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Abstract. The reconstruction of low-rank matrix from its noisy observation finds its usage in
many applications. It can be reformulated into a constrained nuclear norm minimization problem,
where the bound η of the constraint is explicitly given or can be estimated by the probability
distribution of the noise. When the Lagrangian method is applied to find the minimizer, the solution
can be obtained by the singular value thresholding operator where the thresholding parameter λ is
related to the Lagrangian multiplier. In this paper, we first show that the Frobenius norm of the
discrepancy between the minimizer and the observed matrix is a strictly increasing function of λ.
From that we derive a closed-form solution for λ in terms of η. The result can be used to solve
the constrained nuclear-norm-type minimization problem when η is given. For the unconstrained
nuclear-norm-type regularized problems, our result allows us to automatically choose a suitable
regularization parameter by using the discrepancy principle. The regularization parameters obtained
are comparable to (and sometimes better than) those obtained by Stein’s unbiased risk estimator
(SURE) approach while the cost of solving the minimization problem can be reduced by 11–18 times.
Numerical experiments with both synthetic data and real MRI data are performed to validate the
proposed approach.
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1. Introduction. In the past two decades, the low-rank matrix recovery prob-
lem has attracted much attention in computer vision, pattern recognition, image pro-
cessing, machine learning, and optimization communities. The problem arises in many
applications such as denoising [9, 19], inpainting [12, 34], matrix completion [7, 8],
background subtraction [43, 50], and image alignment [45]. In these applications, we
often need to solve the constrained minimization problem

min
∥X−Y ∥2

F≤η
f(X) (1.1)

to recover an unknown low-rank matrix X ∈ Rm×n from its noisy observation Y ,
which is corrupted by Gaussian white noise. Here ∥ · ∥F denotes the Frobenius norm
defined as the square root of the sum of the squares of its elements. Without loss of
generality, we assume that m ≤ n. The function f(X) is a regularization function
of X which incorporates the prior information on the cleaned matrix X, and it can
be the rank of X, the nuclear norm (NN) [6, 8], the truncated nuclear norm (TNN)
[27, 31, 33] or the generalized weighted nuclear norm (GWNN) [22, 53] of the matrix
X, etc. When ∥Y ∥2F ≤ η, we have a trivial solution X = 0 as f(0) = 0. In order to
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exclude this case, we assume that

∥Y ∥2F > η > 0 (1.2)

throughout this paper and we look for non-trivial solutions of (1.1).
Generally, a constrained minimization problem can be solved by projected gra-

dient descent method [2, 29], Lagrangian multiplier method [2] and so on. When
the projected gradient descent method is applied, the objective function f(X) should
be differentiable. However, the functions f(X) considered in this paper are non-
differentiable, so the projected gradient descent method cannot be directly applied to
find the minimizers.

The Lagrangian multiplier method is also widely applied to solve the constrained
minimization problem, which converts the constrained minimization problem (1.1)
into a regularized one as follows

min
X

f(X) +
1

2λ
∥X − Y ∥2F , (1.3)

where 1/λ is the Lagrangian multiplier associated with the inequality constraint.
In regularization theory, λ is also called the regularization parameter. If the singular
value decomposition (SVD) of Y is given, the optimal solution of (1.3) can be obtained
by soft thresholding of Y ’s singular values when the regularization function is the
nuclear norm [6, 8]. The threshold value equals to the regularization parameter λ,
see Theorem 2.2 below or [6]. By an abuse of notation, we use λ to refer to both the
threshold value and the regularization parameter. It is a crucial issue to choose λ. If
λ is too small, then the shrinkage is insufficient and the corresponding solution is still
noisy; while if λ is too large, informative structures might be removed together with
the noise and the solution is a poor approximation of the cleaned matrix.

Ideally, the optimal λ should minimize the mean-squared error (MSE) between
the true matrix and the estimated matrix. It is difficult to implement this approach
because the true matrix is unknown. Some literatures have discussed how to choose an
optimal regularization parameter for the unconstrained minimization problem (1.3).
In [18], Gavish and Donoho studied the asymptotic MSE (AMSE) and proposed the
AMSE-optimal choice of hard threshold, which is (4/

√
3)
√
nτ when m = n and the

standard deviation τ of the noise is known. In [19], Gavish et al. applied the asymp-
totic framework to find the optimal threshold value, either analytically or numerically,
for a variety of loss functions, including Frobenius norm, the nuclear norm and the
operator norm. In [52], Yadav et al. applied random matrix theory to infer the AMSE
without the knowledge of the true matrix X. In [9], Candés et al. applied Stein’s
unbiased risk estimator (SURE), an unbiased estimate of MSE, to choose the soft
threshold. They also gave an expression for the divergence of the estimated matrix
with respect to the observation matrix. In [3], Bigot et al. derived the corresponding
generalized SURE (GSURE) formula for different noise types, which further realized
the adaptive thresholding of singular values. Deledalle et al. [10] proposed the Stein
unbiased gradient estimator of the risk (SUGAR) and provided an asymptotically
unbiased estimate of the gradient of the risk, which is an effective strategy to auto-
matically optimize a collection of parameters.

In fact, the SURE approach requires the knowledge of the noise variance. When
the knowledge of the noise variance is unknown, the generalized cross validation
(GCV) method can be applied to choose the regularization parameter [20]. In [30],
Josse et al. integrated the SURE method and the GCV method to handle the case
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when the variance is unknown. Furthermore, Hansen et al. [25] proposed a method
for choosing the regularization parameter based on the L-curve, which is a log-log plot
of the norm of a regularized solution versus the norm of the corresponding residual
norm. The optimal regularization parameter is the corner point of the L-curve, see
[21, 26].

The discrepancy principle is also widely applied to choose the regularization pa-
rameter [1, 42, 46, 49]. It states that the regularization parameter λ should be chosen
such that the minimizer X(λ) of (1.3) has a discrepancy that equals to the bound η
if η is explicitly given, that is

∥X(λ)− Y ∥2F = η. (1.4)

Obviously, (1.4) is the complementary condition associated with the constrained min-
imization problem (1.1), which shows that there is a mapping between the parameter
λ > 0 and the bound η. Given a regularization parameter λ, it is trivial to obtain
the bound η through directly calculating X(λ) and the squared Frobenius norm of
X(λ) − Y . It is a forward problem. However, given the bound η it is not trivial to
obtain the corresponding regularization parameter λ because it is the root of the non-
linear equation (1.4) and it is an inverse problem. Existing work on the discrepancy
principle is mainly for Tikhonov [1, 5] and TV [49] regularization terms. To the best
of our knowledge, there is no literature on considering how to obtain λ for a given η
in the nuclear-norm-type regularization minimization problems.

In this paper, we aim precisely to obtain λ for any given η in (1.4) for nuclear-norm
type minimization problems. We first show that the norm of the residual ∥X(λ)−Y ∥2F
is a strictly increasing function with respect to λ. Hence we derive a closed form for-
mula for λ associated with the constraint (1.4). This result can be applied to select an
optimal regularization parameter λ for the unconstrained minimization problem (1.3).
Compared with the SURE methods or the GCV methods, the proposed method can
directly compute λ without solving a complicated and intricate optimization problem.
We will see that the cost of solving the unconstrained minimization problem (1.3) (and
hence the constrained minimization problem (1.1) too) is reduced by 11 times when
compared with SURE methods. We remark that our approach also provides a fast
method for solving the constrained minimization problem (1.1) for any given η by
solving the corresponding unconstrained problem (1.3) with the corresponding λ.

