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Abstract
High-dimensional data classification is a fundamental task in machine
learning and imaging science. In this paper, we propose an efficient and
versatile multi-class semi-supervised classification method for classifying
high-dimensional data and unstructured point clouds. To begin with, a
warm initialization is generated by using a fuzzy classification method
such as the standard support vector machine or random labeling. Then an
unconstraint convex variational model is proposed to purify and smooth
the initialization, followed by a step which is to project the smoothed
partition obtained previously to a binary partition. These steps can be
repeated, with the latest result as a new initialization, to keep improv-
ing the classification quality. We show that the convex model of the
smoothing step has a unique solution and can be solved by a specifi-
cally designed primal-dual algorithm whose convergence is guaranteed.
We test our method and compare it with the state-of-the-art methods
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on several benchmark data sets. Thorough experimental results demon-
strate that our method is superior in both the classification accuracy
and computation speed for high-dimensional data and point clouds.

Keywords: Semi-supervised clustering, point cloud classification, variational
methods, graph Laplacian

1 Introduction
Data classification is a fundamental task in remote sensing, machine learning,
computer vision, and imaging science [1–5]. The task, simply speaking, is to
group the given data into different classes such that, on one hand, data points
within the same class share similar characteristics (e.g. distance, edges, inten-
sities, colors, and textures); on the other hand, pairs of different classes are as
dissimilar as possible with respect to certain features. In this paper, we focus
on the task of multi-class semi-supervised classification. The total number of
classes K of the given data sets is assumed to be known, and a few samples,
namely the training points, in each class, have been labeled. The goal is there-
fore to infer the labels of the remaining data points using the knowledge of the
labeled ones.

For data classification, previous methods are generally based on graphi-
cal models, see e.g. [1, 2, 6] and references therein. In a weighted graph, the
data points are vertices and the edge weights signify the affinity or similarity
between pairs of data points, where the larger the edge weight is, the closer
or more similar the two vertices are. The basic assumption for data classifi-
cation is that vertices in the graph that are connected by edges with large
weight should belong to the same class. Since a fully connected graph is dense
and has the size as large as the square of the number of vertices, it is compu-
tationally expensive to work on it directly. In order to circumvent this, some
cleverly designed approximations have been developed. For example, spectral
approaches are proposed in [7, 8] to efficiently calculate the eigendecomposi-
tion of a dense graph Laplacian. In [9, 10], the nearest neighbor strategy was
adopted to build up a sparse graph where most of its entries are zero, and
therefore is computationally efficient.

In the literature, various studies for semi-supervised classification have been
performed by computing a local minimizer of some non-convex energy func-
tional or minimizing a relevant convex relaxation. To name just a few, we have
the diffuse interface approaches using phase field representation based on par-
tial differential equation techniques [11, 12], the MBO scheme established for
solving the diffusion equation [7, 8, 13], and the variational methods based on
graph cut [1, 2]. In particular, the convex relaxation models and special con-
straints on class sizes were investigated in [1]. In [2], some novelty region-force
terms were introduced in the variational models to enforce the affinity between
vertices and training samples. To the best of our knowledge, all these proposed
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variational models have the so-called no vacuum and overlap constraint on the
labeling functions, which gives rise to non-convex models with NP-hard issues.
By allowing labeling functions to take values in the unit simplex, the origi-
nal NP-hard combinatorial problem is rephrased into a continuous setting, see
e.g. [1–4, 14–17] for various continuous relaxation techniques (e.g. the ones
based on solving the eigenvalue problem, convex approximation, or non-linear
optimization) and references therein.

Image segmentation can also be viewed as a special case of the data classifi-
cation problem [4, 18], since the pixels in an image can be treated as individual
points. Various studies and many algorithms have been considered for image
segmentation. In particular, variational methods are among the most success-
ful image segmentation techniques, see e.g. [19–25]. The Mumford-Shah model
[19], one of the most important variational segmentation models, was proposed
to find piecewise smooth representations of different segments. It is, however,
difficult to solve since the model is non-convex and non-smooth. Then sub-
stantially rich follow-up works were conducted, and many of them considered
compromise techniques such as: (i) simplifying the original complex model, e.g.
finding piecewise constant solutions instead of piecewise smooth solutions [26–
28]); (ii) performing convex approximations, e.g. using convex regularization
terms like total variation [29, 30]; or (iii) using the smoothing and threshold-
ing (SaT) segmentation methodology [17, 22, 31–33]; for more details please
refer to e.g. [34, 34–41] and references therein. Moreover, various applications
were put forward for instance in optical flow [42], tomographic imaging [43],
and medical imaging [44–49].

In this paper, we propose a semi-supervised data classification method
inspired by the SaT segmentation methodology [17, 22, 31–33]. The SaT
methodology has been shown to be very promising in terms of segmenta-
tion quality and computation speed for images corrupted by many different
types of blurs and noises. Briefly speaking, the SaT methodology includes two
main steps: the first step is to obtain a smooth approximation of the given
image through minimizing some convex models; and the second step is to
get the segmentation results by thresholding the smooth approximation, e.g.
using thresholds determined by the K-means algorithm [50]. Since the models
used are convex, the non-convex and NP-hard issues in many existing varia-
tional segmentation methods (e.g. the Mumford-Shah model and its piecewise
constant versions mentioned above) are naturally avoided.

Our proposed data classification method mainly contains two steps with
a warm initialization. The warm initialization is a fuzzy classification result
which can be generated by any standard classification method such as the
support vector machine (SVM) [51], or by labeling the given data randomly if
no proper method is available for the given data (e.g. the data set is too large
or complicated). Its accuracy is not critical since our proposed method will
improve the accuracy significantly from this starting point.

With the warm initialization, the first step which is also the key point of
our method is to find a set of smooth labeling functions, where each gives
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the probability of every point being in a particular class. They are obtained
by minimizing a properly-chosen convex objective functional. In detail, the
convex objective functional contains K independent convex sub-minimization
problems, where each corresponds to one labeling function, with no constraints
between these K labeling functions. For each sub-minimization problem, the
model is formed by three terms: (i) the data fidelity term restricting the dis-
tance between the smooth labeling function and the initialization; (ii) the
graph Laplacian (ℓ2-norm) term, and (iii) the total variation (ℓ1-norm) built
on the graph of the given data. The graph Laplacian and the total variation
terms regularize the labeling functions to be smooth but at the same time close
to a representation on the unit simplex.

