combine the MWCNN with the tight frame regularizer to reconstruct images. The
proposed model can be solved by the celebrated proximal alternating minimization (PAM) algorithm. Furthermore, our method
is a noise-adaptive framework as it can also handle real-world images. To prove the robustness of our strategy, we address two
important medical image reconstruction tasks: Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET).
Extensive numerical experiments show clearly that our approach achieves better performance over several state-of-the-art methods.

Keywords: Medical image reconstruction, Multi-level wavelet convolutional neural network, Tight frame, Proximal alternating
minimization, Magnetic resonance imaging, Positron emission tomography

1. Introduction

Image reconstruction aims to build two-dimensional or three-dimensional images based on incomplete data. This
is an essential task in medical imaging as the reconstructed results will seriously affect the diagnosis results. During
the past decades, many excellent methods have been applied for medical image reconstruction [1, 2, 3]. Assuming that
f is the observation, the general image reconstruction task can be formulated as the following minimization problem

min
u

Φ(Au, f ) + ηR(u), (1)

where A is a known linear operator, u is the clear image to be sought, Φ(Au, f ) is the data fidelity term, η is a positive
parameter for balancing, and R(u) is the regularization term. The data fidelity term of model (1) can be obtained by
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applying the maximum a posteriori probability (MAP) estimation and Bayes rule [4]. In medical imaging, Φ(A1u, f ) =

‖A1u − f ‖22 represents the Magnetic Resonance Imaging (MRI) image reconstruction task [5]. When it comes to
Positron Emission Tomography (PET) image reconstruction task [6], Φ(A2u, f ) = 〈1, A2u + c〉 − 〈 f , ln(A2u + c)〉.
Here c is a constant, 1 is a matrix with all elements as 1 and has the same dimension of A2u + c, A1 and A2 are the
acquisition process operators of the PET and MRI, respectively, and 〈·〉 is the inner product.

There are many significant regularizers for medical image reconstruction, which can generally be divided into
traditional methods and deep learning-based schemes. Previously, several important handcrafted mathematical mod-
els have been carefully designed for image processing [7, 8, 9]. For example, the celebrated total variation (TV)
regularizer [10, 11] was first proposed for gray image restoration and has shown success in medical image reconstruc-
tion [12]. Another notable regularizer is the wavelet framelet term [13], which can sparsely approximate piecewise
smooth functions. Compared to other variational-based methods, the tight frame method has been proved to have
better performance for fine structure [14]. There are also some researchers applying the tight frame in PET recon-
struction to obtain competitive results [15]. Actually, the tight frame achieves outstanding performance in medical
imaging. For instance, the authors in [16] proposed an adaptive tight frame for medical imaging. Later, Zhan and
Dong [17] extended the tight frame to the spatial-radon domain, and this data-driven tight frame regularization gen-
erated good results in medical image reconstruction. However, most tight-frame-based approaches have drawbacks in
having artifacts in image reconstruction tasks.

(a) IFFT (21.10/0.5678) (b) TV (23.96/0.6556) (c) DDTF (28.07/0.8036) (d) IRCNN (28.55/0.7956)(e) Ours (31.00/0.8461)

(a) EM (27.61/0.8251) (b) TV (31.08/0.9252) (c) DDTF (32.78/0.9345) (d) IRCNN (32.69/0.9242)(e) Ours (33.34/0.9404)

Figure 1. Reconstruction results (PSNR/SSIM). The first row is the MRI reconstruction results of image ‘M12’, the second row is the PET
reconstruction results of image ‘P05’. (a) IFFT and EM [18]; (b) TV [6]; (c) DDTF [15]; (d) IRCNN [19]; (e) Ours.

Recently, deep learning-based methods have shown great superiority in image processing [20, 21, 22]. For ex-
ample, Li et al. [23] proposed a multiple degradation and reconstruction network for image denoising. Zhang et
al. [19] proposed a deep convolutional neural network (CNN) denoiser model for image processing. Later, a novel
deep denoiser named multi-level wavelet convolutional neural network (MWCNN) was investigated in [24], which
achieves great success in image restoration with additive Gaussian noise. Later, Wu et al. [25] applied the MWCNN
denoiser for Cauchy noise removal. Note that the MWCNN is good at preserving texture details. However, the inter-
pretation of the deep learning-based schemes is still an open question [26]. Most deep learning-based methods are
often regarded as black boxes, lacking transparency in their decision-making processes, particularly in attaining clear
image outputs [27]. In the realm of medical imaging, these deep learning approaches encounter numerous challenges.
Conversely, traditional methods fall short of efficiently accomplishing image reconstruction tasks. Consequently, our
objective is to bridge this gap by synergistically employing traditional regularization techniques alongside deep learn-
ing methodologies for establishing an interpretable framework for image reconstruction. To realize this objective,
we propose an integration of tight frame and MWCNN denoiser for medical image reconstruction. This approach
effectively harnesses the strengths of both methodologies. Primarily, the proposed method showcases promising re-
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Figure 2. The flowchart of our method. Our method takes degraded data as the input and uses simple methods to calculate the initial value of the
iteration, such as IFFT and EM. In each iteration, our algorithm estimates the current noise level to select the specific denoiser. The input of each
iteration is calculated through two regularizations: MWCNN and wavelet. The MWCNN network is with a depth of 24 and each CNN block has 4
layers.