Note that the low-rank matrix recovery problem usually involves finding the SVD
of matrices, and its computational complexity is O(mnmin{m,n}). For large-scale
problems, the cost of the traditional SVD is very expensive. In the past ten years,
randomized algorithms have been more and more widely used in low-rank matrix
approximations [16, 36, 43, 51]. Compared with classic algorithms, randomized al-
gorithms involve fewer floating-point operations (flops) and are more effective for
large-scale problems. Our strategy for choosing the regularization value can also be
easily incorporated into the randomized algorithms and the cost can be reduced by
18 times when compared with SURE methods.

The outline of this paper is organized as follows. In Section 2, we consider the
solution of the regularization model (1.3) when the penalty function is the nuclear
norm or its variants. In Section 3, we discuss the relationship between the regularized
model and the constrained model. The estimation of the bound η for the residual is
also given. In Section 4, we solve (1.4) for the regularization parameter λ in terms
of the bound η. Then we consider the solution of the constrained model (1.1) for
various nuclear-norm-type problems. In Section 5, numerical results are given to
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demonstrate the effectiveness of the proposed method. Finally, a short conclusion is
given in Section 6.

2. Regularized Minimization Model. In this section, we introduce some ba-
sic notation and consider the solution for the regularization minimization model in
(1.3).

2.1. Notation. We first introduce the singular value decomposition (SVD). Any
m × n (m ≤ n) matrix Y can be factorized as follows Y = UΣV T where U =
[u1,u2, . . . ,um] ∈ Rm×m and V = [v1,v2, . . . ,vm] ∈ Rn×m are orthogonal, and
Σ ∈ Rm×m is a diagonal matrix. The column vectors ui and vi are respectively called
the i-th left and right singular vectors, and the diagonal entry Σi,i = σi is called the
i-th singular value of the matrix Y . We assume σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0.

The SVD can also be reformulated by the outer product form Y =
∑m

i=1 σiuiv
T
i .

A k-truncated matrix of Y is defined as Yk ≡
∑k

i=1 σiuiv
T
i . By applying Eckart-

Young-Mirsky theorem [14, 40], we know that

Yk = argmin
rank(X)≤k

∥X − Y ∥2F .

We remark that the k-truncated matrix of Y is not unique if σk+1 = σk.
The main aim in (1.1) is to recover an unknown matrix X from the noisy obser-

vation Y . One common assumption is that the matrix X has low-rank structure. It is
natural to choose the objective function f(X) = rank(X) and consider the following
problem

min
X

rank(X) +
1

2λ
∥X − Y ∥2F . (2.1)

The rank of a matrix can be defined as the nonzero numbers of its singular values,
i.e., the ℓ0-norm of the singular values. The solution to (2.1) is given by the hard
thresholding operator X =

∑m
i=1 HTλ(σY,i)uiv

T
i , where HTλ(x) is a map defined by

HTλ(x) =


x, x >

√
2λ,

0 or x, x =
√
2λ,

0, x <
√
2λ.

2.2. Nuclear Norm. In compressed sensing, in order to characterize the spar-
sity of the signal, the ℓ1-norm is usually used to approximate the ℓ0-norm. Similarly,
in the rank minimization problem (2.1), the rank of a matrix can be approximate-
ly replaced by the ℓ1-norm of the singular values, which is the nuclear norm of the
matrix.

Definition 2.1. Given a matrix X ∈ Rm×n with σX,i being its i-th singular
values, the nuclear norm (NN) ∥X∥∗ of X is defined as the sum of its singular values,
i.e., ∥X∥∗ ≡

∑m
i=1 σX,i.

The nuclear norm regularized minimization problem is given by

min
X

∥X∥∗ +
1

2λ
∥X − Y ∥2F . (2.2)

The following theorem states that the optimal minimizer of (2.2) is a function with
respect to the regularization parameter λ.

Theorem 2.2. [6] Let Y be an m×n matrix, ui and vi be the i-th left and right
singular vectors of Y , and σY,i be the i-th singular value. Then the solution of (2.2) is
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given by X̂(λ) = SVTλ(Y ), where SVTλ(Y ) is the singular value thresholding (SVT)
operator defined as

X̂(λ) = SVTλ(Y ) ≡
m∑
i=1

(σY,i − λ)+uiv
T
i . (2.3)

Here (x)+ ≡ max(x, 0).

2.3. Truncated Nuclear Norm. The nuclear norm shrinks all singular values
equally and the large singular values are usually over-penalized. To overcome the
shortcomings of nuclear norm, Hu et al. [27] used the truncated nuclear norm instead
of the standard nuclear norm in order to keep the largest r singular values unchanged
while shrinking the other singular values.

Definition 2.3. Given a matrix X ∈ Rm×n with σX,i being its i-th singular
values, the truncated nuclear norm (TNN) ∥X∥r of X is defined as the partial sum of
its singular values, i.e., ∥X∥r ≡

∑m
i=r+1 σX,i, where r < m is an integer.

The TNN regularized minimization problem is given by

min
X

∥X∥r +
1

2λ
∥Y −X∥2F . (2.4)

The TNN has been proposed in low-rank matrix recovery and matrix completion
problem [27, 31, 33]. The TNN is non-convex and the solution of TNN regularized
minimization problem is generally non-trivial. In [27], the Von Neumann’s trace
inequality [41] was utilized to handle the non-convexity. The idea is to rewrite TNN
into an equivalent form

∥X∥r = ∥X∥∗ − min
(U,V )∈A

trace(UXV T )

where A = {(U, V ) : UUT = I, V V T = I, U ∈ Rr×m, V ∈ Rr×n}.
According to Von Neumann’s lemma, the inner product of two matrices is always

bounded by the sum of the products of their corresponding singular values, while
the maximum of the inner product of two matrices can only be achieved when these
two matrices have the same left and right singular vectors. Based on these facts, the
optimal solution of (2.4) can be expressed by the partial singular value thresholding
operator [44].

Theorem 2.4. For any λ > 0, a global solution of (2.4) with a target rank r < m
is given by the partial singular value thresholding (PSVT)

PSVTr,λ(Y ) ≡
r∑

i=1

σY,iuiv
T
i +

m∑
i=r+1

(σY,i − λ)+uiv
T
i . (2.5)

We note that the PSVT operator is comprised of two terms: the first term is the
r-truncated matrix Yr ≡

∑r
i=1 σY,iuiv

T
i , and the second term is the singular value

thresholding operator of Z = Y −Yr, i.e., SVTλ(Z) =
∑m

i=r+1(σY,i−λ)+uiv
T
i . Hence

we have

PSVTr,λ(Y ) = Yr + SVTλ(Y − Yr),

which implies that the truncated nuclear norm minimization problem can be solved
through the nuclear norm minimization problem. For the constrained minimization
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problem, we have

argmin
∥Y−X∥2

F≤η

∥X∥r ≡ Yr + argmin
∥Z−X∥2

F≤η

∥X∥∗, (2.6)

where Z = Y − Yr. Thus the constrained minimization problem for the truncated
nuclear norm can be reformulated as that of the nuclear norm.

2.4. Weighted Nuclear Norm. To improve the flexibility of the nuclear norm,
Gu et al. [22] proposed a weighted nuclear norm to approximate the rank function,
which has good performance in image denoising problem.

Definition 2.5. Given a matrix X ∈ Rm×n with σX,i being its i-th singular
values and the non-negative weight vector w = (w1, w2, . . . , wm), the weighted nuclear
norm (WNN) ∥X∥w,∗ of X is defined by ∥X∥w,∗ ≡

∑m
i=1 wiσX,i.