After obtaining the set of labeling functions, the second step of our method
is just to project the fuzzy classification results obtained at step one onto
the unit simplex to obtain a binary classification result. This step can be
done straightforwardly. To improve the classification accuracy, these two steps
can be repeated iteratively, where at each iteration the result at the previous
iteration is used as a new initialization.

The main advantage of our method is threefold. Firstly, it performs out-
standingly in computation speed, since the proposed model at the first step is
convex and the K sub-minimization problems are independent of each other
(with no constraint on the K labeling functions). The parallelism strategy can
thus be applied straightforwardly to improve the computation performance
further. On the contrary, the standard start-of-the-art variational data clas-
sification methods e.g. [2, 7, 12] have the constraint on unit simplex in their
minimization models, and thus the non-convex or NP-hard issues can affect
seriously the efficiency of these methods, even though some convex relaxations
may be applied. Secondly, in addition to the multi-class classification prob-
lem, our method can also be used to tackle other problems like the one-class
classification problem [52] (see Section 5.6) benefiting from its robustness in
dealing with extremely unbalanced data sets. Thirdly, our method is gener-
ally superior in classification accuracy, due to its flexibility of merging the
warm initialization and the two-step iterations which are tractable to improve
the accuracy gradually. Note again that we are solving a convex model in the
first step of each iteration, which guarantees a unique global minimizer. In
contrast, there is, however, no guarantee that the results obtained by the stan-
dard start-of-the-art variational data classification methods e.g. [2, 7, 12] are
global minimizers. The effectiveness of iterations in our proposed method will
be shown in the experiments. For most cases, the clustering accuracy would
be increased by a significant margin compared to the first initialization and
generally outperforms the state-of-the-art variational classification methods.

The paper is organized as follows. In Section 2, the basic notation used
throughout the paper is introduced. Our method for data sets classification is
proposed in Section 3. In Section 4, we present the algorithm for solving the
proposed model and its convergence proof. In Section 5, we test our method
on benchmark data sets and compare it with the start-of-the-art methods.
Conclusions are drawn in Section 6.
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2 Basic notation
Let G = (V,E,w) be a weighted undirected graph representing a given point
cloud, where V is the vertex set (in which each vertex represents a point)
containing N vertices, E is the edge set consisting of pairs of vertices, and
w : E → R+ is the weight function defined on the edges in E. The weights
w(x,y) on the edges (x,y) ∈ E measure the similarity between the two vertices
x and y; the larger the weight is, the more similar (e.g. closer in distance) the
pair of the vertices is.

There are many different ways to define the weight function. Let d(·, ·) be
a distance metric. Several particularly popular definitions of weight functions
are as follows: (i) radial basis function

w(x,y) := exp(−d(x,y)2/(2ξ)), ∀(x,y) ∈ E, (1)

for a prefixed constant ξ > 0; (ii) Zelnic-Manor and Perona weight function

w(x,y) := exp

(
−d(x,y)2

var(x)var(y)

)
, ∀(x,y) ∈ E, (2)

where var(·) denotes the local variance; and (iii) the cosine similarity

w(x,y) :=
⟨x,y⟩√

⟨x,x⟩⟨y,y⟩
, ∀(x,y) ∈ E, (3)

where ⟨·, ·⟩ represents the inner product.
Let W = (w(x,y))(x,y)∈E ∈ RN×N , the so-called affinity matrix, which is

usually assumed to be a symmetric matrix with non-negative entries. Let a
diagonal matrix be D = (h(x,y))(x,y)∈E ∈ RN×N , where its diagonal entries
are equal to the sum of the entries on the same row in W , i.e.,

h(x,y) :=

{∑
z∈V w(x, z), x = y,

0, otherwise.
(4)

Let u = (u(x))⊤x∈V ∈ RN , i.e., an N -length column vector. Define the graph
Laplacian as L = D −W , and the gradient operator ∇ on u(x),∀x ∈ V , as

∇u(x) := (w(x,y)[u(x)− u(y)])(x,y)∈E . (5)

The ℓ1-norm of an N -length vector is defined as

∥∇u∥1 :=
∑
x∈V

|∇u(x)|

=
∑

(x,y)∈E

|w(x,y)[u(x)− u(y)]|. (6)
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The ℓ2-norm (also known as Dirichlet energy) is defined as

∥∇u∥22 :=
1

2
u⊤Lu

=
1

2

∑
(x,y)∈E

w(x,y)[u(x)− u(y)]2. (7)

Note, however, that working with the fully connected graph E—like the
settings in Eq. (5), (6) and (7)—can be highly computational demanding.

In order to reduce the computational burden, one often only considers the
set of edges with large weights. In this paper, the k-nearest-neighbor (k-NN) of
a point x, N (x), is used to replace the whole edge set starting from the point
x in E. Besides the computational saving, one additional benefit of using k-NN
graph is its capability to capture the local property of points lying close to a
manifold. With the k-NN graph, the definitions in Eq. (5), (6) and (7) become

∇u(x) = (w(x,y)[u(x)− u(y)])y∈N (x) , (8)

∥∇u∥1 :=
∑
x∈V

|∇u(x)|

=
∑
x∈V

∑
y∈N (x)

|w(x,y)[u(x)− u(y)]|, (9)

and

∥∇u∥22 :=
1

2
u⊤Lu

=
1

2

∑
x∈V

∑
y∈N (x)

w(x,y)[u(x)− u(y)]2, (10)

respectively, see e.g. [2, 12] for more detail.

3 Proposed data classification method

3.1 Preliminary
Given a point cloud V containing N points in RM . We aim to partition V
into K classes V1, · · · , VK based on their similarities (the points in the same
class possess high similarity), with a set of training points T = {Tj}Kj=1 ⊂ V ,
|T | = NT . Note that Tj ⊂ Vj for j = 1, . . . ,K. In other words, we aim to
assign the points in V \ T certain labels between 1 to K using the training
set T in which the labels of points are known, and the partition satisfies no
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vacuum and overlap constraint, i.e.,

V =

K⋃
j=1

Vj and Vi ∩ Vj = ∅, ∀i ̸= j, 1 ≤ i, j ≤ K. (11)

In the rest of the paper, we denote the points in V needed to be labeled as
S = V \ T , and call S the test set in V .