sults, as demonstrated alongside state-of-the-art models in Fig. 1. To better reveal the effectiveness of the proposed
method, we test both the MRI and PET reconstruction. The handcraft methods (TV [6], the data-driven tight frame
(DDTF) [15]), a deep learning method IRCNN [19], the inverse fast Fourier transform (IFFT), and the expectation-
maximization (EM) algorithm [18] are considered. From Fig. 1(b) and (c), it can be clearly observed that the results
reconstructed by the tight frame method are pretty good compared to the TV model. Compared to Fig. 1(c) and (d),
i.e., the tight frame regularizer and the standalone CNN regularizer, the proposed model (Fig. 1(e)) have better results
in both MRI and PET reconstruction. The tight frame-based model has shown effective performance in capturing
image singularities [28, 29]. The implicit CNN-based regularization can produce deep image priors of the images and
describe the fine detail which is hardly captured by the tight frame regularizer. In this work, we intend to combine
the MWCNN with tight frame for medical image reconstruction. Fig. 1(e) demonstrates that our new combination is
feasible. More detailed results are presented in Section 4. The experiments clearly show that the proposed model has
promising performance in various medical imaging tasks. The main contributions are summarized as follows:

• An interpretable medical image reconstruction framework with deep learning-based method is explored. Ex-
periments show that the model trained to denoise Gaussian noise not only works well with Gaussian noise but
also with Poisson noise.

• The reconstruction model proposed in this paper is a hybrid scheme, and the PAM algorithm is utilized to solve
the proposed model. Meanwhile, the convergence of this scheme is analyzed with numerical results.

• Two challenging medical image reconstruction tasks, MRI and PET, are addressed with multi-noise-level de-
noiser to demonstrate the robustness of the proposed model. The experimental results demonstrate clearly the
superiority of our method over several state-of-the-art methods.

2. Related Works

In this section, we briefly review the traditional tight frame-based techniques and the MWCNN-based schemes.
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2.1. Tight Frame Regularizer

The tight frame is a widely used method due to its capability for sparsely approximating piecewise-smooth func-
tions, and the tight frame construction makes the model easy to be tackled [30, 31]. Let H be a Hilbert space and
Z be the set of integers, a sequence {φn : n ∈ Z} ⊆ H is called a tight frame on H if ‖u‖2 =

∑
n∈Z |〈u, φn〉|

2, for all
u ∈ H . The analysis operator W is defined by W : u ∈ H 7→ {〈u, φn〉} ∈ `2(Z). The corresponding synthesis operator
is defined by WT : {an} ∈ `2(Z) 7→

∑
n anφn ∈ H . Thus, {φn : n ∈ Z} is a tight frame on H if and only if WT W = I,

where I : H 7→ H is the identical operator.
Denote v = (v1, v2, · · · , vc) as the wavelet frame coefficient of the ideal image u under a given tight frame transform

W which satisfies WT W = I. The model (1) for image reconstruction can be further revised as follows

min
W,u,v

Φ(Au, f ) +
µ

2
‖Wu − v‖22 + λ ‖v‖2,0 , subject to WT W = I, (2)

where µ and λ are positive parameters, the `2,0 norm is a generalization of `0-norm to vector-valued data and defined
as ‖v‖2,0 =

∑c
j=1 χv j,0, where χv j,0 is the characteristic function of v j , 0. The ‖ · ‖2,0 encodes the structural correlation

among the channel images, which implies the advantages in multichannel image restoration. Interested readers may
consult [17] for details.

2.2. MWCNN Regularizer

The MWCNN regularizer [24] can better balance the computational burden and the receptive field size. The
MWCNN is an extension of U-Net [32], which includes discrete wavelet transform (DWT), inverse wavelet transform
(IWT), and CNN block. We replace the pooling layer with DWT, replace the upsampling layer with IWT, and replace
concatenation with elementwise summation. The DWT is used to accelerate the number of feature map channels.
With CNN blocks added between any two levels DWTs, wavelet packet transform (WPT) is extended to MWCNN.
We obtain training pairs {(xi, yi)}Ni=1 by adding Gaussian noise into clean images yi, where xi are the noisy images.
The loss function of this network is