We remark that the standard nuclear norm and the truncated nuclear norm can be
regarded as the special version of the weighted nuclear norm, and the weight vectors
are w = (1, . . . , 1) for the standard nuclear norm and w = (0, . . . , 0, 1, . . . , 1) for the
truncated nuclear norm.

We emphasize that the choice of the weights is very important. A reason-
able weight vector should guarantee that the resulting singular values are in a non-
increasing order. When the weights are arranged in non-decreasing order, larger
singular values should be less penalized. In [22], the weights are suggested to be

wi = (σX,i + ϵ)−1, i = 1, ...,m,

where the parameter ϵ is a sufficiently small positive number in order to avoid dividing
by zero and should be set slightly smaller than the expected nonzero singular value
of X. In this case, ∥X∥w,∗ approximates the number of the nonzero singular values
of X, i.e., the rank of X. In [28], Huang et al. generalized the weights to

wi = (σX,i + ϵ)p−1, 0 ≤ p < 1. (2.7)

In this way, ∥X∥w,∗ approximates the Schatten p-norm of X, which is defined by
(
∑m

i=1 σ
p
X,i)

1/p. Because the singular values σX,i are unknown, an iterative approach
is applied to estimate them. It is proved in [28] that the optimal solution of the
reweighted nuclear norm minimization problem is also a solution of the Schatten p-
norm minimization problem.

In this paper, the weight vector defined in [28] (i.e., (2.7)) is adopted, and we call
the corresponding norm the generalized weighted nuclear norm (GWNN). Although
the weighted nuclear norm is non-convex, its global optimal solution can still be
obtained. Similar to Theorem 2.2, the closed form solution for the reweighted problem
(2.8) can be represented by weighted singular value thresholding.

Theorem 2.6. [23] For any λ > 0, Y ∈ Rm×n, if the weights {wi}mi=1 satisfy
0 ≤ w1 ≤ w2 ≤ ... ≤ wm, then a global solution of the following minimization problem

min
X

∥X∥w,∗ +
1

2λ
∥Y −X∥2F (2.8)

is given by the weighted singular value thresholding (WSVT) operator

X̂w(λ) = WSVTλ(Y ) ≡
m∑
i=1

(σY,i − λwi)+uiv
T
i . (2.9)
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If there are zero entries in the weight vector w, i.e., w = (0, ..., 0, wr+1, ..., wm)
with 0 < wr+1 ≤ wr+2 ≤ ... ≤ wm, we have

WSVTλ(Y ) = Yr +
m∑

i=r+1

(σY,i − λwi)+uiv
T
i . (2.10)

This is because the WSVT operator is comprised of the r-truncated matrix and the
WSVT operator with nonzero weights. Therefore, without loss of generalization, in
the following when we talk about weighted nuclear norm, we only focus on the case
where all the weights are positive.

3. Constrained model and regularized model. Because the minimization
problem of the truncated nuclear norm or weighted nuclear norm with zero weights
can be reformulated as that of the nuclear norm or the weighted nuclear norm with
positive weights respectively (see (2.6) or (2.10)), in this section, we assume that the
objective function f(X) is either the nuclear norm or weighted nuclear norm with
positive weights only.

We discuss the relationship between the constrained model (1.1) and the regular-
ized model (1.3). Mathematically, the two minimization models are equivalent in the
sense that given a parameter λ, there exists a corresponding η such that the solution
of (1.3) is also a solution of (1.1), and vice versa. The following lemmas give the
detailed explanations.

Lemma 3.1. If X† is a global minimizer of the unconstrained regularized problem
(1.3) with λ > 0, then there exists an η ≥ 0 such that X† is also a global minimizer
of (1.1).

Proof. Define η ≡ ∥Y −X†∥2F ≥ 0. For any X satisfying ∥Y −X∥2F ≤ η, applying
the fact that X† is a global minimizer of (1.3), we have

η

2λ
+ f(X†) =

1

2λ
∥Y −X†∥2F + f(X†) ≤ 1

2λ
∥Y −X∥2F + f(X) ≤ η

2λ
+ f(X).

Hence f(X†) ≤ f(X), which implies that X† is also a global minimizer of (1.1).
In order to exclude a trivial solution X = 0 for the constrained minimization

problem in (1.1), we have assumed that ∥Y ∥2F > η, see (1.2). We show that a mini-
mizer of the constrained minimization problem (1.1) always lies on the boundary of
the constraint if ∥Y ∥2F > η.

Lemma 3.2. If X† is a global minimizer of (1.1) with ∥Y ∥2F > η > 0, then we

have
∥∥Y −X†

∥∥2
F
= η.

Proof. Let σX†,i and σY,i be the singular values of X† and Y respectively. If, by
contradiction, X† is an interior point of the constrained set, then we have

m∑
i=1

(σY,i − σX†,i)
2 ≤ ∥Y −X†∥2F < η,

where the first inequality is obtained by applying Von Neumann’s trace inequality
[41]. Let σX†,k be the smallest positive singular value of X. The above inequality
implies that there exists a positive scalar δ with 0 < δ < σX†,k such that

k−1∑
i=1

(
σY,i − σX†,i

)2
+
(
σY,k − σX†,k + δ

)2
+

m∑
i=k+1

(σY,i)
2 ≤ η. (3.1)
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Let ΣX̂ be the diagonal matrix with the diagonal entries σX̂,k = σX†,k − δ and
σX̂,i = σX†,i for i ̸= k. Clearly, the diagonal entries of ΣX̂ still keep the non-increasing
ordering.

Let the SVD of Y be Y = UΣY V
T and we set X̂ = UΣX̂V

T . By (3.1), ∥Y −
X̂∥2F < η, i.e., X̂ is a feasible solution of (1.1). However, we have

m∑
i=1

wiσX̂,i = f(X̂) < f(X†) =
m∑
i=1

wiσX†,i,

(for nuclear norm, all wi = 1). This contradicts the assumption that X† is a global

minimizer of (1.1). Therefore, we must have
∥∥Y −X†

∥∥2
F
= η.

Lemma 3.3. Let ∥Y ∥2F > η > 0 and the objective function f(X) in (1.1) be the
nuclear norm or the weighted nuclear norm with weights 0<w1 ≤ w2 ≤ ... ≤ wm. If
X† is a global minimizer of (1.1), then there exists a parameter λ > 0 such that X†

is also a global minimizer of (1.3).
Proof. First, we show that X† and Y have the same sets of left and right singular

vectors. For if otherwise, then by Von Neumann’s trace inequality [41], we have

m∑
i=1

(σY,i − σX†,i)
2 < ∥Y −X†∥2F = η,

where the last equality is by Lemma 3.2. Similar to the proof in Lemma 3.2, we can
then construct a matrix X̂ such that f(X̂) < f(X†) while ∥Y − X̂∥2F ≤ η. This
contradicts the assumption that X† is a global minimizer of (1.1).

Next, we show that the singular values of X† can be obtained by the Lagrangian
multiplier method. Let Y = UΣY V

T be the SVD of Y . By the above paragraph, the
solution of (1.1) is given by X† = UΣX†V T . Here ΣX† can be obtained by solving
the minimization problem

min
∥ΣX−ΣY ∥2

F≤η
f(ΣX). (3.2)

We note that the constraint ∥ΣX − ΣY ∥2F ≤ η must be an active constraint. For if
not, then X = 0 is a minimizer and we obtain ∥ΣY ∥2F = ∥Y ∥2F ≤ η, a contradiction.

