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Abstract As a fundamental and challenging task in many subjects such as image
processing and computer vision, image segmentation is of great importance but is
constantly challenging to deliver, particularly, when the given images or data are
corrupted by different types of degradations like noise, information loss and/or blur.
In this article we introduce a segmentation methodology – smoothing and threshold-
ing (SaT) – which can provide a flexible way of producing superior segmentation
results with fast and reliable numerical implementations. A bunch of methods based
on this methodology are to be presented, including many applications with different
types of degraded images in image processing.

Introduction

Image segmentation aims to group objects in an image with similar characteristics
together. It is one of the fundamental tasks in image processing and computer vision,
having numerous engineering, medical and commercial applications. It also serves
as a preliminary step for higher level computer vision tasks like object recognition
and interpretation. Most of the methods in literature face the following dilemmas:
i) lack of flexibility, applicability and interpretability; and ii) difficult to tradeoff the
efficiency and effectiveness. It is therefore not an easy task for users to know which
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method could fulfil their needs. In this regard, the users are required to make modifi-
cations here and there on existing methods accordingly, which is however frustrating
if the users are not familiar with segmentation technologies. It is important to have a
segmentation methodology which is simple to understand and apply, and at the same
time, fast and reliable. In this article, we introduce a segmentation methodology –
smoothing and thresholding (SaT) – which is able to meet these challenges Cai et al
(2017, 2019, 2013b); Cai and Steidl (2013); Chan et al (2014).

The piecewise constant Mumford-Shah (PCMS) model (nonconvex, a special
case of the Mumford-Shah model Mumford and Shah (1989)) and the Rudin-Osher-
Fatemi (ROF) model (convex, Rudin et al (1992)) are two of the most famous vari-
ational models in the research areas of image segmentation and restoration, respec-
tively. Note that image restoration intends to remove image degradations such as
noise, blur or occlusions.

Let Ω ⊂ R2 be a bounded, open set with Lipschitz boundary, and f : Ω → [0,1]
be a given (degraded) image. In 1989 Mumford and Shah Mumford and Shah
(1989) proposed solving segmentation problems by minimizing over Γ ⊂ Ω and
u ∈ H1(Ω\Γ ) the energy functional

EMS(u,Γ ;Ω) = H 1(Γ )+λ
′
∫

Ω\Γ
|∇u|2dx+λ

∫
Ω

(u− f )2dx, λ
′,λ > 0, (1)

where H 1 denotes the one-dimensional Hausdorff measure in R2. The functional
EMS contains three terms: the penalty term on the length of Γ , the H1 semi-norm
that enforces the smoothness of u in Ω\Γ , and the data fidelity term controlling the
distance of u to the given image f . Related approaches in a spatially discrete setting
were proposed in Blake and Zisserman (1987); Geman and Geman (1984). An early
attempt to solve the challenging task of finding a minimizer of the non-convex and
non-smooth Mumford-Shah functional (1) was done by approximating it using a
sequence of simpler elliptic problems, see Ambrosio and Tortorelli (1990) for the
so-called Ambrosio-Tortorelli approximation. Many approaches to simplify model
(1) were meanwhile proposed in the literature, for example, in Pock et al (2009b), a
convex relaxation of the model was suggested. Another important simplification is
to restrict its solution to be piecewise constant, which leads to the so-called PCMS
model.

The PCMS model is based on the restriction ∇u = 0 on Ω\Γ , which results in

EPCMS(u,Γ ;Ω) = H 1(Γ )+λ

∫
Ω

(u− f )2dx. (2)

Assuming that Ω =
⋃K−1

i=0 Ωi with pairwise disjoint sets Ωi and constant functions
u(x)≡ mi on Ωi, i = 0, . . .K−1, model (2) can be rewritten as

EPCMS(Ω ,m) =
1
2

K−1

∑
i=0

Per(Ωi;Ω)+λ

K−1

∑
i=0

∫
Ωi

(mi− f )2dx, (3)
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where Ω := {Ωi}K−1
i=0 , m := {mi}K−1

i=0 , and Per(Ωi;Ω) denotes the perimeter of Ωi
in Ω . If the number of phases is two, i.e. K = 2, the PCMS model is the model of
the active contours without edges (Chan-Vese model) Chan and Vese (2001a),

ECV(Ω1,m0,m1) = Per(Ω1;Ω)+λ

(∫
Ω1

(m1− f )2 dx+
∫

Ω\Ω1

(m0− f )2 dx
)
. (4)

In Chan and Vese (2001a) the authors proposed to solve (4), where it can easily get
stuck in local minima. To overcome this drawback, a convex relaxation approach
was proposed in Chan et al (2006a). More precisely, it was shown that a global
minimizer of ECV(·,m0,m1) for fixed m0,m1 can be found by solving

ū = argmin
u∈BV (Ω)

{
TV (u)+λ

∫
Ω

(
(m0− f )2− (m1− f )2)udx

}
, (5)

and setting Ω1 := {x ∈Ω : ū(x)> ρ} for any choice of ρ ∈ [0,1), see also Bellettini
et al (1991); Bresson et al (2007). Note that the first term of (5) is known as the total
variation (TV ) and the space BV is the space of functions of bounded variation, see
Section 2 for the definition. In other words, (5) is a tight relaxation of the Chan-Vese
model with fixed m0 and m1. For the convex formulation of the full model (4), see
Brown et al (2012).