The constraint (11) can be described by a binary matrix function U :=
(u1, · · · ,uK) ∈ RN×K (also called partition matrix), with uj = (uj(x))

⊤
x∈V ∈

RN : V → {0, 1} defined as

uj(x) :=

{
1, x ∈ Vj ,

0, otherwise,
∀x ∈ V, j = 1, . . . ,K. (12)

Clearly, the above definition yields
∑K

j=1 uj(x) = 1,∀x ∈ V . The constraint
(12) is also known as the indicator constraint on the unit simplex. Since
the binary representation in the constraint (12) generally requires solving a
non-convex model with NP-hard issue, a common strategy—the convex unit
simplex—is considered as an alternative

K∑
j=1

uj(x) = 1, ∀x ∈ V,

s.t. uj(x) ∈ [0, 1], j = 1, . . . ,K.

(13)

Note, importantly, that the convex constraint (13) can overcome the NP-hard
issue and make some subproblems convex, but generally the whole model can
still be non-convex. Therefore, solving a model with constraint (11), (12) or
(13) can be time consuming, see e.g. [2, 12] for more detail.

If a result satisfying the constraint (13) is not completely binary, a common
way to obtain an approximate binary solution satisfying the constraint (12) is
to select the binary function as the nearest vertex in the unit simplex by the
magnitude of the components, i.e.,

(u1(x), · · · , uK(x)) 7→ ei,

where i = argmax
j

{uj(x)}Kj=1,∀x ∈ V. (14)

Here, ei is the K-length unit normal vector, which is 1 at the i-th component
and 0 for all other components.

3.2 Proposed method
In this section, we present our novel method for data (e.g. point clouds) classi-
fication inspired by the SaT strategy which has been validated very effective in
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image segmentation. Our method can be summarized briefly as follows: first, a
classification result is obtained as a warm initialization by using a classical and
fast, but need not be very accurate classification method such as SVM [51];
then, a proposed two-step iteration scheme is implemented until no change
in the labels of the test points could be made between consecutive iterations.
Specifically, at the first step, we propose to minimize a novel convex model
free of constraint (cf. those constraints (11), (12) and (13)) to obtain a fuzzy
partition, say U , while keeping the training labels unchanged. At the second
step, a binary result is obtained by just applying the binary rule in Eq. (14)
directly on the fuzzy partition obtained at the previous step. This binary result
could be the final classification result for the original classification problem or,
if necessary, be set as a new initialization to search a better one in the same
manner. In the following, we give the details of each step.

Initialization. Given a point cloud V containing N points in RM and train-
ing set T containing NT points with correct labels, we use SVM, which is
a standard and fast clustering method as an example, to obtain the first
clustering. Let the partition matrix be Û = (û1, · · · , ûK) ∈ RN×K , where
ûj = (ûj(x))

⊤
x∈V ∈ RN for j = 1, . . . ,K. One could acquire an initializa-

tion by any other methods which have better performance than SVM. If no
proper method is available (e.g. the data set is too large), then an initializa-
tion generated by setting labels to the test points randomly can be used as an
alternative.

Step one. We now put forward our convex model to find a fuzzy partition
U with initialization Û = (û1, · · · , ûK), i.e.,

argmin
U

K∑
j=1

{
β

2
∥uj − ûj∥22 +

α

2
u⊤
j Luj + ∥∇uj∥1

}
, (15)

where the first term is the data fidelity term constraining the fuzzy partition
not far away from the initialization; the second term is related to ∥∇u∥22 with
graph Laplacian L; the last term is the total variation constructed on the
graph; and α, β > 0 are regularization parameters. Specifically, the second
term in model (15) is used to impose smooth features on the labels of the
points, and the last term is used to force the points with similar information
to group together.

It is worth emphasizing that we already have the labels on the points in the
training set T , with Ū = (ū1, · · · , ūK) ∈ RNT×K being the partition matrix
on T , where ūj = (ūj(x))

⊤
x∈T ∈ RNT for j = 1, . . . ,K. Therefore, we only

assign labels to points in the test set S, i.e., we have

ûj(x) = ūj(x), ∀x ∈ T, j = 1, . . . ,K. (16)

Let ûSj represent the part of ûj defined on the test set S, and then we have

ûj = (û⊤
Sj
, ū⊤

j )
⊤, j = 1, . . . ,K. (17)
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Analogous notations are used for the partition matrix U = (u1, · · · ,uK), with

uj = (u⊤
Sj
, ū⊤

j )
⊤, j = 1, . . . ,K. (18)

In Section 4, Eq. (17) and (18) are going to be used to derive an efficient
algorithm to solve the minimization problem (15).

The following Theorem 1 proves that our proposed model (15) has a unique
solution.

Theorem 1. Given Û ∈ RN×K and α, β > 0, the proposed model (15) has a
unique solution U ∈ RN×K .

Proof According to [53, Chapter 9], we know that a strongly convex function has a
unique minimum. The conclusion follows directly from the strong convexity of the
proposed model (15). □

Many algorithms can be used to solve model (15) efficiently due to the
convexity of the model without constraint. For example, the split-Bregman
algorithm [54], which is specifically devised for ℓ1 regularized problems; the
primal-dual algorithm [55], which is designed to solve general saddle point
problems; and the powerful alternative, ADMM algorithm [56]. In particu-
lar, model (15) actually contains K independent sub-minimization problems,
where each corresponds to a labeling function uj , and therefore the paral-
lelism strategy is ideal to apply. This is one of the important advantages of
our method for large data sets. The algorithm aspects to solve our proposed
convex model (15) are detailed in Section 4.

Step two. This step is to project the fuzzy partition result U obtained
at step one to a binary partition. Here, formula (14) is applied to the fuzzy
partition U to generate a binary partition, which naturally satisfies no vacuum
and overlap constraint (11). We remark that compared to the computation
time at step one, the time at step two is negligible.

Normally, the classification work is complete after we obtain a binary par-
tition matrix at step two. However, since the way of obtaining an initialization
in our scheme is open and the quality of the initialization could be poor, we
suggest going back to step one with the latest obtained partition as a new
initialization and repeating the above two steps until no more change in the
partition matrix is observed. More precisely, we set U as Û and repeat steps
one and two again to obtain a new U . Then the final classification result is
the converged stationary partition matrix, say U∗. Moreover, to accelerate the
convergence speed, we update β in model (15) by a factor of 2 if we are to
repeat the steps. This will obviously enforce the closeness between two con-
secutive clustering results during iterations, which will ensure the algorithm
converges fast. We stop the algorithm when no changes are observed in the
clustering result compared to the previous one. We remark that a few itera-
tions (∼ 10) are generally enough in practice, see the experimental results in
Section 5 for more detail.
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Note, importantly, that our classification method here is totally different
from other variational methods like [2, 12] which need to minimize variational
models with constraints like (11), (12), (13), or other kinds of constraints (e.g.
minimum and maximum number of points imposed on individual classes Vi).
Even though our proposed model (15) has no constraint, the final classification
result of our method naturally satisfies the no vacuum and overlap constraint
(11). Therefore, our method, namely SaT (inheriting the name of the SaT
methodology) classification method for high-dimensional data, is much easier
to solve in each iteration. Its whole procedure is summarized in Algorithm 1.

