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A B S T R A C T

Detecting and segmenting unstained living adherent cells in differential interference contrast (DIC) images
is crucial in biomedical research, such as cell microinjection, cell tracking, cell activity characterization,
and revealing cell phenotypic transition dynamics. We present a robust approach, starting with dataset
transformation. We curated 520 pairs of DIC images, containing 12,198 HepG2 cells, with ground truth
annotations. The original dataset was randomly split into training, validation, and test sets. Rotations were
applied to images in the training set, creating an interim ‘‘𝛼 set.’’ Similar transformations formed ‘‘𝛽’’ and
‘‘𝛾 sets’’ for validation and test data. The 𝛼 set trained a Mask R-CNN, while the 𝛽 set produced predictions,
subsequently filtered and categorized. A residual network (ResNet) classifier determined mask retention. The
𝛾 set underwent iterative processing, yielding final segmentation. Our method achieved a weighted average of
0.567 in APbbox

0.75 and 0.673 in APsegm
0.75 , both outperforming major algorithms for cell detection and segmentation.

Visualization also revealed that our method excels in practicality, accurately capturing nearly every cell, a
marked improvement over alternatives.
1. Introduction

The cell, as the fundamental unit of life, exhibits a complex system
of material metabolism, energy conversion, and information regulation.
In a typical bacterial or animal cell, approximately 70% of its weight
consists of water, rendering it transparent and colorless [1].

Most of the cells derived from vertebrates, such as birds and mam-
mals, are adherent cells, excluding hematopoietic cells, germ cells,
and a few others. Adherent cells differ from suspension cells as they
rely on anchorage to a tissue culture-treated substrate for adhesion
and spreading, as depicted by scanning electron microscope (SEM)
images in Fig. 1. The irregular morphology of adherent cells contrasts

∗ Corresponding author.
E-mail addresses: fei.pan@ln.edu.hk, fpan@hkcoche.org, fei.pan@my.cityu.edu.hk (F. Pan), yutwu3-c@my.cityu.edu.hk (Y. Wu),

kangnicui2-c@my.cityu.edu.hk (K. Cui), shuxuchen2@cityu.edu.hk (S. Chen), yanfangli2-c@my.cityu.edu.hk, yanfangli@hdu.edu.cn (Y. Li),
yaofanliu2-c@my.cityu.edu.hk (Y. Liu), ashakoor2@um.cityu.edu.hk (A. Shakoor), hazhao3-c@my.cityu.edu.hk (H. Zhao), beijialu2-c@my.cityu.edu.hk (B. Lu),
shaohua.zhi@ln.edu.hk (S. Zhi), raymond.chan@LN.edu.hk, raymond.chan@cityu.edu.hk (R.H.-F. Chan), medsun@cityu.edu.hk (D. Sun).

1 Fei Pan and Yutong Wu contributed equally to this work.

with the spherical shape of suspension cells, presenting challenges for
algorithms in detection, segmentation, tracking, and analysis [2,3].

Furthermore, adherent cells’ transparency makes them nearly in-
visible under a light microscope without staining. Hence, researchers
commonly use differential interference contrast (DIC) microscopes, ca-
pable of observing delicate structures in living or unstained samples and
generating 3D images. The working principle involves converting the
phase difference of an object into amplitude changes through coherent
light beam interference, within a distance of just 1 μm or less, inside
and outside the sample.
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Fig. 1. Morphology of HepG2 cells under an SEM during the cell-spreading process
on glass coverslips captured in four steps. Cells were fixed and photographed after (a)
30 min, (b) 60 min, (c) 2 h, and (d) 24 h of attachment.

Fluorescence microscopy is common for observing macromolecules
in cells [4]. In this technique, short-wavelength excitation light passes
through an excitation filter, causing marked fluorescent molecules to
emit visible light. However, fluorescence microscopy has disadvantages
like photobleaching and photo-toxicity [5]. So, label-free microscopy is
the preferred noninvasive approach for observing living cells [3].

Common tasks of cell image processing include image classification,
cell detection/segmentation, tracking, and augmented microscopy [2].
Cell detection locates cell positions using bounding boxes (bboxes),
while instance segmentation detects each instance of different cells
and generates masks, even if in the same category [6]. Among these
tasks, accurate instance segmentation of unstained living adherent
cells in DIC images is a common problem in many biomedical experi-
ments, such as cell microinjection [7,8], cell tracking [9], cell activity
characterization [10], and revealing cell phenotypic transition dynam-
ics [11]. Solutions to this problem still need improvement, though
several data-independent and machine/deep-learning algorithms have
been proposed to deal with the challenge of instance segmentation for
various cell lines under different imaging modalities [3,12].