L(Θ) =
1

2N

N∑
i=1

‖G(xi;Θ) − yi‖
2
2,

where Θ denotes the network parameters, and G(xi;Θ) is the output. The yellow box in the lower left corner of Fig.
2 represents the structure of the MWCNN scheme. We totally trained 25 such models with different noise levels for
the proposed model. The 25 denoisers are trained parallelly. The obtained denoisers can be fixed to handle other
image processing tasks, such as Cauchy noise removal [25, 33]. On the other hand, the end-to-end network-based
approaches are mostly a black box without interpretation. However, as to the medical-related image, the output of the
end-to-end network is quite unreliable. In this paper, we refer to the end-to-end deep learning method as the denoiser
prior learned directly from the image. While this method remains a black box in terms of its internal decision-making
processes, we view the learned information as a deep regularizer. By integrating this deep regularizer into our proposed
model, we augment the interpretability of the deep learning-based approach. In our hybrid model, the deep neural
network serves as a complementary component alongside traditional mathematical models. Together, they form a
comprehensive framework where the deep neural network functions as a deep regularizer. This approach not only
enhances the performance of the traditional model but also improves the interpretability of deep learning techniques.

3. The Proposed Model and Algorithm

In this section, the proposed technique is presented. To demonstrate the effectiveness of our method, MRI and
PET reconstruction are considered. In addition, the proximal alternating minimization (PAM) algorithm is introduced
to handle the proposed hybrid scheme.
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3.1. The Proposed Strategy

The proposed medical image reconstruction strategy is given as follows

min
u,v,W

Φ(Au, f ) +
µ

2
‖Wu − v‖22 + λ ‖v‖2,0 + τR(u), subject to WT W = I. (3)

The first term Φ(Au, f ) denotes the data fitting, A is the corresponding acquisition operator, u is the latent image, f is
an obtained object; the middle two terms denote the tight frame regularizer, W is the wavelet tight frame and satisfies
WT W = I, v represents the wavelet frame coefficient; µ, λ, and τ are positive parameters; and the last term R(u) is a
regularizer.

Note that the proposed model (3) is a general framework for image reconstruction. If R(u) = ‖∇u‖1, the proposed
is a total variation (TV) hybrid model, here ∇ is the gradient operator. If R(u) = ‖Da− Eu‖22 + κ‖a‖0, the proposed is a
dictionary learning hybrid model, where D is a learned dictionary, a is the coefficient matrix, E is the extract operator,
κ is a positive parameter [34]. To further improve the traditional regularization, our R(u) is an implicit regularizer,
whose related subproblem can be treated as a denoiser. Due to the invertibility of DWT and its frequency and location
property, MWCNN is effective in recovering detailed textures and sharp structures from degraded observation. Since
the tight frame can preserve the edge information, the combination of the tight frame and MWCNN can better restore
the degraded image.

Given an observation, firstly, we can estimate the noise level by using the strategy proposed in [35]. According
to the result of the noise level estimated, we choose the corresponding denoiser for different image reconstructions.
We initially train the deep MWCNN as a denoiser and subsequently plug it into our model as a deep regularizer. The
pipeline of our method can be concluded in Fig. 2. The “Tight Frame” and the “MWCNN” blocks represent the tight
frame regularizer and the MWCNN regularizer, respectively. Here we give an example as the green line in Fig. 2, if
the noise parameter is estimated to be 48, then our method passes through the denoiser with noise level 48. After the
iterations, we can have the reconstruction results.

As PET and MRI reconstruction are different tasks, we establish two related medical image reconstruction models
and display the solving strategy in the next two subsections.

3.2. Magnetic Resonance Imaging Reconstruction Algorithm

For the MRI reconstruction, let A1 denote the acquisition process of MRI. By introducing variable z, and the
non-negative parameter ξ, our MRI reconstruction model is turned into

min
u,v,W,z

‖A1u − f ‖22 +
µ

2
‖Wu − v‖22 + λ ‖v‖2,0 + τR(z) +

ξ

2
‖u − z‖22, subject to WT W = I. (4)

The solution of Eq. (4) should be the exact solution of Eq. (3) when ξ tends to infinity. To derive the solution of
model (4), the classical proximal alternating minimization (PAM) algorithm [36] is applied to solve the u, v, W, z in
an alternating manner as follows.

• u-subproblem

uk+1 = arg min
u
‖A1u − f ‖22 +

µ

2

∥∥∥Wku − vk
∥∥∥2

2 +
ξ

2
‖u − zk‖22, (5)

then we have
(2AT

1 A1 + µ(Wk)T Wk + ξI)uk+1 = 2AT
1 f + µ(Wk)T vk + ξzk.

The fast Fourier transform (FFT) can be used to find the solution of the above linear system. Since WT W = I,
the solution is as follows

uk+1 = F −1
(2F (A1)∗ ◦ F ( f ) + µF (Wk)∗ ◦ F (vk) + ξF (zk)

2F (A1)∗ ◦ F (A1) + µ + ξ

)
, (6)

where F denotes the two-dimensional discrete Fourier transform, ∗ represents complex conjugation, ◦ means
component-wise multiplication, and the division is component-wise as well.
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• W-subproblem

Wk+1 = arg min
WT W=I

µ

2

∥∥∥Wuk+1 − vk
∥∥∥2

2 +
βk

2

∥∥∥W −Wk
∥∥∥2

2 , (7)

where β is a positive parameter, the close-form solution of the above minimization problem is given by

Wk+1 = XYT , (8)

where X, Σ, and Y are the singular value decomposition (SVD) of uk+1(vk)T +
βk

µ
Wk.