Algorithm 1 SaT classification method for high-dimensional data

Initialization: Generate initialization Û by e.g. SVM method.
Output: Binary partition U∗.
For l = 0, 1, . . . , until the stopping criterion reached (e.g. ∥U (l)−U (l+1)∥ = 0)

Step one: Compute fuzzy partition U by solving model (15).
Step two: Compute binary partition U (l+1) by using formula (14) on U .
Set Û = U (l+1) and β = 2β.

Endfor
Set U∗ = U (l+1).

4 Algorithm aspects
In this section, we present an algorithm to solve the proposed convex model
(15) based on the primal-dual algorithm [55].

4.1 Primal-dual algorithm
Let Xi be a finite dimensional vector space equipped with a proper inner
product ⟨·, ·⟩Xi

and norm ∥ ·∥Xi
, i = 1, 2. Let map K : X1 → X2 be a bounded

linear operator. The primal-dual algorithm is, generally speaking, to solve the
following saddle-point problem

min
x∈X1

max
x̃∈X2

{
⟨Kx, x̃⟩+ G(x)−F∗(x̃)

}
, (19)

where G : X1 → [0,+∞] and F : X2 → [0,+∞] are proper, convex and lower-
semicontinuous functions, and F∗ represents the convex conjugate of F . Given
proper initializations, the primal-dual algorithm to solve problem (19) can be
summarized in the following iterative way of updating the primal and dual
variables, i.e.,

x̃(l+1) = (I + σ∂F∗)−1(x̃(l) + σKz(l)), (20)

x(l+1) = (I + τ∂G)−1(x(l) − τK∗x̃(l+1)), (21)
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z(l+1) = x(l+1) + θ(x(l+1) − x(l)), (22)

where θ ∈ [0, 1], τ, σ > 0 are algorithm parameters.

4.2 Algorithm to solve our proposed model
We first define some useful notations which will be used to present our
algorithm.

4.2.1 Preliminary

For ease of explanation, in the following, when we say (i, j) ∈ E, the i and j
represent the i-th and j-th vertices in E, respectively. Let

E′ =
{
(i, j) | i < j, ∀(i, j) ∈ E

}
. (23)

The graph Laplacian L = D −W ∈ RN×N can be decomposed as

L =
∑

(i,j)∈E′

Lij , (24)

where

Lij =



i j
...

...
i · · · w(i, j) · · · −w(i, j) · · ·

...
...

j · · · −w(i, j) · · · w(i, j) · · ·
...

...


∈ RN×N (25)

is a matrix with only four nonzero entries which locate at positions
(i, i), (i, j), (j, i) and (j, j). Let E′ = E′

a ∪ E′
b ∪ E′

c, where

E′
a =

{
(i, j) | i, j ∈ S, ∀(i, j) ∈ E′}, (26)

E′
b =

{
(i, j) | i, j ∈ T, ∀(i, j) ∈ E′}, (27)

E′
c = E′ \ (E′

a ∪ E′
b). (28)

Then the decomposition L in Eq. (24) can be rewritten as

L =
∑

(i,j)∈E′
a

Lij +
∑

(i,j)∈E′
b

Lij +
∑

(i,j)∈E′
c

Lij . (29)
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Note that, the terms
∑

(i,j)∈E′
a
Lij and

∑
(i,j)∈E′

b
Lij only have nonzero entries

which are associated to the test set S and the training set T , respectively. Let

∑
(i,j)∈E′

a

Lij =

LS 0

0 0

 ,
∑

(i,j)∈E′
b

Lij =

0 0

0 L̄

 ,

∑
(i,j)∈E′

c

Lij =

L1 L3

L⊤
3 L2

 ,

(30)

where LS , L1 ∈ R(N−NT )×(N−NT ) are related to the test set S, L̄, L2 ∈
RNT×NT are related to the training set T , and L3 ∈ R(N−NT )×NT . Then we
have

L =

LS + L1 L3

L⊤
3 L̄+ L2

 . (31)

According to Eq. (8), the gradient operator ∇ can be regarded as a linear
transformation between RN and RN×(k−1) (where k = |N (x)|). For a vector
uj = (u⊤

Sj
, ū⊤

j )
⊤ defined in Eq. (18), let

AS(uSj ) = ∇
(
uSj

0

)
∈ RN×(k−1),

Hj = ∇
(

0
ūj

)
∈ RN×(k−1).

(32)

Clearly, AS : RN−NT → RN×(k−1) is an operator corresponding to the test set
S, and Hj is the gradient matrix corresponding to the training set T which is
fixed since ūj is fixed. Then, we have

∇uj = ∇
(
uSj

ūj

)
= ∇

(
uSj

0

)
+∇

(
0
ūj

)
= AS(uSj ) +Hj . (33)

4.2.2 Algorithm

Substituting the decomposition of L in Eq. (31), ∇ in Eq. (33), ûj in Eq. (17)
and uj in Eq. (18) into the proposed minimization model (15) yields

argmin
{uSj

}K
j=1

K∑
j=1

{β

2
∥ûSj − uSj∥22 +

α

2
u⊤
Sj
LSuSj

+ αu⊤
Sj
L3ūj + ∥AS(uSj

) +Hj∥1
}
.

(34)

Note, obviously, that solving the above model (34) is equivalent to solv-
ing K sub-minimization problems corresponding to each uSj , j = 1, . . . ,K,
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indicating that our proposed model inherently benefits from the parallelism
computation. For 1 ≤ j ≤ K, let

Gj(uSj
) =

β

2
∥ûSj

− uSj
∥22 +

α

2
u⊤
Sj
LSuSj

+ αu⊤
Sj
L3ūj , (35)

Fj(x̃) = ∥x̃+Hj∥1. (36)

Using the definition of the ℓ1-norm given in Eq. (9), the conjugate of Fj , F∗
j ,

can then be calculated as

F∗
j (p) = sup

x̃∈RN×(k−1)

⟨x̃,p⟩ − ∥x̃+Hj∥1

= −⟨p, Hj⟩+ χP (p), (37)

where P = {p ∈ RN×(k−1) : ∥p∥∞ ≤ 1}, and χP (p) is the characteristic
function of set P with value 0 if p ∈ P , otherwise +∞.