The difficulty of instance segmentation for unstained adherent cells
arises from at least four main challenges. Firstly, certain elongated cells
are both inclined and closely fused, making a region proposal network
(RPN) challenging to propose separate bboxes to differentiate them as
distinct instances. Consequently, such cells often remain undetected
by the RPN, resulting in their non-segmentation. Secondly, an RPN
can propose separate bboxes encompassing certain cells but the bboxes
overlap remarkably, leading to suboptimal mask segmentation. Such
cells tend to be treated as one large cell by the non-maximum sup-
pression (NMS) after bbox regression, causing them to appear merged
in the final segmentation outputs. Third, cells manifest diverse health
statuses, encompassing both healthy and unhealthy states. Yet, many
datasets and algorithms predominantly concentrate on cells in a singu-
lar healthy state. Last but not least, there was little high-quality DIC
cell image dataset. Currently, larger-scale datasets primarily consist of
phase contrast (PhC) images and fluorescence images, such as the cell
2 
tracking challenge (CTC) dataset [9], the LIVECell dataset [13], and the
TissueNet dataset [14].

In light of these considerations, our present study aims to contribute
two key elements: (1) the creation of a new, high-quality dataset
comprising finely annotated, high-resolution DIC images of unstained
living adherent cells; and (2) the development of a novel cascaded
method for detection and instance segmentation of these cells.

Our dataset comprises 520 DIC images of 12,198 unstained HepG2
human liver cancer cells, each with a corresponding fluorescence im-
age stained with calcein acetoxymethyl (AM), ensuring high-quality
ground-truth annotations. Unique in addressing the multi-state nature
of adherent cells commonly seen in wet labs, it includes both healthy
and unhealthy cells in a single image, providing a valuable resource for
studying multi-state cell detection and instance segmentation.

Our method is derived from an intuitive question: can we rotate all
input images by a certain degree and use both the original and rotated
images as inputs to improve bbox predictions? By doing so, appropriate
bboxes can be generated for easily overlooked and confused cells.

Before proceeding to our method, we randomly divide our dataset
into three distinct subsets: a training set, a validation set, and a test
set. Subsequently, we performed 45° rotations on the images and their
corresponding annotations within the training set. This process yielded
an interim dataset, denoted as the ‘‘𝛼 set’’, comprised of both the
original and rotated images, alongside their annotations. This rotated
image and the original image together form a dual-view input (DVI),
which offers several advantages: it enhances the coverage of bboxes for
those overlooked cells without considerably increasing types or counts
of predefined bboxes and concurrently diminishes bbox overlap for
those confused cells.

Similar procedures were applied to the validation and test sets,
resulting in the creation of the ‘‘𝛽 set’’ and ‘‘𝛾 set’’, respectively. The 𝛼
set was used to train a Mask R-CNN [15] with relaxed NMS. Following
training, the 𝛽 set underwent processing through the Mask R-CNN,
generating a substantial number of predictions. These comprehensive
yet redundant predictions were subjected to a connectivity-based fil-
tering and categorization process. Predictions featuring the highest
intersection over union (IoU) of masks are retained and categorized as
‘‘image (mask) patches to retain’’, whereas the remaining predictions
are classified as ‘‘image (mask) patches to discard’’. This categorization
bifurcates the image (mask) patches into two distinct groups.

A residual network (ResNet) classifier [16] was then trained on
these patches, determining which masks were to be retained. The use
of ResNet is referred to as supervised mask selection (SMS) because
it avoids unsupervised NMS of bboxes on the initial predictions from
Mask R-CNN and can efficiently classify numerous redundant outputs.
In the final step, the 𝛾 set underwent iterative processes mirroring the
previous steps, culminating in the derivation of the ultimate instance
segmentation results.

Our method outperforms major object detection and instance seg-
mentation algorithms on our dataset, achieving a weighted average
of 0.567 in APbbox

0.75 and 0.673 in APsegm
0.75 , accurately capturing nearly

every cell. In summation, our method optimizes instance segmentation
for adherent cells, mitigating challenges posed by overlapping and
inclined cells and accommodating various cell health states. This study
will directly benefit direct image cytometry by providing consistent,
quantitative, and informative cell measures and revealing cellular het-
erogeneity not easily detectable by humans. It will also aid various
downstream analyses and experiments relying on accurate cell in-
stance segmentation, such as cell activity analysis, cell phenotyping,
cell tracking, cell microinjection, and digital histopathology.