There are many other approaches for two-phase image segmentation based on
the Chan-Vese model and its convex version, see e.g. Zhang et al (2008); Bresson
et al (2007); Dong et al (2010); Bauer et al (2017). In particular, a hybrid level
set method was proposed in Zhang et al (2008), which replaces the first term of
(4) by a boundary feature map and the data fidelity terms in (4) by the difference
between the given image f and a fixed threshold chosen by a user or a specialist.
Method Zhang et al (2008) was used in medical image segmentation. However,
since every time it needs the user to choose a proper threshold for its model, it is
not automatic and thus its applications are restricted. In Bresson et al (2007), the
TV term of (5) was replaced by a weighted TV term which helps the new model
to capture much more important geometric properties. In Dong et al (2010), the
TV term of (5) was replaced by a wavelet frame decomposition operator which,
similar to the model in Bresson et al (2007), can also capture important geometric
properties. Nevertheless, for its solution u, no similar conclusions as the ones in
Chan et al (2006a) can be addressed; that is, there is no theory to support that its
segmentation result Ω1 = {x : u(x)> ρ} for ρ ∈ [0,1) is a solution as to some kind
of objective functional. In Bauer et al (2017), the Chan-Vese model was extended
for 3D biopores segmentation in tomographic images.

In Vese and Chan (2002), Chan and Vese proposed a multiphase segmentation
model based on the PCMS model using level sets. However, this method can also
get stuck easily in local minima. Convex (non-tight) relaxation approaches for the
PCMS model were proposed, which are basically focusing on solving

min
mi,ui∈[0,1]

{K−1

∑
i=0

∫
Ω

|∇ui|dx+λ

K−1

∑
i=0

∫
Ω

(mi− f )2uidx
}
, s.t.

K−1

∑
i=0

ui = 1. (6)
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For more details along this line, refer e.g. to Bar et al (2011); Cai (2015); Cai et al
(2015); Lellmann and Schnörr (2011); Li et al (2010); Pock et al (2009a); Yuan et al
(2010b); Zach et al (2008) and the references therein.

In 1992, Rudin, Osher and Fatemi Rudin et al (1992) proposed the variational
model

min
u∈BV (Ω)

{
TV (u)+

µ

2

∫
Ω

(
u− f )2dx

}
, µ > 0. (7)

which has been studied extensively in the literature, see e.g. Chambolle (2005);
Chambolle et al (2010); Chan et al (2006b) and references therein.

A subtle connection between image segmentation and image restoration has been
raised in Cai et al (2013b). In detail, a two-stage image segmentation method is pro-
posed – SaT method – which finds the solution of a convex variant of the Mumford-
Shah model in the first stage followed by a thresholding step in the second one. The
convex minimization functional in the first stage (the smoothing stage) is the ROF
functional (7) plus an additional smoothing term

∫
Ω
|∇u|2 dx. In Cai et al (2019),

a linkage between the PCMS and ROF models was shown, which gives rise to a
new image segmentation paradigm: manipulating image segmentation through im-
age restoration plus thresholding. This is also the essence of the SaT segmentation
methodology.

The remainder of this article is organised as follows. Firstly, the SaT segmen-
tation and its advantages are introduced. After that, more SaT-based methods and
applications are presented and demonstrated, followed by a brief conclusion.

SaT Methodology

The main procedures of the SaT segmentation methodology are first smoothing and
then thresholding, where the smoothing step is executed by solving pertinent convex
objective functions (note that most of segmentation models in literature are non-
convex and therefore much harder to handle compared to convex models) and the
thresholding step is just completed by thresholding the result from the smoothing
step using proper thresholds, see an instance given below.

The smoothing process in Cai et al (2013b) is to solve the convex minimization
problem (cf. the non-smooth Mumford-Shah functional (1))

inf
g∈W 1,2(Ω)

{
µ

2

∫
Ω

( f −Ag)2dx+
λ

2

∫
Ω

|∇g|2dx+
∫

Ω

|∇g|dx
}
, (8)

where λ and µ are positive parameters, and A is the blurring operator if the observed
image is blurred by A or the identity operator if there is no blurring. The minimizer
of (8) is a smoothed approximation of f . The first term in (8) is the data-fitting term,
the second term ensures smoothness of the minimizer, and the third term ensures
regularity of the level sets of the minimizer. We emphasize that model (8) can be
minimized quickly by using currently available efficient algorithms such as the split-
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Bregman algorithm Goldstein and Osher (2009) or the Chambolle-Pock method
Chambolle and Pock (2011). After we have obtained g in (8), assume we are given
the thresholds

min{g}= ρ0 < ρ1 < · · ·< ρK−1 < ρK = max{g}.

Then we threshold g by setting x∈Ω to be in the sub-domain Ωi if ρi−1≤ g(x)< ρi.
The values {ρi}K−1

i=1 can be obtained by applying the K-means method, a popular
clustering method, on the intensity of g, or they can be obtained by trial and error in
order to get a finer segmentation.

