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Abstract In this paper, we propose a novel model for the decomposition of cartoon-texture
images, which integrates the edge-aware weighted least squares (WLS) with low-rank regulariza-
tion. Unlike conventional methodologies that depend on total variation-based penalty functions,
our model represents cartoon images using an edge-preserving WLS penalty. This approach ef-
fectively enhances edges and suppresses texture through iterative updates of an edge-preserving
weight matrix. For the texture component, we introduce a low-rank penalty function to capture
the structured regularity of texture patterns. By leveraging the repetitive nature of texture, our
low-rank models can accurately represent these components. We employ a prediction-correction
approach based on a three-block separable alternating direction multiplier method to solve the
minimization problem, providing closed-form solutions for all subproblems. We also provide a
convergence proof for the proposed algorithm. Numerical experiments validate the efficacy of
our proposed method in successfully separating cartoon and texture components while preserv-
ing edges.
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1 Introduction

Image decomposition plays an important role in image processing, enabling a detailed and com-
prehensive analysis of an image’s components. By decomposing an image into its distinct compo-
nents, we can extract valuable information such as edges, contours, and textures. This information
is crucial for efficiently performing various image processing tasks in many applications, including
image denoising [13,41,49], image fusion [28,52,56], image segmentation [19,50], and more.

In this paper, we specifically focus on decomposing an image into two fundamental compo-
nents: the cartoon and the texture components. The cartoon component captures the overall
structure and global information of the image. It exhibits clear boundaries and smoothly con-
nected components. The texture component represents the high-frequency oscillations within the
image. It typically models repetitive structural information. Mathematically, given an observed
image b with size m× n, the decomposition can be expressed as follows:

b = K(u+ v) + n, (1)

where u ∈ Rmn is the cartoon component, v ∈ Rmn is the texture component, n is the additive
Gaussian white noise, and K : Rmn → Rmn is a linear degradation operator. The linear operator
has various forms depending on the specific applications. For instance, it can be a binary matrix,
effectively representing images with missing pixel values or as a blurring matrix associated with
a spatially-invariant point spread function, which accounts for various blurring effects.

Image decomposition aims to extract the values of u and v from b. The task of cartoon-
texture decomposition can be formulated as a minimization problem:

min
u,v

J (u,v) =
1

2
∥K(u+ v)− b∥22 + λ ϕ(u) + µ ψ(v), (2)

where ϕ(u) and ψ(v) are penalty functions representing prior knowledge of the cartoon and
texture components, respectively. The regularization parameters λ and µ play a crucial role in
governing the balance between the contributions of the cartoon and texture components. The key
to successfully decomposing an image into cartoon and texture components is to select appropri-
ate penalty functions ϕ(u) and ψ(v) and develop numerical methods to solve the minimization
problem. Consequently, many researchers have investigated different regularization functions to
optimize these choices; see [33,38,43,44]

1.1 Regularization Term for Cartoon Images

Cartoon images are typically characterized by piecewise constant or smoothing regions accompa-
nied by distinct corners and edges. A cartoon-oriented prior function, denoted as ϕ(u), is essential
to capture these characteristics effectively. This function aims to preserve the sharpness of edges
while preventing any blurring effects. A prevalent choice for the prior function for cartoon im-
ages u is the total variation (TV) norm, defined as ∥∇u∥1 [37]. The TV norm has obtained
significant popularity in various image processing tasks due to its ability to preserve edges while
suppressing unwanted noise [7,8,23]. It is well known that the conventional TV norm introduces
staircase artifacts, resulting in unnatural and visually unpleasing transitions between image re-
gions. To overcome this limitation, an alternative approach is to utilize the non-convex Lp norm
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( 0 < p < 1), denoted as ∥∇u∥pp [22,26,34,35]. This non-convex regularization term better pre-
serves edges in the image while suppressing noise, thereby reducing the occurrence of staircase
artifacts and leading to more visually appealing results. However, using non-convex functions
introduces numerical challenges in finding the global minimum, as they may have multiple local
minima.

Another trend in image processing is the utilization of quadratic penalty functions. These
functions offer the advantage of straightforward computation of gradients and Hessian matrices,
facilitating the numerical optimization process. Being convex, they ensure the existence of a
unique solution to the optimization problem. Consequently, the computational process is greatly
simplified, and the overall efficiency is improved. The origins of quadratic penalty functions can be
traced back to the Tikhonov regularization [14]. However, the Tikhonov regularization technique
is susceptible to over-smoothing of images, leading to blurred edges. To mitigate these limitations,
a generalized Tikhonov regularization quadratic function has been proposed to preserve edges in
the image while suppressing noise and smoothing regions [2].

The quadratic penalty function can be expressed as the square of the weighted L2 norm of
the image as follows:

ϕ(u) = ∥WLu∥22 . (3)

Here L represents a combination of the discretized horizontal and vertical derivatives, denoted
as Lx and Ly, respectively, i.e., L = (LT

x , L
T
y )

T , and the matrix W is a diagonal matrix whose
diagonal elements are comprised of the weight vector w. Utilizing the approach of solving a
sequence of weighted least squares (WLS) problems, Gazzola et al. [12] proposed a novel inner-
outer iterative algorithm. This algorithm constructs weights that comprehensively incorporate
edge information generated throughout the iterative process.

Currently, some methods for solving TV-type regularization functions involve converting them
into weighted quadratic functions, where the weights wk are iteratively updated based on previous
solutions. Subsequently, a series of WLS problems are solved. For instance, Vogel and Oman
[42] proposed a lagged diffusivity fixed-point iteration tailored for TV-norm regularized image
restoration. Non-convex Lp-TV norm penalty functions can effectively capture piecewise smooth
image characteristics, particularly for 0 < p < 1. These functions are often transformed into
weighted quadratic functions using majorization-minimization or iterative reweighting to handle
computational challenges in non-convex optimization [10,47,46,26]. This raises the question of
whether the penalty function expressed in (3) could be initially employed as an image prior,
emphasizing the selection of the weight vector w. In this paper, we adopt the penalty function
in (3) and focus on the principles of choosing an appropriate weight vector w.

1.2 Regularization Term for Texture Images

Early studies employed the L2 norm to represent texture, treating texture characteristics and
image noise as oscillatory components. Subsequently, Meyer introduced the G-space concepts,
serving as the dual of the bounded variation space and the G norm in [29]. Notably, the G norm
yielded smaller texture values than the L2 norm, suggesting its suitability for characterizing tex-
ture priors. Subsequently, image decomposition methods based on the G norm have been widely
studied [39,45]. However, a key limitation of the G norm is its non-integral expression, which
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complicates the derivation of the corresponding Euler-Lagrange equation for the minimization
problem. This poses numerical challenges in developing effective solution methods.