Using the primal-dual formulation (19) with the definitions of Gj and F∗
j

respectively given in Eq. (35) and (37), then the minimization problem (34)
corresponding to each uSj

can be reformulated as

argmin
uSj

max
p

{
⟨AS(uSj ),p⟩+ Gj(uS) + ⟨p,hj⟩ − χP (p)

}
. (38)

To apply the primal-dual method, it remains to compute (I + σ∂F∗
j )

−1 and
(I + τ∂Gj)

−1. Firstly, for ∀x̃ ∈ RN×(k−1), we have

(I + σ∂F∗)−1(x̃)

= argmin
p∈RN×(k−1)

F∗
j (p) +

1

2σ
∥p− x̃∥22

= argmin
p∈RN×(k−1)

χP (p) +
1

2σ
∥p− x̃∥22 − ⟨p, Hj⟩

= argmin
p∈RN×(k−1)

χP (p) +
1

2σ
∥p− x̃− σHj∥22

=ιP (x̃+ σHj), (39)

where the operator ιP (·) is the pointwise projection operator onto the set P ,
i.e., ∀p ∈ R,

ιP (p) =

{
1, |p| > 1,

p, otherwise.
(40)

Secondly, for ∀x ∈ RN−NT , we have

(I + τ∂Gj)
−1(x)
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= argmin
uSj

∈RN−NT

Gj(uSj
) +

1

2τ
∥uSj

− x∥22. (41)

Using the definition of Gj(uSj
) given in Eq. (35), problem (41) becomes solving

the following linear system

(αLS + βI +
1

τ
I)uSj

= βûSj
+

1

τ
x− αL3ūj . (42)

Since (αL̄+βI+ 1
τ I) is positive definite, the above linear system can be solved

efficiently by e.g. conjugate gradient method [57].
Finally, by exploiting the strong convexity of Gj ,∀1 ≤ j ≤ K, which is

shown in the next lemma, the work in [55] suggests that we could adaptively
modify σ, τ to accelerate the convergence or the primal-dual method.

Lemma 2. The functions Gj ,∀1 ≤ j ≤ K, are strongly convex with parameter
β.

Proof For simplicity, we omit the subscript j and Sj in the following proof. First, by
Eq. (30), LS is semi-positive definite. Therefore, (α2u

⊤LSu + αu⊤L3ū) is convex.
Now the strong convexity of G follows from the fact that the remaining term in
Eq. (35), which is β

2 ∥u− û∥22, is strongly convex with parameter β. □

The algorithm solving our proposed classification model (34) (i.e., model
(15)) is summarized in Algorithm 2. Its convergence proof is given in Theorem
3 below. For each sub-minimization problem, the relative error between two
consecutive iterations and/or a given maximum iteration number can be used
as stopping criteria to terminate the algorithm. Finally, we emphasize again
that our method is quite suitable for parallelism since the K sub-minimization
problems are independent of each other and therefore can be computed in
parallel.

Theorem 3. Algorithm 2 converges if τ (0)σ(0) < 1
N2(k−1) .

Proof By Theorem 2 in [55], Algorithm 2 converges as long as ∥AS∥22 < 1
τ(0)σ(0) .

Therefore, it suffices to find a suitable upper bound for ∥AS∥2. By our implemen-
tation in Eq. (32) and since the weight functions Eq. (1)–(3) take values in [−1, 1],
each entry in AS is between [−1, 1]. Therefore, the 1-norm and ∞-norm of AS can
be easily estimated as

∥AS∥1 = max
1≤j≤N−NT

N(k−1)∑
i=1

|(AS)ij | ≤ N(k − 1)

and

∥AS∥∞ = max
1≤i≤N(k−1)

N−NT∑
j=1

|(AS)ij | ≤ N −NT .
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Algorithm 2 Algorithm solving the proposed model (34) (i.e., model (15))

Initialization: x̃(0) ∈ RN×(k−1), x(0), z(0) ∈ RN−NT , θ ∈ [0, 1], τ (0), σ(0) > 0.
Output: {uSj}Kj=1.
For j = 1, · · · ,K (parallelism strategy can be applied)

For l = 0, 1, . . . , until the stopping criterion reached
Let x̃ = x̃(l) + σ(l)ASz

(l), and compute x̃(l+1) = (I + σ(l)∂F∗)−1(x̃)
by Eq. (39);

Let x = x(l) − τ (l)A∗
Sx̃

(l+1), and compute x(l+1) = (I + τ (l)∂G)−1(x)
by Eq. (41);

Let θ(l) = 1/
√

1 + βτ (l), and set τ (l+1) = θ(l)τ (l), σ(l+1) = σ(l)/θ(l);
Compute z(l+1) = x(l+1) + θ(x(l+1) − x(l));

Endfor
Set uSj = x(l+1).

Endfor

We then have
∥AS∥2 ≤

√
∥AS∥1∥AS∥∞ ≤ N

√
k − 1.

Therefore, we conclude that the algorithm converges as long as we choose τ (0), σ(0) >
0, such that τ (0)σ(0) < 1

N2(k−1)
. □

The convergence of Algorithm 2 proved in Theorem 3 ensures the conver-
gence of step one of our proposed method (i.e., Algorithm 1). After the binary
partition step two at the l-th iteration of Algorithm 1, we have Û = U (l+1) and
β = 2β. The increasing regularization parameter β will lead to the dominance
of the first term of our model (15), which yields ∥U − Û∥ → 0 when l becomes
large; in particular, this will finally lead to the satisfaction of the stopping cri-
terion ∥U (l) −U (l+1)∥ of Algorithm 1. Extensive experiments in Section 5 will
show that our Algorithm 1 converges very quickly, e.g. generally no more than
ten iterations (i.e., l ≤ 10); see Fig. 4 for the convergence history.

5 Numerical results
In this section, we evaluate the performance of our proposed method on
four benchmark data sets—including Three Moon, COIL, Opt-Digits and
MINST—for semi-supervised learning. Three Moon is a synthetic data set
which has been used frequently e.g. in [2, 7, 12]. The COIL, Opt-Digits,
and MNIST data sets can be found in the supplementary material of [58], the
UCI machine learning repository1, and the MNIST Database of Handwritten
Digits2, respectively.

The basic properties of these test data sets are shown in Table 1. It indicates
that the number of classes in these data sets ranges from small to large (i.e.,
3 to 10), which is analogous to the dimensions and number of points. The

1http://archive.ics.uci.edu/ml/datasets.html
2http://yann.lecun.com/exdb/mnist/
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individual points in these data sets may have no texture/feature information
like those in Three Moon or may be images with low resolution like those in
COIL, Opt-Digits and MNIST. In particular, the number of labeled points
(see details below) may be very small, e.g. less than 1% of the given data set,
and significantly unbalanced across the classes.