Theorem 1. Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let f ∈ L2(Ω) and Ker(A)

⋂
Ker(∇) = {0}, where A is a bounded linear

operator from L2(Ω) to itself and Ker(A) is the kernel of A. Then (8) has a unique
minimizer g ∈W 1,2(Ω).

Proof. See Cai et al (2013b) for the detailed proof.

Figures 1, 2 and 3 illustrate the SaT framework using the two-phase segmentation
strategy in Cai et al (2013b).

(a) given image (b) degraded image (c) Chan-Vese method (d) Cai et al (2013b)

Fig. 1 Segmentations with Gaussian noise and blur. (a): Given binary image; (b): degraded image
with motion blur (for the motion blur, the motion is vertical and the filter size is 15) and Gaussian
noise (with mean 10−3 and variance 2× 10−3); (c): Chan-Vese method Chan and Vese (2001b);
and (d): SaT segmentation with K-means thresholding Cai et al (2013b).

The good performance of the SaT approach is solidly backed up. If we set the pa-
rameter λ in (8) to zero, one can show (see Cai and Steidl (2013); Cai et al (2019))
that the SaT method is equivalent to the famous Chan-Vese segmentation method
(Chan and Vese (2001b)), which is a simplified Mumford-Shah model. Furthermore,
numerical experiments show that a properly selected λ can usually increase segmen-
tation accuracies.

The SaT method is very efficient and flexible. It performs excellently for de-
graded images (e.g. noisy and blurry images and images with information loss). It
also has the following advantages. Firstly, the smoothing model with (8) is strictly
convex. This guarantees a unique solution of (8), which can be solved efficiently
by many optimization methods. Secondly, the thresholding step is independent of
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(a) given image (b) smoothing (c) thresholding

Fig. 2 SaT segmentation framework illustration using a two-phase segmentation example. (a):
given image (size 384× 480); (b): obtained smoothed image (i.e. a solution of the convex model
in Cai et al (2013b)); (c): segmentation result (boundary highlighted in yellow color) after thresh-
olding (b) using threshold 0.2. Particularly, (b) and (c) correspond to the first and second steps in
the SaT segmentation framework, respectively.

the smoothing step. Therefore the SaT approach is capable of segmentations with
arbitrary phases, and one can easily try different thresholds without recalculating
(8). On the contrary, for other segmentation methods, the number of phases K has
to be determined before the calculation and it is usually computationally expensive
to re-generate a different segmentation if K changes. Thirdly, the SaT approach is
very flexible. One can easily modify the smoothing step to better segment images
with specific properties.

The SaT segmentation methodology has been used for images corrupted by Pois-
son and Gamma noises Chan et al (2014), degraded color images Cai et al (2017),
images with intensity inhomogeneity Chan et al (2019), hyperspectral images Chan
et al (2020), vascular structures Cai et al (2011, 2013a), spherical images Cai et al
(2020), etc.

SaT-based Methods and Applications

To exemplify the excellent performance of the SaT segmentation methodology, in
the following a few methods related to the SaT segmentation methodology with
different applications are introduced.

T-ROF method

In Cai and Steidl (2013); Cai et al (2019), the thresholded-ROF (T-ROF) method
was proposed. It highlights a relationship between the PCMS model (3) and the
ROF model (7), proving that thresholding the minimizer of the ROF model leads to
a partial minimizer of the PCMS model when K = 2 (Chan-Vese model (4)), which
remains true under specific assumptions when K > 2.
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(a) clean image (b) given noisy image

(c) Li et al (2010) (d) Sandberg et al (2010) (e) Yuan et al (2010b)

1

1

1

1

(f) smoothing (g) thresholding (h) first phase

2

2

2

3
3

3 3

4

(i) second phase (j) third phase (k) fourth phase

Fig. 3 Four-phase segmentation. (a): clean 256× 256 image; (b): given noisy image (Gaussian
noise with zero mean and variance 0.03); (c)–(e): results of methods Li et al (2010), Sandberg et al
(2010) and Yuan et al (2010b) respectively; (f): obtained smoothed image (i.e. a solution of the
convex model in Cai et al (2013b)); (g): segmentation result after thresholding (f) using thresholds
ρ1 = 0.1652,ρ2 = 0.4978,ρ3 = 0.8319; (h)–(k) boundary of each phase of the result in (g).
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Theorem 2. (Relation between ROF and PCMS models for K = 2) Let K = 2 and
u∗ ∈ BV (Ω) solve the ROF model (7). For given 0 < m0 < m1 ≤ 1, let Σ̃ := {x∈Ω :
u∗(x)> m1+m0

2 } fulfill 0 < |Σ̃ |< |Ω |. Then Σ̃ is a minimizer of the PCMS model (4)
for λ := µ

2(m1−m0)
and fixed m0,m1. In particular, (Σ̃ ,m0,m1) is a partial minimizer

of (4) if m0 = mean f (Ω\Σ̃) and m1 = mean f (Σ̃).

Proof. See Cai et al (2019) for the detailed proof.