Texture is a ubiquitous visual pattern repeatedly appearing in images containing stripes,
checks, grids, and other forms. The repetition of these patterns creates a structured regularity,
which enables the utilization of low-rank models to characterize texture [53]. Indeed, the theory
of low-rank matrix recovery has attracted considerable attention in image processing [16,55,51].
Zhang et al. introduced the low-rank prior for texture in matrix recovery and completion, rev-
olutionizing the approach to cartoon-texture image decomposition [53]. Subsequently, Schaeffer
and Osher proposed the low patch-rank (LPR) model, which employed block low-rank to explain
the texture of images, introducing the innovative concept of the texture norm [38]. Ono et al.
furthered this understanding by employing the matrix block nuclear norm (BNN) to depict tex-
ture information with local similarity [31]. Zhang et al. [54] adopted a simplified global nuclear
norm to characterize global patterned texture structures elegantly. With the advancement of
non-convex regularization, researchers have increasingly applied non-convex low-rank penalties
to texture characterization. For instance, Fan et al. [11] characterized the low-rank property of
texture by using a non-convex Log-det function, successfully integrating the self-similarity of the
texture and the piecewise smoothness of the cartoon. Meanwhile, Yan et al. [48] utilized a gen-
eralized non-convex low-rank minimization method for image decomposition, further enhancing
the separation of cartoon and texture components.

1.3 Proposed Model and Contributions

Currently, numerous image decomposition techniques often result in blurred edges when ex-
tracting structural components.To mitigate this limitation, we introduce a novel edge-preserving
cartoon-texture image decomposition method. This approach leverages iterative WLS and low-
rank regularization to separately model cartoon and texture components, as formulated in the
following:

min
u,v

1

2
∥K(u+ v)− b∥22 +

λ

2
∥WLu∥22 + µ ∥v∥∗ . (4)

Here, W represents the edge-aware weight matrix, which serves to preserve edges and prevent the
introduction of artifacts. The ∥ · ∥∗ norm, known as the nuclear norm, is the sum of all singular
values of a matrix [38]. Given that images are represented as vectors by column concatenation,
there exists a one-to-one correspondence between images and vectors. Therefore, we slightly
misuse the definition and use ∥a∥∗ to represent the nuclear norm of the matrix transformed from
the vector.

We remark that if µ = 0, the optimization problem in (4) is consistent with the one in [12].
Although Gazzola et al.’s method [12] demonstrates excellent performance in image restoration,
its decomposition performance for texture component separation remains unsatisfactory. We
illustrate this with an example of separate synthetic images shown on the left of Fig. 1. We
also show the decomposition results obtained by the method in [12] and our approach in Fig.
1. We observed that the method proposed by Gazzola et al. [12] produces satisfactory results
for cartoon components with simple structures. However, its performance degrades when dealing
with more complex structures, resulting in blurred edges and misclassifying important structural
information into texture components. In contrast, our approach demonstrates robustness and



Cartoon-Texture Image Decomposition using Least Squares and Low-Rank Regularization 5

Fig. 1 Comparison of the decomposition results in two types of synthetic images: “Geometry” (having a simplified
cartoon component structure) and “Boy” (having a relatively complex edge structure). From left to right: the
synthetic images, the cartoon and texture image obtained by [12] (second and third columns) and our method
(fourth and fifth columns).

consistency, effectively separating cartoon and texture components even in complex structures.
This suggests that our method excels in image decomposition tasks, particularly in maintaining
edge integrity.

The main contributions of this paper are summarized as follows:

– We propose a novel image decomposition model integrating WLS with low-rank regulariza-
tion. This model employs a simplified quadratic penalty term to handle cartoon components
efficiently and a low-rank penalty term to capture texture details. To solve the minimiza-
tion problem, we utilize an ADMM-based approach, ensuring closed-form solutions for all
sub-problems.

– We introduce a new method for obtaining an edge-aware weight matrix within the penalty
function of cartoon images, distinguishing it from traditional fixed-weight methodologies.
Our approach employs an iterative and adaptive approach, facilitating dynamic adjustments
of the weight matrix by the guided cartoon image. This edge-aware weighting strategy en-
hances edges while effectively suppressing texture, improving image quality. We also show
the convergence of the weight matrix.

– Numerical experiments indicate that the proposed method successfully and effectively sepa-
rates cartoon and texture components, and the edges of the cartoon image are well-preserved.

The rest of this paper is organized as follows: Section 2 introduces some related works.
Subsequently, Section 3 presents our edge-preserving image decomposition model along with
the corresponding numerical algorithm. The convergence analysis of the proposed algorithm is
discussed in Section 4. Section 5 gives numerical experiments to validate the effectiveness of our
proposed method. Finally, a short conclusion is given in Section 6.

2 Related Works
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2.1 Image Restoration via WLS Model

The image decomposition problem is closely related to the task of image restoration, which aims
to remove noise and distortions from degraded images. Image restoration is an ill-posed problem,
and regularization techniques are employed to stabilize its solution. One of the most common
and well-known forms of regularization is Tikhonov regularization. The standard Tikhonov reg-
ularization often introduces artifacts, such as ringing effects near sharp intensity transitions.
To address this limitation, the generalized Tikhonov regularization is utilized, which can be
formulated as follows:

min
u

1

2
∥Ku− b∥22 +

λ

2
∥WLu∥22 . (5)

Here W is the diagonal matrix with the pre-determined weight w. The key criterion for selecting
the weight coefficients w is as follows: in flat regions of the image, the weight coefficients should be
significant to penalize high-frequency information (such as noise); at edges, the weight coefficients
should be slight to preserve edge details and avoid blurring. Gazzola et al. [12] proposed a new
inner-outer iterative algorithm for solving problem (5), which constructs weights by iteratively
integrating image edge information.