Table 1 Basic properties of the test benchmark data sets. “Dim." means dimension, i.e.,
the length of every vector representing individual points in the given data sets.

Data set No. of classes Dim. No. of points
Three Moon 3 100 1500

COIL 6 241 1500
Opt-Digits 10 64 5620

MNIST 10 784 70000

To implement our method, k-NN graphs are constructed for the test data
sets, using the randomized kd-tree [59] to find the nearest neighbors with
Euclidean distance as the metric. The radial basis function (1) is used to
compute the weight matrix W , except for the MNIST data set where the
Zelnic-Manor and Perona weight function (2) is used with the eight closest
neighbors. The training samples T—samples with labels known—are selected
randomly from each test data set. The classification accuracy is defined as the
percentage of correctly labeled data points.

Unless otherwise specified, the regularization parameter α is fixed to 1 and
the regularization parameter β is initially fixed to 0.01. Indeed, this combina-
tion of α, β provides good results for almost all data sets; moreover, the results
are robust for α ∈ [0.5, 2] and for β ∈ [0.001, 0.1]. The choice of initial β needs
fine-tuning for the COIL data set, i.e., a much smaller initial β is required
to achieve reasonable accuracy. We comment that the accuracy of the pro-
posed method can be improved further after fine-tuning the values of α and β
for individual test data sets. The ways of selecting the optimized parameters
are, however, beyond the scope of this work and will be conducted in future
investigation. All the codes were implemented in Matlab 2017a and run on
a MacBook with 2.8 GHz processor and 16 GB RAM.

(a) Ground truth (b) TVRF (c) Our method
Fig. 1 Three-class classification for the Three Moon synthetic data. (a): Ground truth;
(b) and (c): results of method TVRF [2] and our proposed method, respectively.
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5.1 Methods comparison
As mentioned in previous sections, we use the SVM method [51] to gener-
ate initializations for our proposed method. If it is not proper for a data set
(e.g. very slow due to the large size of the data set), we could just use an
initialization generated by assigning clustering labels randomly.

The SVM is a technique aiming to find the best hyperplane that separates
data points of one class from the others. In practice, data may not be separable
by a hyperplane. In that case, soft margin is used so that the hyperplane would
separate many data points if not all. It is also common to kernelize data points,
and then find a separating hyperplane in the transformed space. The SVM
method used in our experiments is trained with a linear kernel.

The properties shown in Table 1, including the individual points with no
clear texture/feature information and lack of labeled points, justify the neces-
sity and importance of the methods based on variational models like this work,
which can exploit the structure of the whole data set except for the individual
points, against another type of methods based on deep learning which gener-
ally require the individual points to have rich texture/feature information and
quite a large number of training points/samples. In such sense, the methods
based on deep learning are not the main focus of this paper and will not be
included for comparison here.

We compare our proposed method with the state-of-the-art methods pro-
posed recently, e.g. CVM [1], GL [7], MBO [7], TVRF [2], LapRF [2], LapRLS
[60], MP [60], and SQ-Loss-I [58]. The code TVRF was provided by the authors
and the parameters used in it were chosen by trial and error to give the best
results. The classification accuracies of methods GL, MBO, LapRF, LapRLS,
MP and SQ-Loss-I were taken from [1, 2], in which methods CVM and TVRF
were shown to be superior in most of the cases.

5.2 Three Moon data
The synthetic Three Moon data used here is constructed by following the
way performed in [1, 2] exactly. We briefly repeat the procedure as follows.
First, generate three half circles in R2—two half top unit circles and one half
bottom circle with radius of 1.5 which are centered at (0, 0), (3, 0) and (1.5,
0.4), respectively. Then 500 points are uniformly sampled from each half cir-
cle and embedded into R100 by appending zeros to the remaining dimensions.
Finally, an i.i.d. Gaussian noise with standard deviation 0.14 is added to each
dimension of the data. An illustration of the first two dimensions of the Three
Moon data is shown in Fig. 1 (a) where different colors are applied on each
half circle. This is a three-class classification problem with the goal of clas-
sifying each half circle using a small number of supervised points from each
class. This classification problem is challenging due to the noise and the high
dimensionality of all the points with high similarity in R98.

A k-NN graph with k = 10 is built for this data set, parameter ξ = 3 is used
in the Gaussian weight function, and the distance metric chosen is Euclidean
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Table 2 Accuracy comparison for the
Three Moon synthetic data set, with
uniformly selected training points.

Method Accuracy(%)
CVM 98.7
GL 98.4

MBO 99.1
TVRF 98.6
LapRF 98.4

Proposed 99.4

Table 3 Accuracy comparison for the
Three Moon synthetic data set, with
non-uniformly selected training points.

Method Accuracy(%)
TVRF 97.8

Proposed 99.3

metric for R100. We first test the methods using uniformly distributed super-
vised points, where a total number of 75 points is sampled uniformly from this
data set as training points.

The accuracies of method TVRF and ours are obtained by running the
methods ten times with randomly selected labeled samples, and taking the
average of the accuracies. The accuracies of method CVM are obtained from
the original paper [1]. The accuracy comparison is reported in Table 2, show-
ing that our proposed method gives the highest accuracy; see also Fig. 1 for
visual validation of the results between methods of TVRF and ours. The aver-
age number of iterations taken for our proposed method is 3.8. Fig. 4 (a)
gives the convergence history and partition accuracy of our proposed method
corresponding to iteration steps, which clearly shows the accuracy increment
during iterations (note that the accuracy at iteration 0 is the result of the
initialization which is obtained by the SVM method). Table 7 reports the com-
parison in terms of computation time, indicating the superior performance of
our proposed method in computation speed.

In the following, as a showcase, we test the methods using non-uniformly
distributed supervised points, which is used to investigate the robustness of
these methods on training points. In this case for the 75 training points, as
an example, we respectively pick 5 points from the left and the bottom half
circles, and pick the rest 65 points from the right half circle. This sampling is
illustrated in Fig. 2.

Fig. 2 Unbalanced sampling from the Three Moon data, where sampled points are
highlighted with their corresponding labels.