This linkage between the PCMS model and the ROF model validates the effec-
tiveness of the proposed SaT method in Cai et al (2013b) for image segmentation.
Due to the significance of the PCMS model and ROF model, respectively in im-
age segmentation and image restoration, this linkage bridges to some extent these
two research areas and might serve as a motivation to improve and design better
methods. A direct benefit is the newly proposed efficient segmentation method –
T-ROF method. The T-ROF method exactly follows the paradigm to perform im-
age segmentation through image restoration plus iterative thresholding, where these
thresholds are selected automatically following certain rules. This appears to be
more sophisticated than the SaT method Cai et al (2013b) which is based on K-
means. It is worth emphasizing that the ROF model and the T-ROF model both need
to be solved once, and the T-ROF method gives optimal segmentation results akin
to the PCMS model. The convergence of the T-ROF method regarding thresholds
automatic selection is also proved.

On the one hand, the T-ROF method can be regarded as a special case of the SaT
method. However, it is directly obtained from the linkage between the PCMS model
and the ROF model and thus is more theoretically justified. Moreover, the strategy
of choosing the thresholds automatically and optimally in the T-ROF method is not
covered in the SaT method in Cai et al (2013b). The strategy makes the T-ROF
method more effective particularly for degraded images whose phases have close
intensities. On the other hand, the T-ROF method inherits the advantages of the SaT
method – fast speed and computational cost independent of the required number
of phases K. In contrast, methods solving the PCMS model become computational
demanding as the required number of phases increases.

To demonstrate the great performance of the T-ROF method, Figure 4 gives an
example of segmenting a synthetic retina image based on one manually segmented
result from the DRIVE data-set1. Fig. 4 (a) and (b) are the clean manual segmen-
tation image and the noisy image generated by adding Gaussian noise with mean 0
and variance 0.1. Note that in Fig. 4 (a), the original binary manual segmentation
image is changed to three phases by lowering the intensity of those vessels on the
right hand side from 1 to 0.3; the intensities of the background and the vessels on the
left hand side are respectively 0 and 1. Obviously, segmenting the noisy three-phase
image in Fig. 4 (b) is extremely challenging due to those thin blood vessels which
have a big chance of being smoothed out. Figure 4 shows that the T-ROF method
together with the SaT method Cai et al (2013b) achieve the best result (with much

1 http://www.isi.uu.nl/Research/Databases/DRIVE/
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(a) clean image (b) noisy image

(c) Li et al (2010) (d) Pock et al (2009a) (e) Yuan et al (2010b)

(f) He et al (2012) (g) Cai et al (2013b) (h) Cai et al (2019)

Fig. 4 Retina image segmentation which contains extremely thin vessels (size 584× 565). (a):
Clean image; (b): noisy image; (c)–(h): results of methods Li et al (2010); Pock et al (2009a);
Yuan et al (2010b); He et al (2012); Cai et al (2013b) and the T-ROF method Cai et al (2019),
respectively.

faster speed compared with others). For more details of the T-ROF method please
refer to Cai and Steidl (2013); Cai et al (2019).

Two-stage method for Poisson or Gamma noise

The Poisson noise and the multiplicative Gamma noise are firstly recalled below. For
the Poisson noise, for each pixel x∈Ω we assume that the intensity f (x) is a random
variable following the Poisson distribution with mean g(x), i.e., its probability mass
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(a) given image (b) (c) (d)

Fig. 5 Segmentations of a fractal image corrupted with Gamma noise and blur. (a): Degraded im-
age; (b)–(d): results of methods Yuan et al (2010a), Dong et al (2011), and SaT with user-provided
thresholds Chan et al (2014), respectively. For clarity, only the top-left corner of the segmentations
are shown. We see that the SaT method produces the best result, with the segmentation line (the
yellow line) very close to the real boundary.

function is:

p f (x)(n;g(x)) =
(g(x))ne−g(x)

n!
,

where n is the intensity of f at the pixel x. In this case, we say that f is corrupted by
Poisson noise. For the Gamma noise, suppose that for each pixel x ∈Ω the random
variable η(x) follows the Gamma distribution, i.e., its probability density function
is:

pη(x)(y;θ ,K) =
1

θ KΓ (K)
yK−1e−

y
θ for y≥ 0, (9)

where Γ is the usual Gamma-function, θ and K denote the scale and shape param-
eters in the Gamma distribution respectively. Notice that, the mean of η(x) is Kθ ,
and the variance of η(x) is Kθ 2. For multiplicative noise, we assume in general
that the mean of η(x) equals 1, see Aubert and Aujol (2008); Durand et al (2010).
Then we have Kθ = 1 and its variance is 1/K. We assume the degraded image is
f (x) = g(x) ·η(x), and say that f is corrupted by multiplicative Gamma noise.