2.2 Nuclear Norm Model

Texture in an image exhibits a distinct structure and pattern, typically showing regularity and
repetitiveness [53,27]. The whole texture image can be seen as composed of a few basic textures.
Especially in human-constructed buildings or structures, numerous patterns with regular symme-
try often display sparsity and low-rank properties. These properties suggest that the information
contained within these patterns can be efficiently represented in a relatively low-dimensional
space. In recent years, there has been a growing tendency to adopt low-rank features to charac-
terize textures, and methods based on low-rank texture regularization have been proposed. The
effectiveness of low-rank models in characterizing texture lies in their ability to capture redun-
dant or repetitive information in image data. By fully exploiting the redundancy and regularity
in images, low-rank models can represent and reconstruct texture images with fewer essential
elements, thereby achieving more accurate characterization and in-depth analysis of textures.

Schaeffer and Osher [38] believed that if the patches of texture are represented as vectors, then
the collection of patch vectors is (highly) linearly dependent, thus the matrix formed by the patch
vectors of the texture image exhibits low rank. They, therefore, represented the cartoon-texture
decomposition problem as the following low patch-rank (LPR) model [38]:

min
u,v

1

2
∥K(u+ v)− b∥22 + λ ∥Lu∥1 + µ ∥Pv∥∗ . (6)

Here, P is the patch mapping realigning texture v into a low-rank matrix. Recently, Zhang et
al. [54] proposed a customized low-rank prior model (CLRP):

min
u,v

1

2
∥K(u+ v)− b∥22 + λ ∥Lu∥1 + µ ∥v∥∗ , (7)



Cartoon-Texture Image Decomposition using Least Squares and Low-Rank Regularization 7

which utilizes a TV norm and a global nuclear norm to characterize the cartoon and texture
components. Compared with LPR (6), the CLRP (7) is more straightforward but without losing
its ability to extract cartoon and texture components from degraded images.

When solving these low-rank regularization models, the solution of subproblems usually in-
volves the following nuclear norm regularization problem [4]:

argmin
X∈Rm×n

1

2
∥Y −X∥2F + µ ∥X∥∗ . (8)

Suppose the singular value decomposition (SVD) of Y is given by Y = UΣV T ∈ Rm×n, here Σ
is a diagonal matrix with entries σi(Y ). Then the optimal solution of (8) is represented as the
soft-thresholding operator

Sµ(Y ) = Udiag(max{σi(Y )− µ, 0})V T . (9)

Here σi denotes the i-th singular value; U and V are the left singular matrix and right singular
matrix of Y , respectively.

2.3 Variable Splitting Method

We now introduce variable splitting methods for solving the following convex optimization prob-
lems with three separable structures:

min θ1 (x1) + θ2 (x2) + θ3 (x3)

s.t. A1x1 +A2x2 +A3x3 = c

x1 ∈ X1,x2 ∈ X2,x3 ∈ X3,

(10)

where θi : Rni → (−∞,+∞], i = 1, 2, 3 are closed proper convex functions; Ai ∈ Rl×ni are given
full column rank matrices; Xi ∈ Rmi are nonempty closed convex sets; and c ∈ Rl is a vector.
The augmented Lagrangian function of optimization problem (10) is defined as

Lβ (x1,x2,x3,y) =

3∑
i=1

θi (xi)−

〈
y,

3∑
i=1

Aixi − c

〉
+
β

2

∥∥∥∥∥
3∑

i=1

Aixi − c

∥∥∥∥∥
2

2

, (11)

where y ∈ Rl is the Lagrange multiplier and β > 0 is the penalty parameter. Suppose that
(x∗

1,x
∗
2,x

∗
3,y

∗) is the saddle point of (11). Then, the first-order optimality condition of (10) can
be easily characterized by the following variational inequality problem (VIP): finding a vector
z∗ ∈ U such that

θ (x′)− θ (x∗) + (z′ − z∗)
T
F (z∗) ≥ 0, ∀z′ ∈ U := X1 ×X2 ×X3 × Rl, (12)

where

z :=

(
x

y

)
=


x1

x2

x3

y

 and F (z) :=


−AT

1 y

−AT
2 y

−AT
3 y∑3

i=1Aixi − c

 .



8 Kexin Li et al.

The ADMM method is useful in dealing with separable convex optimization problems [5,18,
21]. However, it is important to note that convergence cannot be guaranteed when the ADMM
algorithm with two blocks is directly applied to a problem like (10). This was demonstrated
by Chen et al. in [9] with a counterexample. Consequently, many variants of ADMM-based
methods have been studied extensively over the past decade. Some of these variants include the
variant alternating splitting augmented Lagrangian method [40], the alternating direction-based
contraction method [18], and the ADMM with Gaussian back substitution [20]. In this paper,
we apply the recently proposed ADMM-based prediction-correction method in [18] to solve the
model (4). The process of this prediction-correction iterative scheme is given by

x
(k+1)
1 = argminx1∈X1

Lβ

(
x1,x

(k)
2 ,x

(k)
3 ,y(k)

)
;

x
(k+1)
2 = argminx2∈X2

Lβ

(
x
(k+1)
1 ,x2,x

(k)
3 ,y(k)

)
;

x̃
(k+1)
3 = argminx3∈X3

Lβ

(
x
(k+1)
1 ,x

(k+1)
2 ,x3,y

(k)
)
;

ỹ(k+1) = y(k) − β
(∑3

i=1Aix
(k+1)
i − c

)
;

x
(k+1)
3 = x

(k)
3 + α(x̃

(k+1)
3 − x

(k)
3 );

y(k+1) = y(k) + α(ỹ(k+1) − y(k)).

(13)

The convergence of the ADMM-based prediction-correction method has been proved in [18],
and here we summarize it in the following theorem:

Theorem 1 Suppose α ∈
(
0, 3−

√
5

2

)
and β > 0. The sequence {z(k)} generated by (13) converges

to a solution of VIP (12).

3 Image Decomposition Model with Edge-preserving Weighted Least Squares and
Low-rank Regularization

In this section, we consider solving the image decomposition model (4), which decomposes an
image into two components: one capturing the structure and another capturing the texture. The
structure component is regularized by a weighted quadratic penalty function, and the texture
component is regularized by a low-rank penalty function. For readability, we re-present the image
decomposition model (4) here

min
u,v

1

2
∥K(u+ v)− b∥22 +

λ

2
∥WLu∥22 + µ ∥v∥∗ .