The accuracies of TVRF and our method are shown in Table 3, from which
we see clearly that our method gives much higher accuracy. The standard
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deviation of the accuracy for our method is 0.11%. In particular, compared to
the results in Table 2 using training points selected uniformly, the accuracy
of TVRF decreases by 0.8%, whereas we observe only a very small decrease
(i.e., 0.1%) in our proposed method. This shows the robustness of our method
with respect to the way that training points are selected. Note that in the
case of training points chosen non-uniformly, the initialization obtained by
SVM is poor, because of which more iterations are needed to converge for our
method—average 12.0 iterations in 10 trials versus 3.3 iterations needed for
the case of training points selected uniformly.

5.3 COIL data
The benchmark COIL data comes from the Columbia object image library. It
contains a set of color images of 100 different objects. These images, with size
of 128× 128 each, are taken from different angles in steps of 5 degrees, i.e., 72
(= 360/5) images for each object. In the following, without loss of generality,
we also call an image a point for ease of reference. The test data set here is
constructed the same way as depicted in e.g. [1, 2] and is briefly described
as follows. First, the red channel of each image is down-sampled to 16 × 16
pixels by averaging over blocks of 8× 8 pixels. Then, 24 out of the 100 objects
are randomly selected, which amounts to 1728 (= 24 × 360/5) images. After
that, these 24 objects are partitioned into six classes with four objects—288
images (= 4×72)—in each class. Finally, after discarding 38 images randomly
from each class, a data set of 1500 images where 250 images in each of the six
classes are constructed. To construct a graph, each image, which is a vector
with length of 241 after randomly masking (i.e., removing) 15 pixels from the
original 256 (= 16× 16) pixels (see [58, Algorithm 21.1]), is treated as a node
on the graph.

For accuracy test, a k-NN graph with k = 4 is built for this data set,
parameter ξ = 250 is used in the Gaussian weight function, and the distance
metric chosen is Euclidean metric for R241. The initial β is chosen as 10−5. The
training points, amount to 10% of the points, are selected randomly from the
data set. Again, we run the test methods 10 times and compare the average
accuracy. The resulting accuracy listed in Table 4 shows that our method
outperforms other methods. The standard deviation of the accuracy for our
method is 0.84%. Moreover, the average number of iterations of our method
is 12.2. Fig. 4 (b) gives the convergence history of our proposed method in
partition accuracy corresponding to iterations, which again shows an increasing
trend in accuracy.

5.4 MNIST data
The MNIST data set consists of 70,000 images of handwritten digits 0–9, where
each image has a size of 28 × 28. Fig. 3 shows some images of the ten digits
from the data set. Each image is a node on a constructed graph. The objective
is to classify the data set into 10 disjoint classes corresponding to different
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Table 4 Accuracy comparison for
the COIL data set, with uniformly
selected training points.

Method Accuracy(%)
CVM 93.3
TVRF 92.5
LapRF 87.7

GL 91.2
MBO 91.5

Proposed 94.0

Table 5 Accuracy comparison for the
MINST data set, with uniformly
selected training points.

Method Accuracy(%)
CVM 97.7
TVRF 96.9
LapRF 96.9

GL 96.8
MBO 96.9

Proposed 97.4

digits. For accuracy test, a k-NN graph with k = 8 is built for this data set,
and Zelnik-Manor and Perona weight function in Eq. (2) is used to compute
the weight matrix. The training 2500 (i.e., 3.57%) points (images) are selected
randomly from the total 70,000 points.

The experimental results of the test methods are obtained by running them
10 times with randomly selected training set with a fixed number of points
2500, and the average accuracy is computed for comparison. The accuracy of
the test results is shown in Table 5, indicating that our method is comparable
to or better than the state-of-the-art methods compared here. The standard
deviation of the accuracy for our method is 0.03%. Table 7 shows the com-
putation time comparison, from which we again see that our method is very
competitive in computation speed. The convergence history of our proposed
method in partition accuracy corresponding to iterations is given in Fig. 4 (c),
which also demonstrates a clear increasing trend in accuracy.

Fig. 3 Examples of digits 0–9 from the MNIST data set.

Table 6 Accuracy comparison for the Opt-Digits data set, with uniformly selected
training points.

Sample rate 0.89% (50) 1.78% (100) 2.67% (150)
k-NN 85.5 92.0 93.8
SGT 91.4 97.4 97.4

LapRLS 92.3 97.6 97.3
SQ-Loss-I 95.9 97.3 97.7

MP 94.7 97.0 97.1
TVRF 95.9 98.3 98.2
LapRF 94.1 97.7 98.1

Proposed 97.0 98.4 98.5
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(c) MINST (d) Opt-Digits
Fig. 4 Accuracy convergence history of our proposed method corresponding to iteration
steps for all the test data sets. The training samples are uniformly selected in each class. Blue
and orange curves correspond to cases with the least and the largest number of iterations
among the 10 trials, respectively.

5.5 Opt-Digits data
The Opt-Digits data set is constructed as follows. It contains 5620 bitmaps
of handwritten digits (i.e., 0–9). Each bitmap has the size of 32 × 32 and is
divided into non-overlapping blocks of 4×4, and then the number of “on" pixels
is counted in each block. Therefore, each bitmap corresponds to a matrix of
8× 8 where each element is an integer in [0, 16]. The classification problem is
to partition the data set into 10 classes.

For accuracy test, a k-NN graph with k = 8 is built for this data set,
parameter ξ = 30 is used in the Gaussian weight function, and the distance
metric chosen is Euclidean metric for R64. For the experiments on this data
set, we generate three training sets respectively with the number of points
50, 100 and 150, which are all selected randomly. All the methods are run 10
times for each training set and the average accuracy is used for comparison.
The quantitative results in accuracy are listed in Table 6, from which we
see that our proposed method is consistently better than the state-of-the-art
methods compared for all the cases. The standard deviations of the accuracy
for our method are 1.25%, 0.53% and 0.28% corresponding to 50, 100 and 150
number of training points, respectively. We also observe the improvement of
the accuracy of these methods w.r.t. the increasing number of points in the
training set. Finally, we show the convergence history of our proposed method
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in partition accuracy corresponding to iterations using the training set with 150
points in Fig. 4 (d), which again clearly shows an increasing trend in accuracy.

Table 7 Computation time comparison in seconds. The value in the brackets for our
method represents the average number of iterations of the 10 trials. More computation
time of the related methods can be found in [2], which indicates that the TVRF method is
quite efficient among the methods compared, e.g., it is at least 10 times faster than the
multi-class MBO [7]. (For the Opt-Digits data, we select 100 sample points.)