The construction of a data-fidelity term can be inspired by the following observa-
tions. With the abuse of notation, suppose f is the given image with noise following
a certain statistical distribution, and let p(g| f ) be the conditional probability of g
when we have observed f . Then based on maximum-a-posteriori approach, restor-
ing the image g is equivalent to maximizing the probability p(g| f ). Assume the
prior distribution of g is given by

p(g) ∝ exp(−β

∫
Ω

|∇g|dx),

where β is a parameter. If the noise follows the Poisson distribution, then maximiz-
ing p(g| f ) corresponds to minimizing the functional∫

Ω

(g− f logg)dx+β

∫
Ω

|∇g|dx, (10)
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see T. Le and Asaki (2007). If the noise is multiplicative following the Gamma
distribution, then maximizing p(u| f ) corresponds to minimizing the functional∫

Ω

(
f
g
+ logg)dx+β

∫
Ω

|∇g|dx, (11)

see Aubert and Aujol (2008). However, it is observed in the numerical examples in
Aubert and Aujol (2008); Shi and Osher (2008) that for the denoising model (11)
the noise survives much longer at low image values if we increase the regularization
parameter. Therefore, in Shi and Osher (2008) the authors suggested to take w =
logg and change the objective functional (11) to∫

Ω

( f e−w +w)dx+β

∫
Ω

|∇w|dx. (12)

In Chan et al (2014), a two-stage method for segmenting blurry images in the
presence of Poisson or multiplicative Gamma noise is proposed. It was inspired by
the SaT segmentation method in Cai et al (2013b) and the Gamma noise denois-
ing method in Steidl and Teuber (2010). Specifically, the data fidelity term of the
model (8) at the first stage of the SaT segmentation method in Cai et al (2013b) was
replaced by the one which is suitable for Gamma noise, i.e.,

inf
g∈W 1,2(Ω)

{
µ

∫
Ω

(Ag− f logAg)dx+
λ

2

∫
Ω

|∇g|2dx+
∫

Ω

|∇g|dx
}
. (13)

Then at the second stage the solution g is thresholded to reveal different segmenta-
tion features.

The follow Theorems 3 and 4 assure that model (13) has a unique minimizer with
identity or blurring operator A.

Theorem 3. Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let f ∈ L∞(Ω) with inf f > 0 and A be the identity operator. Then (13)
has a unique minimizer u ∈W 1,2(Ω) satisfying 0 < inf f ≤ u≤ sup f .

Proof. See Chan et al (2014) for the detailed proof.

Theorem 4. Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let f ∈ L∞(Ω) with inf f > 0, and let A be a continuous linear operator
from W 1,2(Ω) to itself. Assume Ker(A )∩Ker(∇) = {0}, then (13) has a unique
minimizer u ∈W 1,2(Ω).

Proof. See Chan et al (2014) for the detailed proof.

Figure 5 gives an example which shows the great performance of the SaT based
method Chan et al (2014) for images with multiplicative Gamma noise.
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SLaT method for color images

Extending or conceiving segmentation methods for color images is not a simple
task since one needs to discriminate segments with respect to both luminance and
chrominance information. The two-phase Chan-Vese model Chan and Vese (2001a)
was generalized to deal with vector-valued images in Chan et al (2000) by com-
bining the information in the different channels using the data fidelity term. Many
methods are applied in the usual RGB color space Cai (2015); Chan et al (2000);
Cremers et al (2007a); Jung et al (2007); Kay et al (2009); Martin et al (2001);
Pock et al (2009a); Storath and Weinmann (2014), among others. It is often men-
tioned that the RGB color space is not well adapted to segmentation because for
real-world images the R, G and B channels can be highly correlated. In Rotaru
et al (2008), RGB images are transformed into HSI (hue, saturation, and intensity)
color space in order to perform segmentation. In Benninghoff and Garcke (2014)
a general segmentation approach was developed for gray-value images and further
extended to color images in the RGB, the HSV (hue, saturation, and value) and
the CB (chromaticity-brightness) color spaces. However, a study on this point in
Paschos (2001) has shown that the Lab (perceived lightness, red-green and yellow-
blue) color space defined by the CIE (Commission Internationale de l’Eclairage) is
better adapted for color image segmentation than the RGB and the HSI color spaces.
In Cardelino et al (2013) RGB input images were first converted to Lab space. In
Wang et al (2015) color features were described using the Lab color space and tex-
ture using histograms in RGB space.

A careful examination of the methods that transform a given RGB image to an-
other color space (HSI, CB, Lab, etc.) before performing the segmentation task
has shown that these algorithms are always applied only to noise-free RGB images
(though these images unavoidably contain quantization and compression noise). For
instance, this is the case of Benninghoff and Garcke (2014); Cardelino et al (2013);
Rotaru et al (2008); Wang et al (2015), among others. One of the main reasons is
that if the input RGB image is degraded, the degradation would be hard to control
after a transformation to another color space Paschos (2001).

A color image is usually represented by a vector valued function f = ( f1, f2, f3) :
Ω → R3, where the components f1, f2 and f3 generally represent red, green and
blue channels respectively. The difficulty for color image segmentation partly comes
from the strong inter-channel correlation. A novel extension of the SaT approach
is the smoothing, lifting and thresholding (SLaT) method introduced in Cai et al
(2017), which is able to work on vector-valued (color) images possibly corrupted
with noise, blur and missing data. One first solves (8) for the three components
f1, f2 and f3 to obtain three smooth functions g1, g2 and g3. Then one transforms
(g1,g2,g3) to another color space (ḡ1, ḡ2, ḡ3) which can reduce inter-channel corre-
lation. This is the lifting process, and the Lab color space is usually a good choice.
In the thresholding step one performs K-means to threshold the lifted image with 6
channels (g1,g2,g3, ḡ1, ḡ2, ḡ3) to get the phases.