The weighted matrix W encodes the structural information of the cartoon image, assigning
larger weights to flatter regions for effective smoothing and smaller weights to edges to preserve
structural features. However, the task of accurately distinguishing between flat regions and edges,
and thus selecting appropriate weights for W , is a non-trivial task. To overcome this problem,
we employ a self-guided update strategy similar to (21) for computing the weights.
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3.1 Image Decomposition with Edge-preservation Weight Matrix

Now we consider how to compute the sequence (u,v) given the weight matrix W . To simplify
the expression, we denote D =WL and introduce the auxiliary variable f = u+v. We solve the
following constrained minimization problem to obtain (u,v)

min
u,v,f

1

2
∥Kf − b∥22 +

λ

2
∥Du∥22 + µ ∥v∥∗ ,

s.t. f = u+ v.

(14)

Obviously, the problem (14) is a special case of (10) with the following specifications:

1. x1 := u,x2 := v,x3 := f , and all Xi are full Euclidean spaces Rmn;
2. θ1 (x1) :=

λ
2 ∥Du∥22 , θ2 (x2) := µ ∥v∥∗ and θ3 (x3) :=

1
2 ∥Kf − b∥22 ;

3. A1 = A2 := I, A3 := −I and c := 0.

Applying the framework of the variable splitting method, as detailed in Section 2.3, we can solve
the problem (14).

The augmented Lagrangian function for (14) is formulated as follows:

Lβ(f ,u,v,y) =
1

2
∥Kf − b∥22 +

λ

2
∥Du∥22 + µ ∥v∥∗ − yT (u+ v − f) +

β

2
∥u+ v − f∥22 ,

where β > 0 is the penalty parameter and y is the Lagrangian multiplier. We solve the problem
through (13). As the image decomposition algorithm consists of inner and outer iteration, we
adopt the warm start strategy to initialize the algorithm to solve the inner minimization problem.
Then a sequence of iterates is computed as follows:

u(k+1) = argminu
β
2

∥∥∥u−
(
f (k) + 1

βy − v(k)
)∥∥∥2

2
+ λ ∥Du∥22 ,

v(k+1) = argminv
β
2

∥∥∥v −
(
f (k) + 1

βy − u(k+1)
)∥∥∥2

2
+ µ ∥v∥∗ ,

f̃ (k+1) = argminf
1
2 ∥Kf − b∥22 +

β
2

∥∥∥u(k+1) + v(k+1) − f − 1
βy

(k)
∥∥∥2
2
,

f (k+1) = f (k) + α
(
f̃ (k+1) − f (k)

)
,

ỹ(k+1) = y(k) − β
(
u(k+1) + v(k+1) − f (k+1)

)
,

y(k+1) = y(k) + α
(
ỹ(k+1) − y(k)

)
.

(15)

For the u-subproblem, it is a Tikhonov-regularized minimization problem, and the minimizer
is given as

u(k+1) = β
(
βI + λ(D)TD

)−1
u
(k)
b , (16)

where u
(k)
b = f (k) + 1

βy
(k) − v(k). The above linear system can be computed using an iterative

least squares method, such as CGLS [15] or LSQR [32]. As the matrix D is the product of a
diagonal matrix W and a difference matrix L, we can construct a pre-conditioner to decrease the
iterative number and improve the computational speed effectively.

For the v-subproblem, the optimization problem can be reformulated into the following one:

v(k+1) = Sµ/β

(
f (k) +

1

β
y(k) − u(k+1)

)
. (17)
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For the f -subproblem, it is also a Tikhonov-regularized minimization problem, and the min-
imizer is given by

f (k+1) =
(
KTK + βI

)−1
(
KTb− y(k) + β(u(k+1) + v(k+1))

)
. (18)

When the linear operator K is an identity matrix or a down-sampling matrix, then the matrix
(KTK + βI) is diagonal, so the linear system (18) can be solved directly. If K is a blurring
operator created from a known spatially invariant point spread function, (18) can be solved
quickly and efficiently by FFT or DCT [30].

3.2 Weighting Matrix

Once the weight matrix W is given, the image decomposition problem (4) can be easily solved
by (15). Unfortunately, obtaining accurate weight coefficients is challenging. To compute these
weights effectively, we ideally need knowledge of the regions in the original clean image. However,
in practice, the observed image is often corrupted by noise, making it difficult to distinguish
between true edges and noise-induced artifacts.

One approach to tackle this issue involves iteratively constructing the weight vector w. Ini-
tially, the standard Tikhonov regularization method is employed to obtain the initial restored im-
age u(0) and the corresponding weight vector w(0). Subsequently, for each iteration k = 1, 2, · · · ,
the previously computed weight vector w(k−1) is utilized to restore the image u(k) through solving
the minimization problem

min
u

1

2
∥Ku− b∥22 +

λ

2

∥∥∥W (k−1)Lu
∥∥∥2
2
.

Which is equal to solving the following linear system:

KT (Ku(k) − b) + λ(W (k−1)L)TW (k−1)Lu(k) = 0. (19)

After obtaining u(k), the diagonal weight matrix W (k) is constructed by assigning the values of
w(k) to its diagonal elements using various strategies. This iterative process continues until a
satisfactory solution is attained.

These strategies can be broadly categorized into several approaches for constructing the
weight w(k). The first approach is based on the Lp-TV norm, we have w(k) = 1√

|Lu(k)|2−p+ϵ2
,

with 0 < p < 2 and ϵ > 0. This iterative scheme corresponds to solving the generalized TV reg-
ularization problem using techniques such as the lagged diffusivity fixed-point iteration method
[42], the majorization-minimization approach [26], or iterative reweighted least squares (IRLS)[10,
47,46].

The second approach is inspired by anisotropic diffusion [3,6,36]. The partial differential
equation (PDE) can be employed to solve the image restoration problem as follows:

∂u

∂t
= −KT (Ku− b) + λdiv(g(|∇u|)∇u).

Here g(|∇u|) is an edge-stopping function. Then we can construct the weight according to the
function g(∥∇u∥). The effectiveness of anisotropic diffusion hinges heavily on the choice of the
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edge-stopping function. Perona and Malik have proposed two famous edge-stopping functions
defined as follows:

g1(x) = e−
x2

κ2 , g2(x) =
1

1 + x2

κ2

, (20)

where κ is a threshold parameter [36]. Additionally, there exist several other edge-stopping func-
tions; interested readers are encouraged to explore [17,24] for further insights. The edge-stopping
function should generally satisfy the following assumption [25].

Assumption 2 g(x) ⩾ 0 is a smooth non-increasing function and meanwhile satisfies

g(0) = 1, lim
x→∞

g(x) = 0.