Without loss of generality, we consider f(ΣX) =
∑

i wiσX,i (for nuclear norm, all
wi = 1). Then (3.2) can be reformulated into

min
σX∈S

∑
i

wiσX,i, (3.3)

where

S = {σX = (σX,1, . . . , σX,m)T : ∥σX − σY ∥22 ≤ η, σX,i ≥ σX,2 ≥ · · · ≥ σX,m ≥ 0}.

Since σY ∈ S is a strictly feasible point, the minimization problem satisfies Slater’s
condition [2, Proposition 3.3.9]. Therefore, there must exist a Lagrangian multiplier
α > 0 such that the solution of (3.3) (which is the same as the solution of (1.1)) can
be obtained by minimizing the Lagrangian function

min
σX≥0

m∑
i=1

wiσX,i +
α

2

(
∥σX − σY ∥22 − η

)
.
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The objective function is separable in each i, hence we obtain

σX†,i = (σY,i − wi/α)+ ∀i = 1, . . . ,m. (3.4)

It is easy to check that we have σX†,i ≥ σX†,i+1 due to the ordering of the singular
values σY,i and the weights ωi.

Finally, we show that the lemma holds. It is obvious that σX†,i given by (3.4) are
precisely those singular values in the SVT operator (see (2.3)) or a WSVT operator
(see (2.9)) with the thresholding parameter λ = 1/α. Therefore, by Theorem 2.2 or
Theorem 2.8, we have

f(X†) +
α

2
∥X† − Y ∥2F ≤ f(X) +

α

2
∥X − Y ∥2F ,

for all X ∈ Rm×n.
Based on the above lemma, we can find a suitable regularization parameter λ

when the bound η is given such that a solution of (1.3) is one of the solution of (1.1).

3.1. Choice of Upper bound. It is very important to choose a suitable reg-
ularization parameter λ in the regularized minimization problem (1.3) because the
quality of the recovered matrix highly depends on this parameter. If λ is too large,
the given data cannot be fitted correctly, and if it is too small, the shrinkage is insuf-
ficient. The Morozov discrepancy principle [15, 42] is one method to choose λ. This
principle selects λ such that the residual norm is bounded, i.e., a good regularized
solution X(λ) should lie in a set {X : ∥Y −X(λ)∥2F ≤ η}, where η is an upper bound
of the discrepancy depending on the noise level. Now we consider how to choose the
bound η.

According to the discussion in Section 2, the minimizer of the regularized problem
(1.3) has a closed form solution and is a function of the parameter λ. We will use

X̂(λ) to denote the minimizer. Notice that the residual Y − X̂(λ) can be rewritten

as Y − X̂(λ) = X† +W − X̂(λ), where X† is the true solution and each entry of the

error matrix W is the Gaussian noise with zero mean and variance τ2. If X̂(λ) is a
good estimation of X†, then the residual should be dominated by the Gaussian noise
W . We introduce the following theorems which can be found in [24, 38, 39].

Theorem 3.4. Assume that all the entries of W are of normal independent
distribution with mean 0 and variance τ2. Then ∥Y − X†∥2F is χ2-distributed with
variance τ2 and mn degree of freedom, i.e., 1

τ2 ∥W∥2F ∼ χ2
mn. Moreover, we have

E∥W∥2F = mnτ2.

Theorem 3.5. Suppose that g is a Lipschitz function on matrices:

|g(X)− g(Y )| ≤ L∥X − Y ∥F , for all X,Y ∈ Rm×n.

Given a Gaussian matrix W ∼ N (0, τ2I), then

P{g(W ) ≥ Eg(W ) + Lτt} ≤ e−t2/2.

Since ∥ · ∥F is Lipschitz continuous with L = 1, we obtain

P{∥W∥F ≤ E∥W∥F + tτ} ≥ 1− e−t2/2.

9



We can change t to get an upper bound of the Gaussian noise ∥W∥F with high
probability (e.g. when t ≥ 4, the noise is bounded with probability greater than
0.9996).

According to Theorems 3.4 and 3.5, it is natural to set the upper bound of ∥W∥2F
to η = mnτ2. However, X̂(λ) is obtained by applying the SVT operator to Y , hence

X̂(λ) is dependent on the noise W . It is reasonable to modify the upper bound to

η = cmnτ2, (3.5)

where c ≃ 1 can be adjusted appropriately to suit the applications [4, 17]. We see
that the parameter η depends on the estimation of the noise level τ . If the noise level
is not given, τ can be estimated by using the median rule [13, 35], i.e.,

τ = median(|ŶHH |)/0.6745, (3.6)

where ŶHH is the high-high coefficients of Y at the finest wavelet transform level.
Once the upper bound η is determined, we are in the position to find λ in terms of

η. Because the regularization parameter λ can be regarded as the Lagrange multiplier
associated with the active constraint, the complementarity condition states

∥Y − X̂(λ)∥2F = η. (3.7)

It means that the optimal regularization parameter λ is the root of the nonlinear
equation (3.7).

4. Solutions for the Constrained and Unconstrained problems. In this
section, we first consider finding an analytical expression of λ for the unconstrained
problem (1.3) when the bound η for the constrained problem (1.1) is given (e.g.
as in (3.5)). Since the regularization parameter λ is the same as the thresholding
parameter used in the singular value soft-thresholding operator, we can hence solve
the unconstrained problem (1.3) easily. By the equivalence of the two minimization
problems, the constrained problem with the bound η is also then solved.

4.1. Nuclear Norm. Let f(X) = ∥X∥∗, we know that the minimizer of the
nuclear norm regularized minimization problem (2.2) is given by the SVT operator,

see Theorem 2.2. We first show that ∥Y − X̂(λ)∥2F is a positive and strictly increasing
function of λ.

Theorem 4.1. Let σY,i, i = 1, ...,m be the singular values of Y ∈ Rm×n with

σY,1 ≥ σY,2≥ . . . ≥ σY,m ≥ 0 and X̂(λ) be the solution of (2.2) obtained by the SVT

operator acting on Y . Then ∥Y −X̂(λ)∥2F is a positive and strictly increasing function
of λ in the interval [0, σY,1].

Proof. According to Theorem 2.2, we have

Y − X̂(λ) =
m∑
i=1

σY,iuiv
T
i −

m∑
i=1

max(σY,i − λ, 0)uiv
T
i =

m∑
i=1

min(σY,i, λ)uiv
T
i .

Hence we have

ϕ(λ) ≡ ∥Y − X̂(λ)∥2F =
m∑
i=1

min(σ2
Y,i, λ

2). (4.1)
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Without loss of generality, we assume σY,1 > 0 and define σY,m+1 = 0. For any
λ satisfying 0 = σY,m+1 < λ ≤ σY,1, there must exist an index k such that λ ∈
(σY,k+1, σY,k]. Then we have

ϕ(λ) = kλ2 +
m∑

i=k+1

σ2
Y,i, (4.2)

where the first term is a quadratic function with respect to λ and the second term is
independent of λ. Thus ϕ(λ) is a strictly increasing function in (σY,k+1, σY,k]. One
can easily check that

lim
λ→σ−

Y,k+1

ϕ(λ) = ϕ(σY,k+1) = kσ2
Y,k+1 +

m∑
i=k+1

σ2
Y,i,

which implies that ϕ(λ) is a continuous function. Thus we can deduce that ϕ(λ) is a
positive and strictly increasing function in the interval [0, σY,1].

Based on Theorem 4.1, We know ϕ(λ) = 0 for λ = 0 and ϕ(λ) =
∑m

i=1 σ
2
Y,i =

∥Y ∥2F for λ ≥ σY,1. Thus we obtain 0 ≤ ϕ(λ) ≤ ∥Y ∥2F and we have the following
theorems.