In Cai et al (2017), model (8) was also extended to tackle information loss and
both Gaussian and Poisson noise. In particular, the existence and uniqueness of the
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extended model with information loss and both Gaussian and Poisson noise was
also proved.

This SLaT method is easy to implement with promising results, see Figure 6 with
images chosen from the Berkeley Segmentation Dataset and Benchmark2. More-
over, the SLaT method has the ability to segment color images corrupted by noise,
blur, or when some pixel information is lost. More experimental results in Cai et al
(2017) on RGB images coupled with Lab secondary color space demonstrate that
the method gives much better segmentation results for images with degradation than
some state-of-the-art segmentation models both in terms of quality and CPU time
cost.

Fig. 6 Color image segmentation for degraded images. First row: degraded color images (the first
three images are degraded by various noise and blur, and the last two images are degraded by 60%
information loss and noise). Second row: Pock et al (2009a). Third row: SLaT method Cai et al
(2017).

Two-stage method for hyperspectral images

Remotely sensed hyperspectral images are images taken from drones, airplanes or
satellites that record a wide range of electromagnetic spectrum, typically more than
100 spectral bands from visible to near-infrared wavelengths. Since different mate-
rials reflect different spectral signatures, one can identify the materials at each pixel
of the image by examining its spectral signatures. Hyperspectral images are used in
many applications, including agriculture Patel et al (2001); Datt et al (2003), disas-
ter relief Eismann et al (2009), food safety Gowen et al (2007), military Manolakis
and Shaw (2002); Stein et al (2002) and mineralogy Hörig et al (2001).

2 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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One of the most important problems in hyperspectral data exploitation is hyper-
spectral images classification. It has been an active research topic in past decades
Fauvel et al (2013). The pixels in the hyperspectral image are often labeled manually
by experts based on careful review of the spectral signatures and investigation of the
scene. Given these ground-truth labels of some pixels (also called “training pixels”),
the objective of hyperspectral images classification is to assign labels to part or all
of the remaining pixels (the “testing pixels”) based on their spectral signatures and
their locations.

In Chan et al (2020), a two-stage method was proposed based on the SaT method
Cai et al (2013b) for hyperspectral images classification. Pixel-wise classifiers, such
as the classical support vector machine (SVM), consider spectral information only.
As spatial information is not utilized, the classification results are not optimal and
the classified image may appear noisy. Many existing methods, such as morpho-
logical profiles, superpixel segmentation, and composite kernels, exploit the spatial
information. In Chan et al (2020), a two-stage approach was proposed. In the first
stage, SVMs are used to estimate the class probability for each pixel. In the second
stage, the SaT model is applied to each probability map to denoise and segment the
image into different classes. The proposed method effectively utilizes both spectral
and spatial information of the data sets and is fast as only convex minimization is
needed in addition to the SVMs.

(a) ground truth (b) training set (c) Chan et al (2020)

Fig. 7 Hyperspectral image classification of the Indian Pines data set. (a) Ground truth, (b) train-
ing set (10% of total pixels), and (c) classification with SaT Chan et al (2020) (98.83% overall
accuracy).

We emphasize that the convex model used in Chan et al (2020) is the model (8) at
the first stage of the SaT segmentation method in Cai et al (2013b), with a constraint,
i.e.,

inf
gk

{
µ

2

∫
Ω

( fk−Agk)
2dx+

λ

2

∫
Ω

|∇gk|2dx+
∫

Ω

|∇gk|dx
}
,

s.t. gk|Ωtrain = fk|Ωtrain ,

(14)
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where fk represents the probability map of the k-th class obtained from stage one
using the SVM method, gk is the improved probability map of the k-th class, and
Ωtrain is the set of training pixels. After obtaining gk,k = 1 . . . ,K, individual pixels
will be labeled to a set which possesses the maximum values among gk(x),k =
1 . . . ,K. Note that the above stage two performs like the SaT strategy.

Figure 7 gives an example which shows the great performance of the two-stage
method Chan et al (2020) for hyperspectral images classification. More details
please refer to Chan et al (2020).

Tight-frame based method for images with vascular structures

The segmentation problem of branching tubular objects in 2D and 3D images arises
in many applications, for examples, extracting roads in aerial photography, and
anatomical surfaces of blood vessels in medical images. Identifying tube-like struc-
tures is of great importance in medical imaging, with the primary application of seg-
menting blood vessels in magnetic resonance angiography (MRA) images. Unlike
classical segmentation problems, vessel segmentation is characterized by different
aims such as (a) detect correctly branches and complex topologies, (b) detect vessels
of very different thickness (from very thin to very thick), (c) repair small occlusions
(false disconnections), (d) remove noise incorrectly segmented, and (e) control the
minimum thickness of the vessels by a user given precision. Moreover, when used in
a real-time medical environment, automatic, robust and efficient methods are essen-
tial. All these requirements make the vessel segmentation problem very challenging.

Many different approaches for image segmentation and, in particular, vessel seg-
mentation have been proposed in literature, see for example Chapman et al (2004);
Chen and Amini (2004); Dong et al (2010); Franchini et al (2010); Gooya et al
(2008); Krissian et al (2000); Lorigo et al (2001); Sum and Cheung (2008); Yan
and Kassim (2006); Zonoobi et al (2009) and the extended reviews Cremers et al
(2007b); Kirbas and Quek (2004). Below we give a brief account of some of these
methods.