The third approach employs an implicit weight, which differs significantly from the previous
two methods. In this approach, the weight coefficients are not derived from the approximation of
a specific norm nor generated by a pre-defined function. Instead, they are generated dynamically
by designing an update rule. Gazzola et al. [12] proposed an inner-outer iterative algorithm for
restoring and reconstructing images with enhanced edges, emphasizing enhanced edges through
the IRLS approach. In the k-th iteration, the minimization problem is given by

min
u

1

2
∥Ku− b∥22 +

λ

2

∥∥∥W (k)Lu
∥∥∥2
2
, k = 1, 2, · · · . (21)

The sequence’s weight matrix W (k) is updated at each outer iteration. This is achieved by pre-
multiplying the weight diag(w(k)) with a weight matrix that encodes all the edge information
revealed by previous outer iterations, i.e.,

W (k) = diag
(
w(k)

)
W (k−1). (22)

Here w(k) is assigned a weight through the equation

w(k) = 1− t(k)
q
. (23)

Here q > 0, the vector t(k) represents the weighted gradient of the (k − 1)-th image u(k−1)

normalized by the following equation:

t(k) =

∣∣W (k−1)Lu(k−1)
∣∣∥∥W (k−1)Lu(k−1)
∥∥
∞
. (24)

The process of determining the weights w(k) as in (23) is close to the concept of diffusion
coefficients in anisotropic diffusion. By incorporating the function g(x) = 1 − xq, a decreasing
function defined within the interval [0,1], g can be regarded as the edge-stopping function within
anisotropic diffusion. The weight matrix W (k) not only extracts image edges from the (k − 1)th
iteration but also overlays information from W (k−1). In other words, the weight information
accumulates with each iteration.

Specifically, given an initial weight matrix W (0) = I, we compute the following sequence:

(u(k),v(k)) = argmin
u,v

1

2
∥K(u+ v)− b∥22 +

λ

2

∥∥∥W (k)Lu
∥∥∥2
2
+ µ ∥v∥∗ , (25)
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Algorithm 1: The adaptive diagonal weight method for cartoon-texture image decom-
position.

Input: Observed image b, parameters λ, µ and β
Output: u,v

1 Initialize W (1) = I;
2 for k = 1, 2, . . ., until the stopping criterion is satisfied do
3 Solving the problem (25) for given W (k) and return the optimial minimizers u(k) and

v(k);

4 t(k) =
|W (k)Lu(k)|

∥W (k)Lu(k)∥∞

;

5 w(k) = g(t(k)) ;
6 W (k+1) = diag

(
w(k)

)
W (k) ;

7 end
8 return u = u(k),v = v(k).

for k = 0, 1, 2, · · · . Once we have u(k), we update the weight matrix W (k+1) by

W (k+1) = diag
(
w(k)

)
W (k). (26)

Here the weight w(k) is obtained by w(k) = g(t(k)) with

t(k) =
∣∣∣W (k)Lu(k)

∣∣∣/∥∥∥W (k)Lu(k)
∥∥∥
∞
.

In contrast to the function used in [12], we introduce a novel function g(t) for computing the
weights. This function is defined as g(x) = cos

(
πx
2

)
. It is easy to check that the function g(x)

satisfies Assumption 2.

3.3 Inner-Outer Algorithm

In fact, the regularization term of cartoon images can also be regarded as an iteratively reweighted
Tikhonov regularization, which is easy to solve numerically. We use an inner-outer iterative ap-
proach to solve the sequence of optimization problems (25) for cartoon-texture image decompo-
sition. We first adaptively update the edge-aware weight matrix using equations (26) in the outer
iteration and then solve the problem with fixed weights by (15) in the inner iteration. The whole
inner-outer iteration for cartoon-texture image decomposition is summarized in Algorithm 1.

4 Convergence Analysis

In this section, we consider the convergence of the proposed algorithm, which entails two layers
of iteration. The inner layer iteration derives decomposed cartoon and texture images given a
specific weight matrix, while the outer layer iteration updates this weight matrix based on the
cartoon images. Consequently, our convergence analysis includes both the convergence of the
inner layer iteration and the convergence of the weight matrix.
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Theorem 3 If Null(K)∩ Null(WL) = ∅, then the minimization problem (4) has a unique solu-
tion.

Proof Given matrix A ∈ Rm×n with rank r, by the definition of the Frobenius norm and nuclear
norm, we have ∥A∥2∗ = (

∑r
i=1 σi)

2 ≥
∑r

i=1 σ
2
i = ∥A∥2F . Taking the square root of both sides, we

conclude ∥A∥∗ ≥ ∥A∥F . Fixing the weight matrix W , therefore, the objective function satisfies

J (u,v) =
1

2
∥K(u+ v)− b∥22 +

λ

2
∥WLu∥22 + µ ∥v∥∗

≥ 1

2
∥K(u+ v)− b∥22 +

λ

2
∥WLu∥22 + µ∥v∥2

=
1

2

∥∥∥∥∥
(

K K
√
λWL 0

)(
u

v

)
−

(
b

0

)∥∥∥∥∥
2

2

+ µ

∥∥∥∥∥(0 I)
(
u

v

)∥∥∥∥∥
2

.

(27)

We note that the matrix 
K K

√
λWL 0

0 I

 =


I 0 K

0 I 0

0 0 I




K 0
√
λWL 0

0 I

 .

The above matrix is full rank as Null(K) ∩Null(WL) = ∅. Therefore, when
∥∥∥∥∥
(
u

v

)∥∥∥∥∥
2

tends to

infinity, J (u,v) also tends to infinity (i.e., the objective function is coercive). A unique solution
exists since the objective function is also convex (see Proposition 3.2.1 in [1]).

Therefore, our convergence analysis includes the convergence of the inner layer iteration and
the convergence of the weight matrix.

Next, we will discuss the convergence of the weight matrix. Due to the normalization pro-
cess and the absolute value operation, we know that the entries of the weight are between
0 and 1, specifically 0 ≤ w

(k)
i ≤ 1. Starting from W (1) = I, based on the update formula

W = diag
(
w(k)

)
W (k−1), it is easy to check that the diagonal edge-aware weight matrix has the

following property.

Lemma 1 As the number of iteration steps increases, the diagonal entries of the weight matrix
defined in (26) are non-increasing, i.e., the i-th diagonal entry of two consecutive weight matrices
satisfies [W (k)]ii ≤ [W (k−1)]ii.

Lemma 1 indicates that the sequence W (k) is element-wise non-increasing and bounded.
Therefore, according to the definition of the weight matrix, we have the following lemma.