• v-subproblem

vk+1 = arg min
v

λ‖v‖2,0 +
µ

2

∥∥∥v −Wk+1uk+1
∥∥∥2

2 +
γk

2

∥∥∥v − vk
∥∥∥2

2 , (9)

where γ is a positive parameter, the above subproblem can be easily solved by the hard thresholding algorithm
[37] as

vk+1 = T2λ,µ+γk

(
µ(Wk+1)T Wk+1 + γkvk

µI + γk

)
, (10)

where Tλ,W (u)i =

{
ui if

∑2
i=1 wi |ui|

2 ≥ λ,
0 otherwise.

• z-subproblem

zk+1 = arg min
z
τR(z) +

ξ

2
‖z − uk+1‖22, (11)

for z-subproblem, we first rewrite Eq. (11) as

zk+1 = arg min
z

1

2(
√
τ/ξ)2

‖uk+1 − z‖22 + R(z), (12)

then we have
zk+1 = Prox τ

ξ
R(z − uk+1), (13)

where Prox is a proximal operator [38] which can be defined as

Prox τ
ξ
R(z) := arg min

u

R(u) +
1

2 · τ
ξ

‖u − z‖22

 . (14)

According to Bayes rule, Eq. (12) corresponds to denoising the image uk+1 by the MWCNN denoiser with noise level
τ/ξ. To address this, we rewrite Eq. (12) as

zk+1 = Denoiser(uk+1,
√
τ/ξ). (15)

3.3. Positron Emission Tomography Reconstruction Algorithm
As to the PET reconstruction, denoting A2 as the acquisition process operator of PET, our reconstruction model is

as follows
min

u,v,W,z
Φ1 (u) +

µ

2
‖Wu − v‖22 + λ ‖v‖2,0 + τR(z) +

ξ

2
‖u − z‖22, subject to WT W = I, (16)

where Φ1(u) = 〈1, A2u+c〉−〈 f , ln(A2u+c)〉 is the data fitting term. Similarly, by introducing the parameter α, the PET
reconstruction model Eq. (16) can also be solved by the PAM algorithm. Compared with MRI reconstruction, the
main difference of PET reconstruction is the u-subproblem. And the associated u-subproblem of PET can be written
as

uk+1 = arg min
u

Φ1 (u) +
µ

2

∥∥∥Wku − vk
∥∥∥2

2
+
ξ

2
‖u − zk‖22 +

αk

2

∥∥∥u − uk
∥∥∥2

2
. (17)
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Algorithm 1 The proposed image reconstruction algorithm
Input:

Initial image u0 is obtained by the IFFT with zero filling for MRI reconstruction and by EM algorithm for PET
reconstruction;
Parameter µ, λ;

Output:
The reconstructed image u;

1: Initialization: u = u0;
2: for k=0:N do
3: Evaluate parameters τ and ξ;
4: Calculate uk+1 for MRI reconstruction by Eq. (6) and for PET reconstruction by Eq. (20);
5: Calculate Wk+1 by Eq. (8);
6: Calculate vk+1 by Eq. (9);
7: Calculate zk+1 by Eq. (15);
8: k = k + 1;
9: end for

We can use the projected scaled gradient method [39] to solve this problem as

uk+1 = arg min
u

Φ1 (u) +
µ

2

∥∥∥Wku − vk
∥∥∥2

2
+
ξ + αk

2
‖
√

2u −
1
√

2
(zk + uk)‖22. (18)

For j = 0, 1, 2, ..., we have
M j = diag

(
u j/AT

1 1
)
, (19)

u
j+1
2 = u j − ρ jM j

[
AT

1 (1 −
f

A1u j ) + µ(u j − (Wk)T vk) + (ξ+αk)(
√

2u j −
1
√

2
(zk + uk))

]
, (20)

u j+1 = min
{
max

{
u j+1/2, 0

}
, a

}
. (21)

Thus, our method can be easily realized with the above equations. The processes of our medical image reconstruction
method are shown in Algorithm 1. The algorithm terminates when either the relative difference between consecutive
values of the objective function is less than ε = 1e − 8, or the number of iterations exceeds N = 300.

4. Experiments

To demonstrate the effectiveness of the proposed reconstruction method, we compare our proposed method with
some state-of-the-art methods, including expectation-maximization (EM) algorithm [18], TV [6], DDTF [15], L1-
0.5L2 [40], BM3D [41], PANO [42] and deep learning-based method IRCNN [19] and MWCNN [24].