Theorem 4.2. Let X̂(λ) be the solution of (2.2) obtained by the SVT operator
acting on Y and let η > 0 be such that ∥Y ∥2F > η. Then the nonlinear equation

∥Y − X̂(λ)∥2F = η has a unique solution λ > 0.
Proof. We define a new sequence

bj = jσ2
Y,j +

m∑
i=j+1

σ2
Y,i. (4.3)

It is obvious that the sequence bj is non-increasing, that is b1 ≥ b2 ≥ . . . ≥ bm. Define
bm+1 = 0. Since b1 > η > 0, we choose the subscript k such that bk+1 < η ≤ bk. Let

λ =

√√√√(η −
m∑

i=k+1

σ2
Y,i)/k. (4.4)

Since η > bk+1, we have λ > 0. By (4.2), we have ϕ(λ) = η.

4.2. Generalized Weighted Nuclear Norm. Now we consider the mono-
tonicity of the discrepancy ∥Y − X̂w(λ)∥2F with respective to the parameter λ. For
any 0 < λ ≤ σY,1, there exists an index k such that λ ∈ (σY,k+1, σY,k]. Suppose

X̂w(λ) is the solution of (2.8) with non-descending weights {wi}, i = 1, ...,m, then
using (2.9) and after some manipulations similar to those in Theorem 4.1, we have

ψ(λ) ≡ ∥Y − X̂w(λ)∥2F =

(
k∑

i=1

w2
i

)
λ2 +

m∑
i=k+1

σ2
Y,i. (4.5)

Comparing to the function ϕ(λ) in (4.2), the coefficient k of λ2 is replaced by the sum

of the weighted square
∑k

i=1 w
2
i for the function ψ(λ). Obviously, we can obtain the

following result similar to Theorem 4.1.
Theorem 4.3. Let X̂w(λ) be the solution of (2.8) obtained by applying the

WSVT operator (2.9) acting on Y . Then the function ψ(λ) is a positive and strictly
increasing function of λ in the interval [0, σY,1].
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The result for Theorem 4.2 can be easily extend to the case for the weighted
nuclear norm minimization problem. Notice that the WSVT operator in (2.9) can be
reformulated into

WSVTλ(Y ) =
m∑
i=1

wi

(
σY,i
wi

− λ

)
+

uiv
T
i .

Hence the weighted singular values σY,i/wi which are less than the threshold param-
eter λ are set to zero. Similar to (4.3), we define the sequence

bj = (
σY,j
wj

)2
j∑

i=1

w2
i +

m∑
i=j+1

σ2
Y,j , j = 1, ...,m, (4.6)

with bm+1 = 0. Then {bj}m+1
j=1 is a non-increasing sequence. Since by Theorem 4.3,

the function ψ(λ) defined by (4.5) is a positive and strictly increasing function of the
parameter λ, we see that there exists an index k such that bk+1 < η ≤ bk. Hence we
have the following theorem.

Theorem 4.4. Let X̂w(λ) be the solution of (2.8) obtained by applying the

WSVT operator (2.9) on Y . Then the nonlinear equation ψ(λ) ≡ ∥Y − X̂w(λ)∥2F = η
has a unique solution

λ =

√√√√(η −
m∑

i=k+1

σ2
Y,i)/

k∑
i=1

w2
i . (4.7)

for any η satisfying 0 < η < ∥Y ∥2F .
Based on the above Theorems, there exists a parameter λ such that the minimizer

of (1.1) is a SVT operator or WSVT operator with respect to λ. We can find a suitable
regularization parameter λ when the bound η is given such that a solution of (1.1)
is one of the solution of (1.3). Since the regularization parameter λ is the same as
the thresholding parameter used in the singular value soft-thresholding operator, we
can hence solve the unconstrained problem (1.3) easily. By the equivalence of the two
minimization problems, the constrained problem with the bound η is also then solved.
We summarize the algorithm for solving the nuclear norm minimization problem (1.1)
in Algorithm 1.

Algorithm 1 Low-rank matrix recovery for constrained minimization problem

Input: Observation matrix Y and η
Output: Estimated matrix X
1: if ∥Y ∥2F ≤ η then
2: X = 0
3: else
4: Y = UΣY V

T,ΣY = diag(σY,1, ..., σY,m)
5: Compute bj , j = 1, ...,m by (4.3) or (4.6)
6: Find k such that bk > η ≥ bk+1

7: Compute λ by (4.4) or (4.7)
8: end if
9: return X = SVTλ(Y ) or X = WSVTλ(Y )
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4.3. Randomized Algorithm for Large-scale Problems. When the singu-
lar value thresholding operator is applied to recover the low-rank matrix, we need to
calculate all the singular values of the observed matrix Y ∈ Rm×n. The computation
complexity is O(m2n) (here m ≤ n). For large-scale matrices, singular values calcula-
tion is very time-consuming, which makes it infeasible in practical applications such as
those in data sciences and image processing. In order to avoid directly computing all
the singular values, one can use the randomized SVD (RSVD) approach [24, 37, 43].
The key is to extract a small core matrix by finding an orthonormal matrix with the
unitary invariant property.

Let rank(X) = s and s < ℓ ≤ m. There exists an orthogonal matrix Qℓ ∈ Rn×ℓ

with QT
ℓ Qℓ = Iℓ and a matrix A ∈ Rm×ℓ such that X has the factorization X = AQT

ℓ .
Hence we have

∥Y −X∥2F = ∥Y Qℓ −A∥2F + a. (4.8)

Here a = ∥Y ∥2F −∥Y Qℓ∥2F . Obviously, Y Qℓ ∈ Rm×ℓ is a matrix with the size less than
Y . Notice that f(A) = f(X) for rank(X) ≤ ℓ, where f(X) denotes the nuclear norm,
the truncated nuclear norm or the weighted nuclear norm of X. Therefore, instead
of solving the regularized minimization problem (1.3), by changing the variable, we
consider the following reduced minimization problem

min
A
f(A) +

1

2λ
∥Y Qℓ −A∥2F . (4.9)

The size of the matrix Y Qℓ is smaller than that of Y .
Here we consider the solution of the reduced problem and once we obtain the

optimal solution for A, the matrix X can be recovered by X = AQT
ℓ . Therefore the

computation complexity can be significantly improved when ℓ ≪ n. Similarly, for
the constrained minimization problem, the constraint can be reformulated as ∥Y Qℓ−
A∥2F ≤ η − a according to (4.8). Thus we consider the following equivalent reduced
problem

min
∥Y Qℓ−A∥2

F≤η−a
f(A). (4.10)

During the procedure to construct the reduced problem, we have assumed that Qℓ

is known in advance and the rank of X is less than the column number of Qℓ. In some
applications, however, the rank of X is unknown. We can estimate the rank of X
according to the dominant components of the singular values of the noisy observation
matrix Y . One way to obtain the dominant components of the singular values of Y is
to construct an orthogonal matrix Qℓ such that the columns of Qℓ are the ℓ dominant
right singular vectors of Y . The randomized method can be applied to efficiently
compute Qℓ. An ideal Qℓ should satisfy the condition that the number of columns of
the orthogonal matrix Qℓ is as small as possible such that the error ∥Y QℓQ

T
ℓ − Y ∥

is less than some desired tolerance. The details for the randomized method can be
found in [24].

Clearly, once Qℓ and η are given, we can apply the same ideas developed in
Subsection 4.1 and Subsection 4.2 to obtain the regularization parameter λ and hence
solve the reduced problems (4.9) and (4.10).