Lemma 2 Suppose W (k) is generated by (26), then there exist a diagonal matrix W (∗) such that
lim
k→∞

W (k) =W (∗).

Lemma 2 shows that the sequence W (k) converges as iterations proceed, which is important
to prove the convergence of the proposed algorithm. Let us define

J (u,v;W (k)) :=
1

2
∥K(u+ v)− b∥22 +

λ

2

∥∥∥W (k)Lu
∥∥∥2
2
+ µ ∥v∥∗ . (28)
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We now analyze the convergence of Algorithm 1. First, we have the following theorem.

Theorem 4 Let {u(k),v(k);W (k)} be the sequence generated by Algorithm 1. Then the objective
function value of J is non-increasing, that is

J (u(k+1),v(k+1);W (k+1)) ≤ J (u(k),v(k);W (k)).

Proof Given W (k+1), (u(k+1),v(k+1)) is updated by

(u(k+1),v(k+1)) = argmin
u,v

J (u,v,W (k+1)).

Therefore, we can easily get

J (u(k+1),v(k+1);W (k+1)) ≤ J (u(k),v(k);W (k+1)). (29)

Notice the diagonal weight matrix is generated byW (k+1) = diag
(
w(k)

)
W (k), see (26). According

to the definition of w(k), we have 0 ≤ w(k) ≤ 1. Hence for any vector x, we have
∥∥w(k)x

∥∥2
2
≤ ∥x∥22,

which implies ∥∥∥W (k+1)Lu(k)
∥∥∥2
2
=
∥∥∥diag (w(k)

)
W (k)Lu(k)

∥∥∥2
2
≤
∥∥∥W (k)Lu(k)

∥∥∥2
2
. (30)

By (28), we obtain

J (u(k),v(k);W (k+1))− J (u(k),v(k);W (k)) =
λ

2

(∥∥∥W (k+1)Lu(k)
∥∥∥2
2
−
∥∥∥W (k)Lu(k)

∥∥∥2
2

)
. (31)

Summing the inequalities (29) and (30), we obtain the

J (u(k+1),v(k+1);W (k+1)) ≤ J (u(k),v(k);W (k)).

Hence, according to Theorem 4, we easily get the properties of the sequence (u(k),v(k)).

Theorem 5 If Null(K)∩Null(WL) = ∅, then the sequences u(k) and v(k) obtained by Algorithm
1 are bounded. Therefore, there exist two convergent subsequences u(kj) and v(kj) such that
lim
j→∞

u(kj) = u(∗), lim
j→∞

v(kj) = v(∗).

Due to the coerciveness of the convex function J (u,v), we can show the existence and
uniqueness of the solution of the problem

min
u,v

J (u,v;W (∗)) (32)

in the following theorems.

Theorem 6 The limit point (u(∗),v(∗)) is the unique minimum of minimization (32).

Proof We know that (u(k),v(k)) minimizes J (u,v,W (k)), i.e.,

(u(k),v(k)) = argmin
u,v

J (u,v,W (k)).
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Hence u(k) and v(k) satisfy the optimal condition{
0 = KTK(u(k) + v(k))−KTb+ λLTW (k)TW (k)Lu(k),

0 ∈ KTK(u(k) + v(k))−KTb+ µ∂
∥∥v(k)

∥∥
∗ .

(33)

Further, there exists a subsequence (u(kj),v(kj)) which subjects to{
0 = KTK(u(kj) + v(kj))−KTb+ λLTW (kj)TW (kj)Lu(kj),

0 ∈ KTK(u(kj) + v(kj))−KTb+ µ∂
∥∥v(kj)

∥∥
∗ .

(34)

Let j → ∞, then we have{
0 = KTK(u(∗) + v(∗))−KTb+ λLTW (∗)TW (∗)Lu(∗),

0 ∈ KTK(u(∗) + v(∗))−KTb+ µ∂
∥∥v(∗)

∥∥
∗ .

(35)

Therefore, the conclusion holds.

5 Numerical Experiments

In this section, we conduct a series of numerical experiments to show the efficiency of the pro-
posed edge-preserving WLS and low-rank regularization model and algorithm. Ideally, the outer
iteration in Algorithm 1 stops when the cartoon component has no more edge information to be
enhanced. We use the same stopping criterion as in [12], i.e., ∥Lu(k)∥2

∥Lu(k−1)∥2
< c. Here c > 1 controls

the smoothness of cartoon components to adjust this value in different images and tasks. If you
want to make the cartoon image smoother, choose a larger c; correspondingly, a smaller c is a
good choice if one wants to retain more details. Here we set c = 1.005 for synthetic images and
set c = 1.05 for natural images. The original images used in the following experiments are shown
in Fig. 2 and Fig. 3. Fig. 2 consists of synthetic images, and Fig. 3 consists of the natural images.

5.1 The Effectiveness of W on the Real Cartoon Image

In this subsection, we experiment to validate the effectiveness of our method in decomposing
images and identifying edge locations in cartoon images using a weighted matrix that encodes
the structural information related to the decomposition. We present the decomposition results
and edge locations determined by the ideal weights derived from the true cartoon images. The
updating rule of the true weighted matrix is given by

Ŵ (k) = diag
(
ŵ(k)

)
Ŵ (k−1), ŵ(k) = g(t̂(k)), t̂(k) =

∣∣∣Ŵ (k−1)Lutrue

∣∣∣∥∥∥Ŵ (k−1)Lutrue

∥∥∥
∞

. (36)

Here utrue denotes the true cartoon image. The updating rule for the estimated weighted matrix
of the proposed method is given as follows

W (k) = diag
(
w(k)

)
W (k−1),w(k) = g(t(k)), t(k) =

∣∣W (k−1)Lu(k−1)
∣∣∥∥W (k−1)Lu(k−1)
∥∥
∞
. (37)
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Fig. 2 The test original synthetic cartoon images and texture images. From the first column to the last column:
“Circle”, “Geometry”, “Boy”, “TomJerry”. From the first row to the last row: cartoon images, texture images,
and synthetic images (a cartoon image and a texture image of the ratio 7 : 3).

Fig. 3 Natural images for image decomposition. From left to right: “House”, “Barbara”, “Window”, respectively.

See (26). We remark that the true weighted matrix is obtained in the computation process by
substituting utrue for u(k−1).