4.1. Training Details

We choose three datasets to train the networks, i.e. Berkeley Segmentation Dataset1 (BSD) [43], DIV2K2 [44],
and Waterloo Exploration Database3 (WED) [45]. We download the images from the dataset mentioned above as a
training set and converted these RGB data to grayscale before training. Each image is cropped into patches of size
240× 240, totally 24× 9, 000 patches for training. We train networks using the MatConvNet package with 4 NVIDIA
GTX1080 Ti GPUs on Ubuntu18.04. We train a series of MWCNN with noise levels from 2 to 50 and a step size of 2.
Each network is trained by using ADAM algorithm with α = 1e−2, β1 = 0.9, β2 = 0.999, ε = 1e-8 for 10 epochs. We
observed that training the network for 10 epochs was sufficient for convergence, a conclusion consistent with similar

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2https://data.vision.ee.ethz.ch/cvl/DIV2K/
3https://ece.uwaterloo.ca/~k29ma/exploration/
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(a) IFFT (19.90/0.5421) (b) DDTF (25.55/0.6863) (c) MWCNN (27.15/0.7367) (d) Ours (27.26/0.7391)

(a) EM (27.85/0.8223) (b) DDTF (32.17/0.9228) (c) MWCNN (32.68/0.9199) (e) Ours (32.97/0.9202)

Figure 3. Reconstruction results (PSNR/SSIM). The first row is the MRI reconstruction results of image ‘M11’, the second row is the PET
reconstruction results of image ‘P08’. (a) IFFT and EM [18]; (b) DDTF [15]; (c) MWCNN [24]; (d) Ours.

studies, such as the one referenced in [25]. Regarding the utilization of medical images for training, we acknowledge
the potential benefits of training the MWCNN on medical images, which may share similar characteristics such as
noise patterns, contrast, and object size. However, it’s important to note the scarcity of large medical image datasets
suitable for training deep neural networks. We recognize the importance of this avenue for future research and will
devote efforts to training the neural network on medical image data.

IRCNN was proposed by [19] to tackle image restoration tasks. Since IRCNN achieved very promising restoration
results, we set the IRCNN method as one of our benchmarks. In this paper, the IRCNN network was implemented with
MatConvNet toolbox and an NVIDIA GeForce RTX 2080Ti. Note that we did not retrain the IRCNN4. The IRCNN
collected a large dataset which includes 400 BSD images, 400 selected images from validation set of ImageNet
database [46] and 4,744 images of WED. While fine-tuning IRCNN on the same dataset as our proposed method would
indeed facilitate a fairer comparison, the datasets covered by both methods substantially overlap. Given this overlap,
we anticipate that fine-tuning IRCNN on our selected datasets would yield results comparable to those reported in the
paper.

4https://github.com/cszn/ircnn
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(a) (b)

Figure 4. Synthesized data: (a) the radial sampling projection of MRI; (b) synthesized PET data (‘P05’).

Figure 5. The PSNR values of the PET image ‘P01’ reconstructed by the proposed model with respect to parameters (µ, λ) and τ.

4.2. Parameter Setting
For PET reconstruction, we test the proposed method on 30 real images, in which 15 images (P1-P15) from

brainweb5 [47] and 15 images (P16-P30) from OASIS6. For the test set of MRI reconstruction, we synthesize the
downsampled observed data from 15 real MRI images (M1-M15) from cardiacatlas7 [48] which is a complete labeled
MRI image set of one normal patient’s heart, and another 15 real images (M16-M30) from OASIS8. Synthetic data is
popular, and many works applied simulation data for image processing [49]. The synthetic data is considered valid,
but it may deviate slightly from the real data. Some indicators (PSRN, SSIM [50], NMSE [51], SAM [52]) are used
to measure the quality of the reconstruction results. The definitions are as follows

PSNR(x, y) = 20 log10
255

1
mn ‖x − y‖2

, SSIM(x, y) =

(
2µxµy + c1

) (
2σxy + c2

)(
µ2

x + µ2
y + c1

) (
σ2

x + σ2
y + c2

) , (22)

NMSE(x, y) =
‖x − y‖22
‖x‖22

, SAM(x, y) = cos−1

 yT x√
(x)T x∗

√
yT y

 , (23)

5https://brainweb.bic.mni.mcgill.ca/brainweb/
615 real PET images are selected from https://www.oasis-brains.org/, which are real PET images of 5 patients.
7https://www.cardiacatlas.org/studies/amrg-cardiac-atlas/
815 real MRI images are selected from https://www.oasis-brains.org/, which are real MRI images of 5 patients. All the test PET and

MRI images are collected in https://github.com/Huang-chao-yan/PnP_PAM.
11
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where x and y denote the restored image and the original image; and µx, µy, σ2
x, σ

2
y , σx,y are the average, the variance,

and the covariance of x and y, respectively, and c1, c2 are two constants. Note that larger PSNR, larger SSIM, smaller
NMSE, and smaller SAM values indicate better restored results.

Figure 6. The PSNR curves of the proposed algorithm on PET image ‘P01’.