Method Three Moon COIL MINST Opt-Digits
TVRF 0.71 0.65 66.00 3.42

Proposed 0.30 (3.3) 0.76 (11.7) 82.04 (9.4) 4.45 (9.3)

5.6 One-class classification
Apart from the aforementioned multi-class classification problem, our proposed
method can also be naturally extended to tackle the one-class classification
problem, also known as unary classification [52, 61]. The goal of one-class
classification is to distinguish one specific class from the others by learning
primarily from the specific class in the data set. We regard the specific class
(the class of interest) as the true data, while the others as outliers. The goal
then is to discriminate between the true data and outliers in the given data
set. It is natural to treat the true data and outliers as two classes, where the
main challenge now is the highly uneven sampling of these two classes.

We test the performance of our proposed method on all of the above four
data sets following the same parameter settings. Two types of tests are con-
ducted for each data set, i.e., the ratios of 2:1 and 1:1 in the specific class and
the outliers regarding the number of samples labeled uniformly in each class
are applied. Table 8 summarizes the results in terms of classification accuracy
of our proposed method (the accuracy of the TVRF method is withdrawn
due to its inferior and unstable performance for unbalanced data set shown
in Section 5.2). The accuracy after each iteration versus the iteration num-
ber for the four test data sets is given in Figure 5, which repeatedly shows an
increasing trend in accuracy. It is evident that our proposed method consis-
tently performs excellently in this problem even if the two classes—the specific
class and the outliers—are extremely uneven, demonstrating the versatility
and robustness of our proposed method in classification.

5.7 Further discussion
The above experimental results on the benchmark data sets in terms of clas-
sification accuracy, shown in Tables 2–6, indicate that our proposed method
outperforms the state-of-the-art methods for high-dimensional data and point
clouds classification.

Compared to the start-of-the-art variational classification models proposed
e.g. in [1, 2], in addition to the data fidelity term and ℓ1 term (e.g. TV), our
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Table 8 One-class classification results of our proposed method. # true samples and #
outlier samples represent the number of samples with labels in the specific class and the
outliers, respectively.

Data set # true samples : # outlier samples Accuracy (%)

Three Moon
50 : 25 (= 2:1) 99.58
38 : 37 (≈ 1:1) 99.62

COIL
100 : 50 (= 2:1) 91.30
75 : 75 (= 1:1) 94.42

MNIST
1667 : 833 (≈ 2:1) 99.80
1250 : 1250 (= 1:1) 99.81

Opt-Digits
67 : 33 (≈ 2:1) 99.97
50 : 50 (= 1:1) 99.97
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Fig. 5 Accuracy convergence history for one-class classification using our proposed method
corresponding to iteration steps for all the test data sets. The training samples are uniformly
selected in each class. Blue and orange curves correspond to cases with the least and the
largest number of iterations among the 10 trials, respectively.

proposed model (15) contains an additional ℓ2 term on the labeling functions
which is used to smooth the classification results so as to reduce the non-
smooth artifact (the so-called staircase artifact in images) introduced by the ℓ1
term. This is one reason that our method can generally achieve better results.
Moreover, the warm initialization used in our method can also play a role in
improving the classification quality. Apart from generating the initialization
manually, any classification methods can practically be used to generate the
initialization. Starting from the initialization, our proposed method can then
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be applied to achieve a better classification result by improving the accuracy
iteratively. Theoretically speaking, the poorer the quality of the initialization,
the more iterations are needed for our method. Nevertheless, we found that
even for poor initializations (e.g. the ones generated randomly), 20 iterations
are already enough to achieve competitive results. Generally, no more than
15 iterations are needed when using an initialization computed by standard
classification methods (e.g. SVM).

Another distinction of our proposed model compared to the variational
classification models in e.g. [1, 2] is that there are no constraints on these
labeling functions in our objective functional. In other words, in each iteration,
we just need to find the minimizer of the objective functional corresponding
to each labeling function, but these minimizers do not need to satisfy the
constraint that their summation equal to 1. Therefore, the computation speed
for every single iteration is improved in our method compared to other methods
which have constraints. We emphasize again that, since minimizing each sub-
problem with respect to each labeling function is irrelevant to minimizing the
sub-problems with respect to other labeling functions, parallelism techniques
can be used straightforwardly to further improve the computation performance
of our algorithm. Theoretically, we just require 1/K of the computation time
needed for the non-parallelism scheme. This will be extremely important for
large data sets. From Table 7, we see that, for all the computation time of our
method, when considering the effect of parallel computing, our method should
be able to outperform the state-of-the-art methods by a large margin.

The efficiency, versatility and robustness of our proposed method have
also been validated in the one-class classification problem. It is indeed that
our proposed method can be used to deal with different types of data sets
which have e.g. extremely small number of labeled samples where individual
samples have little to none texture/feature information (e.g. the samples in the
Three Moon data set which only contain the coordinate information). These
are the scenarios that the methods based on deep learning generally struggle.
Therefore, our proposed method in this sense can complement deep learning
methods in classification rather than be mutually exclusive. In particular, it
would be of great interest in the future to further investigate the integration of
the variational methods including ours with deep learning methods, e.g., using
variational methods to classify features extracted by deep learning methods,
involving graph Laplacian in deep learning frameworks [62, 63], etc.

6 Conclusions
In this paper, an efficient and versatile multi-class semi-supervised method
based on variational models is proposed for classifying high-dimensional data
or unstructured point clouds. The method is inspired by the SaT strategy
which has been shown very effective for segmentation problems such as gray
or color images corrupted by different degradations. Starting with a proper
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initialization which can be obtained by using any standard classification algo-
rithm (e.g. SVM) or constructed by users, the first step of our method is to
solve a convex variational model without constraint. Most importantly, our
proposed model is a lot easier to solve than the state-of-the-art variational
models (e.g. [1, 2]) for the point clouds classification problem since they all
need no vacuum and overlap constraint (11) on the labeling functions in the
unit simplex, which could make their models to be non-convex. The second
step of our method is to find a binary partition via thresholding the smoothed
result obtained from the first step. We proved that our proposed model has a
unique solution and the derived primal-dual algorithm converges.

We tested our proposed method on four benchmark data sets and compared
with the state-of-the-art methods. We also investigated the influence of the
training sets selected uniformly and non-uniformly. For our method, different
ways of generating initializations were implemented and validated. The perfor-
mance of the proposed method on the one-class classification problem was also
validated except for the multi-class problem. On the whole, the experimen-
tal results demonstrated that our method is superior in terms of classification
accuracy and computation speed when parallel computing is considered. Our
method is therefore an efficient and versatile classification method for data
sets like high-dimensional data or unstructured point clouds.
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