The article is organized as follows: Section 2 introduces instance
segmentation of generic objects and adherent cells. Section 3 describes
our dataset, while Section 4 provides details of our method. Section 5
reports quantitative and qualitative comparisons with other algorithms,
and Section 6 discusses dataset and algorithm limitations. Finally,

Section 7 concludes the study.



F. Pan et al. Computers in Biology and Medicine 182 (2024) 109151 
2. Related work

Instance segmentation has become a vital pursuit in computer vi-
sion, especially in fields like biomedical imaging. It aims to precisely
identify and segment individual instances of various object categories
within an image. Deep learning approaches for instance segmenta-
tion generally fall into two categories: one-stage and two-stage meth-
ods [17,18]. One-stage methods usually use convolutional neural net-
work (CNN) models directly for instance segmentation, omitting ex-
plicit feature localization. Conversely, two-stage methods, often based
on R-CNN, follow a two-step process: first, detecting bboxes containing
objects, and then predicting foreground—background masks for each
region of interest (RoI), as exemplified by Mask R-CNN.

Mask R-CNN, a milestone in generic instance segmentation, extends
Faster R-CNN [19] by integrating a mask branch for precise instance
delineation. Like Faster R-CNN, it employs an RPN to identify RoIs in
each input image. Subsequently, the model predicts the category and
spatial layout of the contained object.

Mask Scoring R-CNN [20] marks an advancement in instance seg-
mentation. It addresses a common challenge where the quality of
predicted masks does not always align with the classification score.
To tackle this, Mask Scoring R-CNN introduces a specialized network
block that learns and fine-tunes mask quality, resulting in improved
performance in instance segmentation.

In situations involving densely clustered or irregularly shaped ob-
jects, Rotated Mask R-CNN [21] introduces a novel approach. It ef-
fectively overcomes a limitation in Mask R-CNN, which struggles with
scenes containing multiple objects of the same class with high bbox
overlap. Unlike conventional methods that assume a single object per
bbox, Rotated Mask R-CNN employs rotated bboxes. This innovative
representation improves segmentation accuracy, particularly in real-
world applications like robotics, logistics, and household objects, where
such scenarios are common but often underrepresented in standard
datasets.

Similar to Rotated Mask R-CNN, Oriented R-CNN for object detec-
tion [22] and the subsequent Oriented R-CNN for instance segmenta-
tion [23] were introduced in 2021 and 2024, respectively. Oriented
R-CNN is mainly applied to object detection in remote sensing images,
where the oriented RPN generates arbitrarily oriented bbox proposals
and uses a lightweight fully convolutional network to improve effi-
ciency. Specifically, it achieves this by increasing the RPN regression
branch output parameters from four to six, using a midpoint offset
representation scheme.

Recently, PointRend [24] introduced a novel approach to instance
segmentation. Unlike traditional methods, it fine-tunes mask predic-
tions at specific points within the mask rather than uniformly. This tar-
geted refinement results in more precise object boundaries, mitigating
the issue of excessive smoothing seen in earlier techniques.

QueryInst [25] introduced a novel approach to instance segmenta-
tion, presenting a multi-stage end-to-end system that treats instances
as adaptable queries. Attributes such as categories, bboxes, instance
masks, and instance association embeddings are unified under this
query framework. QueryInst uniquely shares a query for both detec-
tion and segmentation, achieved through dynamic convolutions and
parallelly-supervised multi-stage learning.

In recent developments, attention-based transformers called DETR
or DEtection TRansformer [26] have shown promise in object de-
tection and universal image segmentation. It introduces a pioneering
approach by treating object detection as a direct set prediction prob-
lem, bypassing the need for hand-designed components like NMS and
bbox generation. It leverages a set-based global loss and a transformer
encoder–decoder architecture to ensure precise predictions through bi-
partite matching. Furthermore, DETR uses a fixed set of learned object
queries to reason about object relations and global image context,

streamlining the detection process. (

3 
While prior reviews [2,3,12] have covered instance segmentation
of adherent cells, some algorithms warrant attention. StarDist [27],
developed in 2018, was tailored for instance segmentation of stained
nucleus images [28]. Unlike traditional methods that rely on bboxes
or pixel grouping, StarDist employs star-convex polygons as a more
accurate representation of cell shapes. This eliminates the need for
subsequent shape refinement and addresses segmentation errors in
crowded cell scenarios.