(a) distribution of MRI results (b) distribution of PET results (c) difference of MRI results (d) difference of PET results

Figure 7. Analysis of variance with five random initial values. (a) the distribution of MRI results with three methods, the red circle is the average
of 15 images; (b) the distribution of PET results with three methods, the red circle is the average of 15 images; (c) difference of two different
methods of MRI results; (d) difference of two different methods of PET results; here p is the probability, Non-Sig represents the two methods are
non-significant.

Usually the hyperparameters need to be tested on the validation set. We get the parameters on the fastMRI
Dataset9 [53]. The architecture of IRCNN, MWCNN, and the proposed method are exactly the same. We choose
different hyperparameters by trial and error to produce our best possible result. More specifically, we set N = 200,
αk = 1e−2, βk = 5e−5, γk = 5e−5, ξ ∈ (0, 1), λ ∈ (1e−5, 1e−4), and µ ∈ (0, 1).

The parameters of other methods are the default values or the corresponding values described in their paper and
codes. The radial sampling projection of MRI and the synthesized PET data f are described in Fig. 4. Note that every
mask of PET data is not the same, we just depict an example of PET image ‘P05’.

We utilize the Matlab built-in function ‘imnoise’ to add Poisson noise into PET images as follows

f =s*imnoise(A2u/s,‘Poisson’),

where s indicates noise intensity, A2 is the PET sample operator, and u is a clean image. In our all experiments, we
set s to be 1e9. Following the setting of literature [54], in this paper, the initial setting of W is the 8 × 8 Haar wavelet.

9https://fastmri.med.nyu.edu/
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(a) IFFT (b) TV (c) L1-0.5L2 (d) BM3D

(a) 20.55/0.5992 (b) 22.11/0.6748 (c) 21.66/0.7343 (d) 22.81/0.6788

(e) PANO (f) DDTF (g) IRCNN (h) Ours

(e) 24.10/0.7400 (f) 27.14/0.8215 (g) 29.76/0.8468 (h) 31.23/0.8725

Figure 8. MRI reconstruction results (PSNR/SSIM) of Image ‘M01’. (a) the initial image; the reconstructed image by: (b) TV [6]; (c) L1-0.5L2
[40]; (d) BM3D [41]; (e) PANO [42]; (f) DDTF [15]; (g) IRCNN [19]; (h) Ours.

4.3. Contribution of Different Terms
To estimate the distinct contributions of these two regularizers, i.e., the tight frame prior and the deep image

prior, we test the reconstruction results of tight frame (only the tight frame regularizer), MWCNN (only the im-
plicit MWCNN regularizer), and the proposed model (both the tight frame and the implicit MWCNN regularizers).
Rewriting our model (3) as

min
u,v,W,z

Φ(Au, f ) +
µ

2λ
(‖Wu − v‖22 + ‖v‖2,0) + τR(z), subject to WT W = I. (24)
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(a) IFFT (20.44) (b) MWCNN (23.22) (a) Ours (23.71)

Figure 9. Reconstruction result (PSNR) with Rician noise, the noise level is set to be 0.08. (a) the initial image; the reconstructed image by (b)
MWCNN and (c) Ours.

(a) MRI results (b) PET results

Figure 10. The average results of different methods for MRI and PET reconstruction.

When the parameter µ
2λ goes to zero, the model (24) becomes the MWCNN-based model. When the parameter τ goes

to zero, the model (24) becomes the tight frame-based model. We give the results of the tight frame-based model,
MWCNN-based model, and the proposed model in Fig. 3(b), (c), and (d), respectively. The first row presents the
reconstruction results of MRI, and the second row is the results of PET. From both PET and MRI results, we find that
the proposed model with both tight frame and MWCNN regularizers achieves better results. In Fig. 5, we also discuss
the influence of positive parameters µ

2λ and τ.

4.4. Convergence Behaviour

The convergence of the Plug-and-Play framework with properly trained denoiser has been discussed in [55].
However, the convergence of deep learning-based methods is still an open question. Fig. 6 display the PSNR (dB)
curves of the proposed algorithm with the PET image ‘P01’. We can obviously observe the numerical convergence of
our algorithm.
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(a) IFFT (b) TV (c) L1-0.5L2 (d) BM3D

(a) 19.90/0.5421 (b) 23.12/0.6038 (c) 25.01/0.6653 (d) 23.48/0.6322

(e) PANO (f) DDTF (g) IRCNN (h) Ours

(e) 25.01/0.6699 (f) 25.55/0.6863 (g) 26.32/0.7045 (h) 27.26/0.7391

Figure 11. MRI reconstruction results (PSNR/SSIM) of Image ‘M11’. (a) the initial image; the reconstructed image by: (b) TV [6]; (c) L1-0.5L2
[40]; (d) BM3D [41]; (e) PANO [42]; (f) DDTF [15]; (g) IRCNN [19]; (h) Ours.