In our study, we explore the decomposition results of synthetic images using two different
weighted matrices: the true weighted matrix (36) and the estimated weighted matrix (37). These
results are visually presented in Fig. 4. Both weighted matrices successfully separate the cartoon
image from the texture image, validating the effectiveness of our weight estimation strategy. To
understand the impact on edge locations, we compare the true cartoon image with the itera-
tively updated cartoon image. The results are similar for the four images, so we focus on the
“Geometry” image for presentation purposes. We analyze the first and final estimated weight
matrices. Fig. 5 shows both the horizontal and vertical weight matrices. Surprisingly, even when
utilizing the true cartoon image, the edge information in the first iteration remains unclear.
However, as the iterations progress, the cartoon image’s edge positions gradually become more
distinct. A similar trend is observed when using the iteratively updated cartoon image for weight
computation. The weight matrix definition accumulates edge information from each iteration,
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Fig. 4 Cartoon and texture images decomposed by different weights using the algorithm 1. The first two raws are
the real weights W calculated by (36) using the true cartoon image utrue, and the last two raws are the estimated
weights Ŵ calculated by (37) using the estimated cartoon image u.

subsequently incorporating it into the regularization term of the next iteration. This iterative
process significantly enhances the image’s edges.

5.2 Comparison with the State-of-the-art Methods

To demonstrate the effectiveness of the proposed model, we compare the proposed method with
the state-of-art cartoon-texture decomposition methods that utilize low-rank prior, including
LPR [18], Log-det [11], CLRP [54], and GNCLR [48]. We obtained the source codes for these
methods from the authors’ websites and fine-tuned their parameters to achieve the best visual
performance. To quantitatively evaluate the quality of the decomposed images, we employ the
signal-to-noise ratio (SNR)1.
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Fig. 5 The weights of vertical and horizontal directions for “Geometry”. The first and second rows are the true
weights (i.e., (36)) and the weights estimated by the proposed method (i.e., (37)) at the first and last iteration,
respectively.

Table 1 SNR(dB) comparison for image decomposition without degradations.

7:3 5:5
Images Method u v Time(s) u v Time(s)

Boy

LPR 24.14 16.53 1.20 20.95 19.50 1.18
Log-det 26.08 17.74 2.57 21.51 20.17 2.55
CLRP 30.35 21.27 0.29 25.04 23.57 0.28

GNCLR 31.05 21.27 0.91 25.32 23.97 1.26
Proposed 32.61 23.91 4.17 26.21 24.97 4.67

TomJerry

LPR 19.41 13.74 5.22 14.12 16.36 5.25
Log-det 20.65 14.98 10.73 14.33 16.48 10.74
CLRP 23.86 18.13 1.35 19.88 21.52 1.37

GNCLR 24.17 18.08 9.50 18.20 20.02 13.30
Proposed 25.85 20.20 45.30 20.24 22.08 35.00

5.2.1 Image Decomposition without Degradation

In this experiment, we consider to decompose an image without degradation, i.e., K is an identity
matrix. We generate two synthetic images of different scales to evaluate the numerical results
of color image decomposition for different methods. The synthetic images are superposed by a
cartoon image and a texture image of the ratio 7 : 3 and 5 : 5. We set parameters β = 10−3, µ =

10−4, and λ = 2× 10−5.
We perform a quantitative evaluation of the quality of the decomposed images by comparing

the SNRs for different methods. The results are presented in Table 1. For the “Boy” image,
the CLRP method achieves an SNR of 30.35dB for the cartoon component and 21.27dB for the
texture, with GNCLR slightly higher at 31.05dB and 21.91dB. The proposed method surpasses

1 SNR is defined as SNR = 20 log10
∥f∥2

∥f̂−f∥
2

, where f and f̂ are the true images and the reconstructed image,
respectively.
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Fig. 6 Results of image decomposition without degradation. From left to right: the results of LPR, Logdet, CLRP,
GNCLR, and Proposed method, respectively.
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both, reaching 32.61dB for the cartoon and 23.91dB for the texture, demonstrating its superior
quality. Although it requires 4.17s, longer than CLRP’s, the SNR improvement is significant.
Similar trends are observed in the 5:5 case for “Boy”: the proposed method achieves the highest
SNRs (26.21dB for cartoon and 24.97dB for texture) with a running time of 4.67s, justifying the
trade-off for quality. For the “TomJerry” image, CLRP and GNCLR achieve competitive SNRs,
but the proposed method leads with 25.85dB for cartoon and 20.20dB for texture. Though the
computation time is longer at 45.30s, it consistently delivers the best results. In the 5:5 case, the
proposed method maintains the highest SNRs.

For the 7:3 case, as shown in Fig. 6, we present the results of the cartoon and texture compo-
nents decomposed using different methods. From the figure, we make the following observations.
Both the LPR and Log-det methods tend to oversmooth the cartoon image during the separation
process. Consequently, some structural edges that inherently belong to the cartoon image are
erroneously assigned to the texture image. In contrast, the CLRP, GNCLR and our proposed
method demonstrate superior decomposition performance. These methods effectively mitigate
the over-smoothing issue, more accurately separating cartoon and texture components. Notably,
they outperform LPR and Log-det regarding edge preservation and overall quality. To further
compare the decomposition effects of these methods, we selected representative local regions
from the decomposed cartoon and texture images. These regions are then magnified for de-
tailed analysis. We also observe that the edges of cartoon images obtained using the CLRP and
GNCLR appear less sharp than those from our proposed approach. Additionally, the texture
images produced by CLRP exhibit some structural edges that should ideally belong to the car-
toon component. In summary, our method effectively maintains sharp cartoon image edges while
successfully separating texture components, resulting in superior decomposition performance.