In 2019, ANCIS [29] was proposed to detect and segment individual
rat neural stem cells (NSCs) in DIC images. By combining a single-
shot multi-box detector (SSD) [30] and a U-Net [31] within a unified
network, ANCIS simultaneously predicts precise bboxes and segmenta-
tion masks for each cell. This method leverages attention mechanisms
in both the detection and segmentation modules to focus on critical
features.

Also in 2019, a CNN-watershed-mixed algorithm was introduced to
detect and segment individual cells in PhC and DIC images through
a three-step process [32]. The initial step involved training a CNN to
learn the Euclidean distance transform of an input mask, followed by
training a Faster R-CNN to detect individual cells in the output image
from the first step. Finally, a watershed algorithm was applied to the
outputs of the preceding two steps to produce the final segmentation.

In 2020, Cell-DETR [33], inspired by DETR, was introduced for de-
tecting and segmenting cells in microstructures. It excels in segmenting
yeast in microstructured environments, surpassing existing methods for
semantic segmentation and offering individual object instance predic-
tions. However, it downsizes images before feature extraction, which
may potentially impact its ability to capture fine details.

In the same year, a test-time augmentation (TTA)-enhanced Mask
R-CNN [34] was developed. The proposed method rotates input images
by 90°, 180°, and 270° at the inference stage and uses a combination of
‘‘object matching’’ and ‘‘majority voting’’ strategy2 to decide whether to
keep a prediction. If one predicted object appears in most of the binary
mask images, it will be kept by voting. However if another predicted
object appears in only a few binary mask images, it will be excluded
by voting.

In 2021, a novel weakly supervised algorithm, which relies solely on
approximate cell centroid positions for training, was developed for cell
segmentation [35]. This algorithm comprises three steps: firstly, a cell-
detection CNN was trained using rough cell centroid positions. Second,
region back-propagation was employed to extract a cell relevance map.
Finally, graph-cut was applied to the relevance map obtained in the
second step to generate the final instance segmentation. This algo-
rithm reduces the annotation burden compared to standard supervised
methods.

In the same year, Cellpose [36] was developed for cellular segmen-
tation as a generalist algorithm. The authors of Cellpose found that
classical segmentation approaches based on the watershed algorithm
did not work well on fluorescence images of stained cells. These images
often have issues like the nuclear exclusion of the fluorescent marker
and its uneven distribution along cell borders and protuberances, lead-
ing to multiple intensity basins. To address this, they aimed to construct
an intermediate representation of an object that forms a single smooth
topological basin.

Their method consists of three steps. First, they generated topolog-
ical maps from fluorescence images of stained cells through simulated
diffusion using ground-truth masks drawn by a human annotator. Sec-
ond, they trained a modified U-net on these topological map datasets to
predict the horizontal and vertical gradients of the maps and a binary
map indicating if a pixel is inside or outside RoI. Third, they used
gradient tracking on the U-net predictions to route all pixels belonging
to a cell to its center, grouping them to recover individual cell shapes.

2 Majority voting: An object must be detected in the majority of the images
original and augmented) to be included as the final mask.
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TTA was used to improve predictions. Although Cellpose was tested on
various cell images, it currently lacks direct support for simultaneous
multi-class instance segmentation.3

More recently, a novel box-based instance segmentation network
as created for detecting and segmenting leaf and cell images [37]. It
ses an object-guided strategy to distinguish targets from neighboring
bjects with similar textures and low-contrast boundaries. It separates
arget objects from adjacent ones within the same bbox region by first
etecting object center points and predicting bbox parameters, followed
y object-guided coarse-to-fine segmentation branches. Additionally,
n auxiliary feature refinement module is introduced to enhance seg-
entation quality by densely sampling and refining point-wise features

n boundary regions.

. Dataset

.1. Dataset curation

This study utilized the cell micromanipulation platform developed
y the authors previously [7] to automatically collect images of in

vitro cultured HepG2 human liver cancer cells (grown in a Petri dish).
Our hardware platform mainly consists of an inverted fluorescence
microscope (Eclipse Ts2R-FL, Nikon) with a 40× objective lens (CFI S
lan Fluor ELWD 40XC 228 MRH08430, Nikon), a motorized XY stage
ProScan H117P1N4, Prior Scientific), and a complementary metal
xide semiconductor (CMOS) camera (DigiRetina 16, Tucsen Photon-
cs). With this hardware configuration, all raw red, green, and blue
RGB) images captured by the camera were downscaled from 2304 pixel

1728 pixel to 1152 pixel × 864 pixel using OpenCV’s default bilin-
ar interpolation algorithm, representing approximately 216.500 μm ×