4.5. Analysis of Variance

In general, there are many methods that can be used to test the differences between the two methods. In this
paper, we apply the analysis of variance to illustrate the superiority of our method. We compare our approach with
the MWCNN and the IRCNN, respectively. We use five different random initial values generated by the Matlab
function to test MRI and PET reconstruction tasks. Each task uses the first 15 images in the test set. Fig. 7 (a) and
(b) show the distribution of the reconstruction results of the three methods, which illustrate that three methods have
significant differences. Fig. 7 (c) and (d) show the difference of the reconstruction results. In MRI reconstruction,
at the significance level of 2%, the difference between IRCNN and Ours is significant. In PET reconstruction, at the
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significance level of 1%, the difference between IRCNN and Ours is significant; at the significance level of 5%, the
difference between MWCNN and Ours is significant. It can be seen from Fig. 7 (a) and (b) that the initial value has
a certain influence on the final result of the experiment. Using Matlab command to generate 5 random initial values,
the average value of the 5 MRI results of each image is between [28.45, 30.18], and the average value is 29.35. The
average value of the 5 PET results of each image is between [32.28, 33.13], and the average value is 32.61. Compared
with other methods, our method has a higher average value.

(a) IFFT (b) TV (c) L1-0.5L2 (d) PANO

(a) 21.84/0.4710 (b) 23.09/0.5349 (c) 27.12/0.6336 (d) 26.85/0.7469

(e) DDTF (f) IRCNN (g) MWCNN (h) Ours

(e) 27.22/0.8323 (f) 28.25/0.8261 (g) 28.38/0.8246 (h) 28.95/0.8462

Figure 12. MRI reconstruction results (PSNR/SSIM) of Image ‘M29’. (a) the initial image; the reconstructed image by: (b) TV [6]; (c) L1-0.5L2
[40]; (d) PANO [42]; (e) DDTF [15]; (f) IRCNN [19]; (g) MWCNN [24] (h) Ours.

16



/ Procedia Computer Science 00 (2024) 1–22 17

(a) Original (b) Zoom original (c) EM

(a) Original (b) Zoom original (c) 28.00/0.8251

(d) TV (e) DDTF (f) IRCNN (g) Ours

(d) 31.41/0.9207 (e) 32.71/0.9272 (f) 32.65/0.9183 (g) 33.09/0.9289

Figure 13. PET reconstruction results (PSNR/SSIM) of image ‘P04’. (a) the original image; (b) the zoom part of the original image; (c) the initial
image; the reconstructed image by: (d) TV [6]; (e) DDTF [15]; (f) IRCNN [19]; (g) Ours.

4.6. The Results of MRI Reconstruction

To generate MRI data, we use 2-d fast Fourier transform to transfer images into k-space, and sample along 15
radial lines. In order to simulate real data, we add the Gaussian noise with a standard deviation of 0.05 to the sampled
data.

To better present the effectiveness of the proposed method, we display the reconstruction results of MRI in Fig. 8,
Fig. 11 and Fig. 12. From the visual quality of the reconstructed MRI images, i.e. Figs. 8-12, we find that the TV
method [6] generates the staircase effect in (b). For the results generated by the L1-0.5L2 method [40], both staircase
and artificial effects can be observed in (c). There are some artifacts shown in the results reconstructed by the BM3D
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[41] in (d) and the PANO [42] in (e). For the result reconstructed by the DDTF method [15], the over-smooth effects
still exist in (f). From (g), we can see that the noise remains in the results of IRCNN [19]. It is clear that our method
can achieve better results both in remaining detailed texture and smoothing. For a more comprehensive analysis of our
method, we also display the numerical results of these two different reconstruction problems in Table. 1 with PSNR
(dB), SSIM, NMSE, and SAM values. Here, we highlight the best results and underline the second-best results. From
Table. 1, we know that our method can generate better results almost at all times. We also plot the barplot with the
average results of different methods in Fig. 10, where our method has the highest results in both PSNR and SSIM
values of MRI reconstruction results, obviously. From the average results, we know that our method is superior to
stand-alone deep learning methods in two changeable tasks. In average PSNR value, our new proposed method is
superior more than 1 dB over the IRCNN [19] and more than 2 dB over the tight frame-based method DDTF [15] in
MRI reconstruction.

Relatively speaking, our method can handle complex problems well. For example, the results of PET experiments
show that our scheme is much better than IRCNN. For simple tasks, our method has certain effects. For example,
the results of MRI experiments show that our approach is better than MWCNN. The model we propose is a general
framework. If there are better regular terms (such as denoiser), there will be better results. The ideas in this article
can be widely used in medical image processing.