Now we analyze the computational complexity of using the standard SVD in Al-
gorithm 1. The SVD costs O(m2n). Computing the sequences bj and λ require O(m2)
and O(m), respectively. Then forming the optimal X needs O(m2n). Therefore, the
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total computational complexity of Algorithm 1 is O(2m2n+m2+m). If we use the ran-
domized SVD, the total computational complexity is reduced toO(2ℓ2m+ℓ2+ℓ). Since
ℓ≪ m, the computation speed can be significantly improved. We note that before cal-
culating the projection problem (4.10), the orthogonal matrix Qℓ must be calculated.
The cost of obtaining Qℓ in q iterations of the power method is O(2qmnℓ+(m+n)ℓ2q),
see [24].

5. Applications. The discrepancy principle is a classical method to choose the
regularization parameter λ for the regularized model (1.3) provided that an upper
bound of the constraint ∥X − Y ∥2F ≤ η is given. In Section 3, we have developed the
closed form formulas of λ for the NN case and the GWNN case. Once the parameter
λ is determined, the regularized solution of (1.3) can be reconstructed by the soft-
thresholding formulas (2.3) and (2.9) directly. These solutions are also the solutions
for the unconstrained problem (1.1) for the given η. The ideas can easily be extended
to cover the TNN case (which is a shifted NN case, see Subsection 2.3) and the
randomized case, see Subsection 4.3.

We illustrate the efficiency of solving the problems (1.1) and (1.3) using our ap-
proach in the following experiments. We denote the results obtained by the nuclear
norm minimization problem (2.2) using our proposed regularization parameter λ as
“NN-DP” (see (4.4)). When the truncated nuclear norm or the generalized weighted
nuclear norm is used, we denote our method as “TNN-DP” or “GWNN-DP” respec-
tively. In the following tests, we set r = 1 for TNN, and the weights wi = (σY,i+ϵ)

p−1

with p = 0.7 and ϵ = 10−6 for GWNN.

We compare the proposed algorithms with the following two approaches:

• SURE [9]: The optimal soft thresholding parameter can be estimated by
minimizing

SURE (SVTλ(Y )) = −mnτ2+
m∑
i=1

min
(
λ2, σ2

Y,i

)
+2τ2 div (SVTλ(Y )) , (5.1)

where ‘div’ is the divergence of SVTλ with respect to Y . The solution is then
given by

X̂SURE =
m∑
i=1

(σY,i − λ†)+uiv
T
i ,

where λ† minimizes the SURE function. As suggested in [9], λ† is obtained by
trial-and-error on 101 logarithmically equally spaced points between 10−1 and
107. The SURE approach can be easily generalized to the TNN and GWNN
too. We denote the resulting methods by “NN-SURE”, “TNN-SURE” and
“GWNN-SURE”.

• HardT [18]: The optimal hard threshold is chosen as λ = (4/
√
3)
√
nτ when

the noise level τ is known or 0.2858σY,med when τ is unknown. Here σY,med

denotes the median value of the singular values of Y . The recovered matrix
is given by

X̂HardT =
m∑
i=1

σY,i1(σY,i>λ)uiv
T
i .
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Figure 5.1. The threshold parameter λ versus SNR for the different rank rations, different
noise levels, and different matrix size. The parameters determined by “SURE” and “NNM-DP” are
represented by black “•”, and magenta “+”, respectively.

5.1. Simulations on Synthetic Data. In the first set of experiments, we con-
sider removing noise from synthetical matrices with size m× n. The rank of the true
low-rank matrix X is determined by the rank ratio ρ and is generated by the product
of two randomly sampling matrices M ∈ Rm×s and N ∈ Rn×s from the standard
uniform distribution, i.e., X† = MNT where s = round(ρmax(m,n)). The observed
matrix Y is obtained by Y = X† +W where W ∈ Rm×n is a matrix of zero-mean
Gaussian white noise with standard deviation τ . We recover the matrix X† from its
noisy observation matrix Y by solving the constrained minimization problem (1.1).
The bound η is determined by (3.5) with c = 1. The Signal-to-Noise Ratio (SNR)1 is
used to measure the quality of the recovered matrix.

5.1.1. Regularization Parameter Selection. We first show that the selected
regularization parameter by our method is a good one. We consider the standard
nuclear norm as the penalty function. Rank ratio is set to ρ = 5% and 10% and the
noise standard derivation level is set to τ = 1, 3, 5, 7 respectively. The size of the
matrix is set to m = n = 500, 1000, 2000 respectively.

The plots in Figure 5.1 show the curves of the SNR against the regularization
parameter λ for different rank ratios and different noise levels. The SNR obtained by
our approach (i.e., solving the minimization problem (1.3) using Algorithm 1) and by

1SNR is defined by SNR = 10 log

(
∥X∥2F

∥X−X̂∥2
F

)
, where X̂ is the estimated matrix.
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the “SURE” are marked by black “•” and magenta “+” respectively. We observe in
the figures that even if the noise level is the same, the optimal regularization parameter
varies with the size of the matrix. We also observe that the SNRs obtained by “SURE”
are close to the maximum of the curve in most cases because the parameter obtained
by “SURE” has the minimum MSE within a given range of the parameter.

The regularization parameter obtained by our method tend to be slightly larger
than the optimal one. This is consistent with the observations that the selection of
discrepancy principle with c = 1 usually yields an over smoothed result [11, 17]. In
order to obtain the optimal SNRs, one can choose a small value for c (i.e., c < 1) or
decrease the regularization parameter.

We remark that when the size of the matrices is big and the rank ratio is small
(see the last row in the figure), our method gives better λ. We also note that “SURE”
obtains the regularization parameters by solving the minimization problem (5.1) by
trial-and-error, which is time-consuming, while our method provides a closed form
formula for λ directly (see (4.4) and (4.7)). We will see below that the CPU running
time of our method is indeed much faster than that of “SURE”.

5.1.2. Comparisons of Denoising Results. In this subsection, we compare
the different methods in denoising. Here two tasks are performed. The first one is
based on the full observation matrix, and the second one is based on the randomized
projected matrix after dimensionality reduction. In the randomized case, the size ℓ of
the projection matrix Qℓ (see Subsection 4.3) is specified in advance for the best rank-
ℓ approximation. Here we take ℓ = s+ 5, where s = round(ρmax(m,n)). According

to (4.8), the bound η̂ for the matrix Ŷℓ = Y Qℓ is given by

η̂ = η − ∥Y ∥2F + ∥Ŷℓ∥2F .

Note that “HardT” and “SURE” need the noise level of the low-dimensional matrix
Ŷℓ as an input argument. Its noise level can be estimated by τ̂ = (cmnτ2 − ∥Y ∥2F +

∥Ŷℓ∥2F )/(nℓ) if the noise level τ of Y is given. Otherwise, one needs to estimate it

either implicitly or explicitly from Ŷℓ.
We set the matrix size m = n = 500, 1000, 2000, 4000, and the standard deviation

τ = 3, 5 respectively. The rank ratio ρ is set to 1%, 5%, 10%, 20%, 40%, and the rank
of the clean matrix X† is fixed to ρmax(m,n). We consider four different types of
objective functions: rank(X), ∥X∥∗, ∥X∥r (with r = 1) and ∥X∥w,∗. In fact, the
penalty functions ∥X∥∗, ∥X∥r and ∥X∥w,∗ are relaxations of the function rank(X).
Here the SNRs and CPU running times are computed by running the experiments 10
times and taking the average of the 10 tests. We use boldface to mark the best method
for a given matrix amongst all the different regularization norms and methods; and
we use the italic font to mark the best method for the given regularization norm.