Table 2 SNR(dB) comparison for simultaneous cartoon and texture decomposition in image deblurring

7:3 5:5

Images Method u v u+v Time u v u+v Time

Boy

LPR 23.39 16.65 32.48 1.42 20.97 19.74 32.48 1.45
Log-det 25.24 17.15 36.49 1.62 20.76 19.63 36.45 1.58
CLRP 29.50 21.06 41.21 0.27 24.67 23.40 42.21 0.29

GNCLR 30.85 21.17 43.94 0.95 25.37 24.02 44.67 1.36
Proposed 31.47 23.48 45.80 3.40 25.53 24.61 46.40 2.56

TomJerry

LPR 18.84 14.03 28.68 5.74 14.84 16.77 28.18 5.77
Log-det 19.72 14.11 33.29 6.11 13.49 16.19 32.96 6.12
CLRP 23.63 18.41 36.92 1.33 19.76 21.60 38.51 1.37

GNCLR 24.09 18.09 36.81 9.75 18.29 20.10 38.95 14.00
Proposed 25.09 19.79 38.94 31.94 19.97 21.70 40.58 21.76

5.2.2 Simultaneous Cartoon-Texture Decomposition and Image Deblurring

In this experiment, we consider simultaneously performing image deblur and cartoon-texture
decomposition. An out-of-focus blur with a radius of 3 is used to generate the blurred observed
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Fig. 7 Simultaneous cartoon and texture decomposition in image deblurring. From left to right: the results of
LPR, Logdet, CLRP, GNCLR, and Proposed method, respectively. The first and third rows are the cartoon
images and the reconstructed images. The second and fourth rows are the corresponding enlarged images of the
red rectangle, respectively. The SNRs of the recovered images (i.e., u + v) for these four methods are 22.10dB,
27.32dB, 30.08dB, 33.62, and 34.99dB, respectively.

images. The parameters are set as β = 10−3, µ = 10−4, and λ = 10−5 for the proposed method.
The parameters of other methods are tested based on the values in the numerical section of these
methods. The numerical results include both synthetic and natural images.

The comparison of various methods on synthetic images, where the ground truth cartoon
and texture components are known, is summarized in Table 2. The table presents the SNR
values for the decomposed cartoon u and texture v images, along with the SNR of the combined
image (u + v). For the “Boy” image in the 7:3 case, the proposed method achieves the highest
SNRs—31.47dB for the cartoon and 23.48dB for the texture, 45.80dB for the combined image.
Although it requires 3.40s, it provides a clear quality improvement. In the 5:5 case, the proposed
method maintains this advantage, with the highest total SNR of 46.40dB, again justifying its
longer computation time. For the “TomJerry” image in the 7:3 case, the proposed method also
leads with SNRs of 25.09dB (cartoon) and 19.79dB (texture), combined 38.94dB, despite a
longer runtime of 31.94s. In the 5:5 case, it achieves the highest combined SNR of 40.58dB in
21.76s, underscoring its effectiveness in delivering superior decomposition results. Fig. 7 visually
compares the cartoon and reconstructed images (u + v) obtained from the five methods. To
further illustrate the decomposition quality, enlarged regions within the red rectangles are also
provided. It is observed that the cartoon image obtained by our method exhibits sharp edges,
while the edges in the cartoon images separated by the other three methods appear blurred. As
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Fig. 8 Simultaneous cartoon and texture decomposition in image deblurring. The first and third rows display
the results of CLRP, while the second and last rows show the results of the proposed method. For the recovered
image “Barbara”, the SNR is 32.35dB for CLRP, 36.13dB for GNCLR, and 35.36dB for our proposed method. For
the recovered image “Window”, the SNR is 28.11dB for CLRP, 32.61 for GNCLR, and 32.65dB for our proposed
method.

is shown in Fig. 8, for the grayscale natural “House” image, the SNR values for the recovered
images, using LPR, Log-det, CLRP, GNCLR, and the proposed method, are 22.10dB, 27.32dB,
30.08dB, 33.62 and 34.99dB, respectively. Our method achieves the highest SNR and the best
visual effect.

For the recovered color image “Barbara”, CLRP achieves an SNR of 32.35dB, and GNCLR
improves on this with an SNR of 36.13dB. Our proposed method reaches a comparable SNR
of 35.36dB. However, as shown in Fig. 8, our method provides a distinct advantage in visual
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(a) LPR (b) Log-det (c) CLRP (d) GNCLR (e) Proposed

Fig. 9 Simultaneous cartoon-texture decomposition and image inpainting. From top to bottom: the cartoon,
texture, and cartoon+texture. The SNRs for cartoon, texture, and cartoon + texture are as follows: LPR (23.09dB,
15.89dB, 31.54dB), Logdet (24.35dB, 16.86dB, 32.31dB), CLRP (26.72dB, 16.30dB, 34.52dB), GNCLR (27.61dB,
16.99dB, 32.75dB) and our method (29.14dB, 23.92dB, 34.30dB).

Fig. 10 Simultaneous cartoon-texture decomposition and image inpainting. The first and second rows show the
results obtained by GNCLR, CLRP, and our method. From left to right: the cartoon, texture, and cartoon+texture.
The SNRs of the recovered images for CLRP and Proposed are 22.49dB, 21.77dB and 22.09dB, respectively.

clarity: the facial features in the cartoon image “Barbar” are sharper and more defined with our
approach, while the features from the CLRP and GNCLR methods appear blurred, resulting in
reduced edge sharpness. This highlights the proposed method’s effectiveness in preserving fine
details. For the recovered image “Window”, CLRP achieves an SNR of 28.11dB, and GNCLR
increases this to 32.61dB. The proposed method achieves the highest SNR of 32.65dB, slightly
surpassing GNCLR and demonstrating its effectiveness in producing high-quality decompositions
for this image.
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5.2.3 Simultaneous Cartoon-Texture Decomposition and Image Inpainting

In this experiment, we consider image inpainting problems through the application of cartoon
and texture decomposition. The gray-textured “Boy” image is superimposed with a mask that
covers 9.12% of its original area, resulting in information loss due to sketching. The decomposition
results are shown in Fig. 9. It is found that compared with other methods, both cartoon and
texture images separated by our method achieve the best visual results.

We also conduct an experiment on the color image “Window”, where 30% of the pixels are
randomly missing, as depicted in Fig. 10. Consistent with previous experiments, the cartoon
image decomposed by CLRP exhibits blurred edges, while our method yields a cartoon image
with clear edges. Furthermore, from an SNR perspective, our reconstructed image has an SNR
that is 0.32dB higher than that of CLRP, demonstrating the superior performance of our method.

6 Conclusion

In this paper, we developed a new image decomposition model for edge preservation. The model
used Tikhonov-type edge-preserving regularization and nuclear norm to characterize the cartoon’s
piecewise smoothness and the texture’s low rankness, respectively. In order to solve the problem,
we have applied the inner-outer iterative scheme. We first adaptively update the edge-aware
weight matrix in the outer loop and then solve the separable convex optimization problem by
the ADMM-based prediction-correction method, in which the corresponding subproblems all
have closed solutions. We proved the convergence of the algorithm. Numerical results showed
that the cartoon images separated by our approach retained the complete edges. Meanwhile, the
proposed method achieved the best performance compared with the state-of-the-art methods.
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