4.7. The Results of PET Reconstruction

For the PET reconstruction problem, we compare five methods. The visual quality is displayed in Fig. 13, Fig. 14,
and Fig. 15, which demonstrates our method has the best performance in PET reconstruction among these compared
methods. Due to the high density of our degradation, the classical EM algorithm does not remove the noise cropped
in the images well. With no expectation, the staircase effects also occur in (d). The DDTF method generates a good
result, but there are some artifacts in (e) (see the rectangle part). The result generated by IRCNN is some noise
remains. While our method overcomes the artifacts and noise at the same time, generates a better reconstruction result
significantly. The PSNR (dB) and SSIM values are in Table. 2. We highlight the highest PSNR and SSIM values and
underline the second-best results. From the highlighted results, we know that the proposed model can better handle
the PET reconstruction task than other methods. The barplot with the average results of different methods in Fig. 10
also demonstrates the superiority of our model. In PET reconstruction, our method is superiority 0.6 dB than IRCNN
[19] and 0.66 dB than DDFT [15] in PSNR. The deep learning-based methods are essential, which provide a series of
solutions for vision tasks. However, the interpretation of the deep learning-based methods is still an open question.
As we know, medical image reconstruction requires exact results to diagnose the patient’s condition. Meanwhile,
deep learning-based methods have shown great success in image processing tasks. However, the network is a black
box and the inside works are unknown. Therefore, we consider plugging the deep learning-based method to solve a
sub-problem of medical image reconstruction. From the results of the proposed hybrid model, the constructed result
is better than the traditional reconstruction methods. In addition, the doubt of the deep learning-based models was
also mitigated. Hence, the proposed model improved the interpretability of the deep learning-based models.

4.8. The Reconstruction with Rician Noise

The raw data collected by the magnetic resonance apparatus is K-space data, which contains two parts of the
signal, i.e., the real part and the imaginary part. The real and imaginary parts have additive white Gaussian noise with
zero mean, respectively. Generally, Fourier transform is performed on K-space data to obtain image domain data.
The Fourier transform does not change the form of noise, hence the image domain data we get is a complex signal uc

whose expression is
uc = (ur + nr) + (ui + ni)i, (25)

where ur and ui are the real and imaginary parts of uc, respectively, nr and ni are the Gaussian noise. In fact, the image
we observed is the amplitude image obtained by modulo operation, that is

u = |uc| =
√

(ur + nr)2 + (ui + ni)2. (26)

Obviously, the final obtained image u is no longer a simple additive Gaussian noise, but a Rician noise related to the
signal.
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Therefore, it is significant to perform the Rician noise reconstruction task. In this paper, we consider the MRI
and PET reconstruction with non-Gaussian noise. Here we conduct a simple image reconstruction experiment with
Rician noise. Mathematically, the difference between additive Gaussian noise and Rician noise primarily lies in the
data fitting term of the model. Specifically, we adjust the data fitting term to follow the Rician distribution while
maintaining the denoiser subproblem unchanged. As a result, the MWCNN does not need to be retrained and can
continue to serve as a denoiser. The Rician noise level is set to be 0.08 and the reconstruction result is presented
in Fig. 9. It can be seen that we have a better reconstruction effect than MWCNN, which reflects the validity of our
strategy.

(a) Original (b) Zoom original (c) EM

(a) Original (b) Zoom original (c) 28.41/0.8311

(d) TV (e) DDTF (f) IRCNN (g) Ours

(d) 31.85/0.9174 (e) 33.04/0.9343 (f) 33.08/0.9224 (g) 33.65/0.9383

Figure 14. PET reconstruction results (PSNR/SSIM) of image ‘P06’. (a) the original image; (b) the zoom part of the original image; (c) the initial
image; the reconstructed image by: (d) TV [6]; (e) DDTF [15]; (f) IRCNN [19]; (g) Ours.
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(a) Real image (b) EM (c) TV

(a) Real image (b) 36.42/0.9611 (c) 35.12/0.9402

(d) DDTF (e) IRCNN (f) MWCNN (g) Ours

(d) 40.17/0.9752 (e) 39.10/0.9671 (f) 40.02/0.9757 (g) 40.52/0.9789

Figure 15. PET reconstruction results (PSNR/SSIM) of image ‘P18’. (a) the real image; (b) the initial image; the reconstructed image by: (c) TV
[6]; (d) DDTF [15]; (e) IRCNN [19]; (f) MWCNN [24]; (g) Ours.

5. Conclusion

In this paper, we discuss an interpretable image reconstruction framework. Most deep learning-based methods
cannot give a good explanation of the results. Therefore, the result of medical image reconstruction directly ob-
tained by deep learning-based methods is doubtful. To solve this problem, we denote the network as a sub-problem.
Through the iteration of the proposed algorithm, not only can the traditional method and the network method be well
connected, but also the advantages of the network method can be well used. The model we proposed is a hybrid model
which is difficult to solve, we introduced the PAM algorithm to solve this model, and we analyzed the convergence of
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our method through numerical results. Furthermore, multiple training methods allow us to choose the corresponding
parameters automatically. The different medical image reconstruction tasks are applied to demonstrate the effective-
ness of our method. The proposed model has superiority over several state-of-the-art methods in both MRI and PET
reconstruction tasks.
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