The SNRs obtained by different methods are shown in Table 5.1 for the standard
non-randomized algorithms. From the table, we see that the SNRs obtained by the
rank function are larger than those obtained by the nuclear norm and its variants
when X is of small rank and small size. With the increase of the rank and the
size, the SNRs obtained by the rank function become smaller than those obtained by
other functions. When comparing the parameter strategy of “DP” (i.e. ours) and
“SURE” in NN model, we observe that the SNRs are approximately equal, while the
SNR obtained by our “DP” is slightly larger than that by “SURE” in many of the
cases. We also observe that the SNRs obtained by TNN and GWNN are larger than
those obtained by NN, which indicates their superiority in characterizing low-rank
properties.
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Table 5.1
Comparison of SNR(dB) for different methods with standard algorithm.

f(X) Rank(X) ∥X∥∗ ∥X∥r ∥X∥w,∗

m = n τ ρ HardT
NN-
SURE

NN-DP
TNN-
SURE

TNN-DP
GWNN-
SURE

GWNN-
DP

500 3 1% 14.47 11.78 11.96 14.47 14.47 13.49 13.05
5% 22.99 21.84 21.94 22.99 22.99 22.82 22.82
10% 26.25 25.69 25.72 26.25 26.29 26.22 26.21
20% 29.43 29.30 29.30 29.59 29.59 29.51 29.54
40% 32.48 32.72 32.75 32.84 32.89 32.84 32.84

5 1% 11.35 8.53 8.51 11.35 11.35 9.96 9.31
5% 21.80 19.71 19.75 21.80 21.79 21.30 21.26
10% 25.57 24.16 24.20 25.57 25.53 25.34 25.32
20% 29.06 28.26 28.27 29.06 29.03 28.97 28.94
40% 32.29 31.92 31.91 32.31 32.31 32.27 32.26

Average SNR 24.57 23.39 23.43 24.62 24.62 24.27 24.16
Average time (sec) 0.054 1.124 0.059 1.178 0.060 1.144 0.058
1000 3 1% 19.22 17.69 17.94 19.22 19.25 18.90 18.97

5% 26.46 26.34 26.34 26.64 26.65 26.61 26.62
10% 29.51 29.71 29.72 29.87 29.88 29.84 29.85
20% 32.54 33.14 33.10 33.20 33.18 33.16 33.15
40% 35.39 36.67 36.59 36.71 36.63 36.65 36.59

5 1% 17.76 15.34 15.48 17.76 17.76 16.98 16.90
5% 26.08 25.22 25.25 26.08 26.05 25.97 25.95
10% 29.32 28.89 28.88 29.32 29.31 29.30 29.26
20% 32.44 32.29 32.29 32.52 32.51 32.47 32.46
40% 35.51 35.57 35.63 35.68 35.73 35.67 35.69

Average SNR 28.42 28.09 28.12 28.70 28.70 28.56 28.54
Average time (sec) 0.240 5.646 0.261 5.992 0.267 5.895 0.249
2000 3 1% 22.64 22.62 22.63 23.02 23.09 23.04 23.08

5% 29.54 30.27 30.31 30.37 30.40 30.50 30.44
10% 32.48 33.79 33.67 33.83 33.71 33.80 33.74
20% 35.64 37.27 37.11 37.28 37.13 37.33 37.14
40% 39.12 41.06 40.74 41.07 40.74 41.05 40.74

5 1% 22.17 21.07 21.15 22.17 22.16 21.99 22.00
5% 29.46 29.30 29.29 29.53 29.53 29.46 29.49
10% 32.52 32.54 32.59 32.67 32.70 32.67 32.67
20% 35.55 35.86 35.87 35.91 35.92 35.85 35.89
40% 38.55 39.26 39.25 39.29 39.27 39.26 39.23

Average SNR 31.77 32.30 32.26 32.51 32.47 32.50 32.44
Average time (sec) 1.572 28.956 1.571 31.651 1.583 30.140 1.562
4000 3 1% 26.06 27.19 27.12 27.35 27.27 27.58 27.48

5% 33.37 34.85 34.66 34.88 34.68 35.05 34.85
10% 36.70 38.23 38.03 38.25 38.04 38.42 38.16
20% 40.21 41.95 41.54 41.96 41.55 42.05 41.62
40% 43.99 45.90 45.28 45.90 45.29 45.92 45.32

5 1% 25.57 25.44 25.44 25.75 25.75 25.72 25.73
5% 32.55 32.87 32.97 32.92 33.03 33.00 33.04
10% 35.56 36.31 36.25 36.33 36.28 36.32 36.28
20% 38.44 39.69 39.63 39.70 39.64 39.70 39.64
40% 41.61 43.38 43.17 43.39 43.18 43.32 43.16

Average SNR 35.41 36.58 36.41 36.64 36.47 36.71 36.53
Average time (sec) 14.232 159.368 14.313 161.864 14.355 160.932 14.334

In terms of CPU running time, our “DP” method is almost as fast as the “HardT”
method as we only need one substitution to get λ (see (4.4) and (4.7)) and then
obtain the solution by the thresholding operators similar to the “HardT” method.
In contrast, “SURE” method requires a minimization of the SURE function (5.1) by
trial-and-error. According to the CPU running time, our “DP” method is at least 11
times faster than the “SURE” method.

Now we compare the performance of different methods for the randomized algo-
rithms, and we list the SNRs in Table 5.2. Similar conclusions can be observed among
different methods. Note that for the nuclear-norm problem, our “DP” approach out-
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Table 5.2
Comparison of SNR(dB) for different methods with randomized algorithm.

f(X) Rank(X) ∥X∥∗ ∥X∥r ∥X∥w,∗

m = n τ ρ HardT
NN-
SURE

NN-DP
TNN-
SURE

TNN-DP
GWNN-
SURE

GWNN-
DP

500 3 1% 14.47 11.78 12.28 14.47 14.47 13.62 13.15
5% 22.99 21.75 22.02 22.99 22.97 22.75 22.81
10% 26.25 25.52 25.72 26.25 26.25 26.15 26.18
20% 29.43 29.05 29.29 29.43 29.57 29.39 29.52
40% 32.48 32.19 32.74 32.48 32.88 32.47 32.84

5 1% 11.35 8.19 8.79 11.35 11.35 9.97 9.45
5% 21.80 19.39 19.90 21.80 21.79 21.30 21.29
10% 25.57 23.90 24.25 25.57 25.52 25.34 25.32
20% 29.06 28.04 28.27 29.06 29.03 28.93 28.94
40% 32.29 31.72 31.91 32.29 32.31 32.25 32.26

Average SNR 24.57 23.15 23.52 24.57 24.61 24.22 24.18
Average time (sec) 0.005 0.116 0.006 0.123 0.007 0.117 0.006
1000 3 1% 19.22 17.71 18.11 19.22 19.18 18.90 18.95

5% 26.46 26.00 26.25 26.46 26.51 26.43 26.47
10% 29.51 29.32 29.64 29.51 29.78 29.50 29.75
20% 32.54 32.53 33.07 32.54 33.14 32.54 33.12
40% 35.56 35.76 36.59 35.82 36.62 35.89 36.59

5 1% 17.76 15.56 15.80 17.76 17.75 17.19 16.99
5% 26.08 25.04 25.30 26.08 26.01 25.97 25.92
10% 29.32 28.72 28.88 29.32 29.28 29.27 29.23
20% 32.44 32.12 32.28 32.44 32.49 32.41 32.45
40% 35.51 35.35 35.63 35.51 35.73 35.51 35.68