In Cai et al (2011, 2013a), a tight-frame based method was proposed to auto-
matically identify tube-like structures in medical imaging, with the primary appli-
cation of segmenting blood vessels in magnetic resonance angiography images. The
method iteratively refines a region that encloses the potential boundary of the ves-
sels. At each iteration, the tight-frame algorithm was applied to denoise and smooth
the potential boundary and sharpen the region, in a similar fashion as the SaT strat-
egy. The cost per iteration is proportional to the number of pixels in the image. It
is proved that the iteration converges in a finite number of steps to a binary image
whereby the segmentation of the vessels can be done straightforwardly.

Let f = vec( f ) denotes the vector obtained by concatenating the columns of f . It
is worth mentioning the tight-frame algorithms used in e.g. Cai et al (2008) can be
presented in the following generic form:
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(a) given CTA image

(b) Lorigo et al (2001) (c) Franchini et al (2009) (d) Cai et al (2013a)

Fig. 8 Segmentation of the kidney volume data set. (a): Given CTA image; (b): CURVES segmen-
tation Lorigo et al (2001); (c): ADA segmentation Franchini et al (2009); (d) tight-frame based
method Cai et al (2013a).

f(i+
1
2 ) = U (f(i)), (15)

f(i+1) = A T Tλ (A f(i+
1
2 )), i = 1,2, . . . . (16)

Here f(i) is an approximate solution at the i-th iteration, U is a problem-dependent
operator, and Tλ (·) is the soft-thresholding operator defined as follows. Given vec-
tors v = [v1, · · · ,vn]

T and λ = [λ1, · · · ,λn]
T , Tλ (v)≡ [tλ1(v1), · · · , tλn(vn)]

T , where

tλk
(vk)≡

{
sgn(vk)(|vk|−λk), if |vk|> λk,
0, if |vk| ≤ λk.

(17)

Let P(i+1) be the diagonal matrix where the diagonal entry is 1 if the correspond-
ing index is in Λ (i+1), and 0 otherwise. Then

f(i+1) ≡ (I−P(i+1))f(i+
1
2 )+P(i+1)A T Tλ (A f(i+

1
2 )). (18)

By reordering the entries of the vector f(i+1) into columns, we obtain the image
f (i+1). We remark that the effect of (18) is to denoise and smooth the image on
Λ (i+1).
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(a) given MRA image

(b) Lorigo et al (2001) (c) Franchini et al (2010) (d) Cai et al (2013a)

Fig. 9 Segmentation of the brain volume data set. (a): Given MRA image; (b): CURVES segmen-
tation Lorigo et al (2001); (c): ADA segmentation Franchini et al (2010); (d) tight-frame based
method Cai et al (2013a).

Figures 8 and 9 give examples which show the great performance of the tight-
frame based method Cai et al (2013a) for images with tube-like structures. More
details please refer to Cai et al (2013a).

Wavelet-based segmentation method for spherical images

Spherical images are common in nature, for example, in cosmology McEwen et al
(2007b), astrophysics Schmitt et al (2012), planetary science Audet (2014), geo-
physics Simons et al (2011), and neuro-science Rathi et al (2011), where images are
naturally defined on the sphere. Clearly, images defined on the sphere are different
to Euclidean images in 2D and 3D in terms of symmetries, coordinate systems and
metrics constructed (see for example Li and Hai (2010)).

Wavelets have become a powerful analysis tool for spherical images, due to their
ability to simultaneously extract both spectral and spatial information. A variety of
wavelet frameworks have been constructed on the sphere in recent years, e.g. Baldi
et al (2009); McEwen et al (2018), and have led to many insightful scientific studies
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Test data

(a) noisy image (b) noisy image (c) noisy image (d) original image

Segmentation results

(e) K-means (f) WSSA-A (g) WSSA-D (h) WSSA-H

Fig. 10 Results of light probe image - the Uffizi Gallery. First row: noisy image shown on the
sphere (a) and in 2D using a mollweide projection (b), and the zoomed-in red rectangle area of the
noisy (c) and original images (d), respectively; Second to fourth rows from left to right: results of
methods K-means (e), WSSA-A (f), WSSA-D (g) with N = 6 (even N), and WSSA-H (h), respec-
tively. Note that methods WSSA-A, WSSA-D and WSSA-H are the wavelet-based segmentation
method Cai et al (2020) respectively equipped with axisymmetric wavelets, directional wavelets
and hybrid wavelets defined on the sphere.

in the fields mentioned above (see McEwen et al (2007b); Schmitt et al (2012); Au-
det (2014); Simons et al (2011); Rathi et al (2011)). Different types of wavelets on
the sphere have been designed to probe different structure in spherical images, for
example isotropic or directional and geometrical features, such as linear or curvilin-
ear structures, to mention a few. Axisymmetric wavelets Baldi et al (2009); Leistedt
et al (2013) are useful for probing spherical images with isotropic structure, di-
rectional wavelets McEwen et al (2018) for probing directional structure, ridgelets
Michailovich and Rathi (2010); Starck et al (2006) for analysing antipodal signals
on the sphere, and curvelets Starck et al (2006); Chan et al (2017) for studying
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highly anisotropic image content such as curve-like features (we refer to Candés
and Donoho (2005) for the general definition of Euclidean ridgelets and curvelets).
Fast algorithms have been developed to compute exact forward and inverse wavelet
transforms on the sphere for very large spherical images containing millions of pix-
els McEwen et al (2007a). Localisation properties of wavelet constructions have also
been studied in detail McEwen et al (2018), showing important quasi-exponential
localisation and asymptotic uncorrelation properties for certain wavelet construc-
tions. An investigation into the use of axisymmetric and directional wavelets for
sparse image reconstruction was performed recently in Wallis et al (2017), showing
excellent performance.