Average SNR 28.44 27.81 28.16 28.47 28.65 28.36 28.52
Average time (sec) 0.020 0.366 0.022 0.394 0.023 0.393 0.021
2000 3 1% 22.64 22.19 22.25 22.49 22.55 22.32 22.52

5% 29.50 29.69 30.01 29.73 30.08 29.49 30.09
10% 32.54 33.33 33.51 33.36 33.55 33.15 33.56
20% 35.64 36.83 37.06 36.84 37.08 37.02 37.09
40% 38.95 40.72 40.73 40.73 40.74 40.54 40.73

5 1% 22.17 21.25 21.27 22.17 22.09 21.99 21.96
5% 29.46 29.12 29.23 29.46 29.43 29.45 29.39
10% 32.52 32.35 32.52 32.52 32.63 32.51 32.59
20% 35.55 35.46 35.84 35.55 35.89 35.54 35.86
40% 38.57 38.56 39.24 38.57 39.27 38.57 39.23

Average SNR 31.75 31.95 32.17 32.14 32.33 32.06 32.30
Average time (sec) 0.089 1.810 0.095 2.040 0.094 2.016 0.092
4000 3 1% 23.82 25.39 26.14 25.49 26.21 25.51 26.22

5% 32.88 33.98 34.34 33.99 34.36 33.94 34.40
10% 36.60 37.71 37.89 37.72 37.90 37.68 37.96
20% 40.11 41.62 41.51 41.62 41.51 41.60 41.56
40% 43.70 45.66 45.28 45.66 45.28 45.64 45.31

5 1% 25.57 24.69 25.16 25.02 25.39 24.92 25.37
5% 32.55 32.33 32.73 32.36 32.78 32.48 32.77
10% 35.56 35.87 36.11 35.88 36.14 35.43 36.13
20% 38.58 39.18 39.59 39.19 39.60 39.29 39.59
40% 41.62 42.95 43.17 42.95 43.18 42.98 43.15

Average SNR 35.10 35.94 36.19 35.99 36.24 35.95 36.25
Average time (sec) 0.500 9.363 0.509 9.532 0.522 9.578 0.516

perform the “SURE” approach in 38 out of the 40 different cases we tested. We also
observe that in most cases, the SNRs obtained by the randomized algorithm are e-
qual to or slightly lower than these by the standard algorithm. We remark that the
difference of the SNRs comes from the difference between Y QℓQ

T
ℓ and Y . The speed

advantage of the randomization algorithm is more obvious with the increase of matrix
dimension. When m = n = 4000, the random algorithm is 28 times faster than the
standard algorithm.
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Table 5.3
SNRs comparison of different methods for the PINCAT Numerical Phantom.

τ Noisy HardT
NN-
SURE

NN-DP
TNN-
SURE

TNN-
DP

GWNN-
SURE

GWNN-
DP

5 27.50 33.19 33.76 33.71 34.34 34.42 35.03 35.02
10 21.48 27.60 28.79 28.73 29.64 29.69 30.13 30.13
15 17.96 24.33 25.90 25.85 26.89 27.01 27.33 27.31
20 15.46 22.01 23.88 23.83 25.09 25.14 25.34 25.31
25 13.52 20.21 22.23 22.26 23.73 23.70 23.81 23.76
30 11.94 18.74 21.02 20.98 22.54 22.53 22.54 22.48
35 10.60 17.49 19.84 19.90 21.59 21.55 21.46 21.40
40 9.44 16.41 18.97 18.96 20.77 20.70 20.52 20.46
45 8.42 15.45 18.11 18.13 19.99 19.94 19.68 19.62
50 7.50 14.59 17.29 17.39 19.34 19.27 18.92 18.88

Average 14.38 21.00 22.98 22.97 24.39 24.40 24.48 24.44

Average Time – 19.01 733.34 20.12 761.91 20.06 754.24 20.81

(a) Truth (b) Noisy (c) HardT

(d) NN-SURE (e) TNN-SURE (f) WNNM-SURE

(g) NN-DP (h) TNN-DP (i) GWNN-DP

Figure 5.2. The truth image with an enlarged portion cropped out from the image for T = 10,
its noisy image by τ = 30, and the denoised images by different methods.

5.2. Simulations on PINCAT Numerical Phantom. In the following, we
compare the performance of different methods in dynamic MRI-denoising. We use
the same data set and parameter settings presented in [9]. There are 50 images of size
128 × 128 taken at 50 time-steps. The physiologically-improved NCAT (PINCAT)
numerical phantom [47] simulates a first-pass myocardial perfusion real-time MRI
series. The free-breathing model is available in the kt-SLR software package [32].
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(a) NN-SURE (b) TNN-SURE (c) GWNN-SURE

(d) NN-DP (e) TNN-DP (f) GWNN-DP

Figure 5.3. The worst-case error through time of different methods for the the PINCAT
Numerical Phantom.

The noise is mainly caused by thermal noise and physiological noise, which follows
the Gaussian distribution. Complex identical and independent Gaussian noise were
added to the image data.

The locally low-rank recovery (LLR) method [48] is applied to remove the noise.
LLR is the generalization of low-rank matrix reconstruction, which spatially partitions
the image sequence into small blocks by a fixed sliding window with stride 1. In the
experiment, the sliding window size is set to 7×7. We reshape each partitioned block
into a 49× 50 Casorati matrix (a matrix whose columns comprise vectorized patch of
the image sequence). Because the changes of each frame in the sequence are small, the
Casoratic matrix constructed from a clean image sequence is of low-rank. We solve
the low-rank matrix minimization problem by using each of these Casoratic matrices
as an observed matrix, and there are 1282 = 16, 384 of such minimization problems
to solve.

The SNR value is used to evaluate quantitatively the performance of different
methods, which are listed in Table 5.3. The best results among all methods are
shown in boldface and the best results for the given regularization norm are marked
in italic font. We see from the average SNR values that our method is only 0.01dB
lower than SURE for “NN” and “TNN” and 0.04dB lower for “GWNN”. However,
since we have to perform denoising on 16, 384 minimization problems of size 49× 50
each, the “SURE” method is very time-consuming. Our “DP” method is at least 35
times faster than the “SURE” method.

Figure 5.2 shows the truth image with an enlarged portion cropped out from the
image at the 10th time-step, the noisy image with τ = 30, and the denoised images
by different methods, respectively. We observe that there is still residual noise in the
denoised image obtained by “HardT”, which implies that the parameter chosen as in
[18] is not suitable for LLR. This is because the threshold selected is related to the
noise level only, and therefore the same threshold is selected for each block.
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We also compare the worst-case absolute error2 for our “DP” and “SURE” meth-
ods, which is shown in Figure 5.3. From the figures, we observe that “NN” exhibits
higher residual error than “TNN” and “GWNN”. Once again, the figures verify that
the results obtained by the truncated nuclear norm or weighted nuclear norm are
better than those by the standard nuclear norm or the hard thresholding scheme.

6. Conclusion. The constrained model and the regularized model for the low-
rank matrix recovery were considered in this paper. We have derived a formula for
the regularization parameter when a bound of the residual norm is given. The results
were used to select the regularization parameter automatically using the discrepancy
principle and to solve the constrained problem when the bound of the constraint is
given. Experimental results showed that the proposed approach is competitive to the
SURE methods in terms of noise removal and adaptive parameter selection, and is
much faster in terms of CPU time.
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