In Cai et al (2020), a wavelet-based method was proposed to segment images on
the sphere, accounting for the underlying geometry of spherical data. The method is
a direct extension of the tight-frame based segmentation method Cai et al (2011,
2013a) used to automatically identify tube-like structures such as blood vessels
in medical imaging. It is compatible with any arbitrary type of wavelet frame de-
fined on the sphere, such as axisymmetric wavelets, directional wavelets, curvelets,
and hybrid wavelet constructions. Such an approach allows the desirable proper-
ties of wavelets to be naturally inherited in the segmentation process. In particular,
directional wavelets and curvelets, which were designed to efficiently capture direc-
tional signal content, provide additional advantages in segmenting images contain-
ing prominent directional and curvilinear features.

Figure 10 gives an example which shows the great performance of the wavelet-
based segmentation method for spherical images. More details please refer to Cai
et al (2020).

Three-stage method for images with intensity inhomogeneity

The intensity inhomogeneity is a common phenomenon in real-world images and
may bring considerable difficulties for image segmentation Li et al (2008). The
intensity inhomogeneity can be roughly divided into two types: the extrinsic one
and the intrinsic one. The extrinsic intensity inhomogeneity is globally revoked by
the image acquisition devices or illumination variations which frequently appear in
medical images. On the other hand, the intrinsic one is caused by the local discrep-
ancy of the image color, intensity, or texture pattern in objects and backgrounds
which usually appear in natural images.

The extrinsic inhomogeneous intensities are usually smoothly varying. Involving
the local intensity information in the energy functional is a common way to address
the issue of extrinsic inhomogeneity. Li et al (2008) and Wang et al (2010) used
Gaussian kernel methods to characterize the intensities in local regions. The intrinsic
intensity inhomogeneity varies sharply. Some texture segmentation algorithms (e.g.,
Brox et al (2010) and Cremers et al (2007a)) have been proposed to tackle such kinds
of intensity inhomogeneity. New features (e.g., structure tensors Ge et al (2015),
salient information Kim and Kim (2013)) were also designed to get the desired
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segmentation results. Zhi and Shen (2018a) proposed a level set based method by
incorporating saliency information and image intensity as region external energy to
motivate the curve evolution. These models can handle the intensity inhomogeneity
to some extent.

Fig. 11 Segmentation results on single-channel images. In the first and the third rows, the first
column: images from the Alpert’s dataset (size: 300×225); the second column: the corresponding
intensity inhomogeneity images respectively. In the second and the fourth rows, from the first
column to the last column: segmentation results of the methods in Cai et al (2017), Li et al (2010),
Zhi and Shen (2018b), Wang et al (2009), Li et al (2020) and the ground truth.

In Li et al (2020), a new three-stage segmentation framework was proposed based
on the SaT method and the intensity inhomogeneity information of an image. The
first stage in this framework is to perform a dimension lifting method. An intensity
inhomogeneity image is added as an additional channel, which results in a vector-
valued image. In the second stage, a SaT model is applied to each channel of the
vector-valued image to obtain a smooth approximation. The semi–proximal alter-
nating direction method of multipliers (sPADMM) Han et al (2018) is used to solve
this model and it is proved that the sPADMM for solving this convex model has
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Q-linear convergence rate. In the last stage, a thresholding method is applied to the
smoothed vector-valued image to get the final segmentation.

(a) given image (b) U-net (c) Li et al (2020) (d) Cai et al (2017)

Fig. 12 Column (a): The original images from the 100 test dataset; column (b): segmentation
results of the U-net method Ronneberger et al (2015); column (c): segmentation results of the
method in Li et al (2020); and column (d): segmentation results of the method in Cai et al (2017).

Figure 11 shows the great performance of the three-stage method Li et al (2020)
incorporating intensity inhomogeneity information, and Figure 12 demonstrates that
Li et al (2020) provides the most accurate segmentation results in comparison with
five state-of-the-art methods including a deep learning approach (U-net method)
Ronneberger et al (2015). More details please refer to Li et al (2020).
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Conclusions

In this article, we introduced the the SaT (smoothing and thresholding) segmenta-
tion methodology, and methods developed based on this methodology with many
applications in image processing. The SaT method provides an efficient and flexible
methodology for image segmentations. It is easy to adapt the SaT method for var-
ious segmentation tasks. The SaT approach connects the segmentation problem to
image restoration problem. Recent researches show that the SaT method can also be
applied to classification problems. We hope that, with this article, the SaT method
can reach audiences from broader areas and can inspire more cross disciplinary re-
searches.
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