162.375 μm in the dish.
The curation of the cell image dataset involves two main steps:

image acquisition and post-annotation.
The image acquisition process includes several steps. First, cells

were cultured in Dulbecco’s modified eagle medium (DMEM) (Gibco)
supplemented with 10% fetal bovine serum (FBS) (Gibco), 100 U/mL
of penicillin, and 100 U/mL of streptomycin in a 35 mm glass-bottom
petri dish (culture dish 801002, Wuxi NEST Biotechnology) and placed
in a humidified atmosphere of 37 °C and 5% CO2. Second, Calcein AM,
a commonly used fluorescent dye, was used to test cell viability and
for short-term staining. Living cells stained with calcein AM emit green
fluorescence at a wavelength of 530 nm when excited by 488 nm light
(fluorescence mode of the microscope), whereas dead cells do not stain
and therefore are not visible in fluorescence mode. According to the
dye’s instructions, 5 μL of 4 mmol calcein AM (L6037S, US Everbright,
Inc.) was taken from the refrigerator and brought to room temperature
before image collection. It was then mixed with 10 mL of phosphate-
buffered saline (PBS) to stain the cultured cells. Third, the stained cells
were taken out of the incubator and placed on the motorized stage. The
microscope was set to DIC imaging mode, and the stage was controlled
to move the dish in a zigzag pattern while the camera took images
at each step. In this study, 2260 DIC images were collected in one
session. Fourth, the microscope was switched to fluorescence mode, the
stage returned to the starting point, and the same path was repeated to
capture corresponding fluorescence images.

The advantage of this image acquisition method is that it ensures
the cells are alive under the microscope. In the microscope, they appear
different from dehydrated and fixed in vitro cultured cells.

After obtaining the 2260 DIC images and 2260 fluorescence images,
we randomly selected 520 pairs of images (DIC and fluorescence),
which were then randomly divided into training, validation, and test
sets. Since these DIC and fluorescence images correspond one-to-one

3 https://cellpose.readthedocs.io/en/latest/faq.html.
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Table 1
Statistics of our dataset.

Train Val Test Total

Avg. healthy cell counts per image 22.5 21.23 19.31 21.61
Avg. unhealthy cell counts per image 1.56 1.96 2.61 1.85
Avg. all cell counts per image 24.06 23.19 21.91 23.46
Avg. healthy cell sizes (μm2) 747.52 745.82 778.32 752.69
Avg. unhealthy cell sizes (μm2) 622.37 737.05 648.98 654.18
Avg. all cell sizes (μm2) 739.4 745.08 762.94 744.92
Avg. healthy cell aspect ratios 1.25 1.21 1.29 1.25
Avg. unhealthy cell aspect ratios 1.25 1.34 1.24 1.27
Avg. all cell aspect ratios 1.25 1.22 1.28 1.25
Percentage of healthy cells 93.51% 91.54% 88.11% 91.05%
Percentage of unhealthy cells 6.49% 8.46% 11.89% 8.95%
Max. objects per image 83 67 53 83

(e.g., DIC images [Figs. 2(a-1) to 2(c-1)] and their fluorescence coun-
terparts [Figs. 2(a-2) to 2(c-2)]), and the individual living cells in the
fluorescence images are easily recognizable (even by inexperienced per-
sonnel, as it simply involves outlining the green fluorescent cells in the
images), we merged the DIC and fluorescence images (e.g., [Figs. 2(a-
3) to 2(c-3)]) and sent them to a professional annotation company.
They used an internally modified version of the labelme software [38].
Finally, all images were meticulously checked and corrected by us, with
the annotated ground truth saved in a single JavaScript object notation
(JSON) file.

3.2. Dataset characteristics

Adherent cells can be roughly classified into two types from the
perspective of cell health: healthy (living) and unhealthy (dead or
loosely attached) cells, as depicted in Fig. 2(c-3). Healthy adherent cells
typically adhere to the culture surface, have an irregular morphology,
and appear entirely green in the fluorescence images once stained with
calcein AM. In comparison, some unhealthy cells, e.g., dead cells, can
hardly be stained by calcein AM and only appear slightly green. Other
unhealthy cells can be successfully stained by calcein AM but loosely
adhere to the culture surface and are not ideal candidates for typical
biomedical experiments, such as cell microinjection.

In addition to classifying cells by how healthy they are, they can
be classified by how densely they grow, as shown in Figs. 2(a-1)
and 2(b-1). Sparsely distributed cells [Fig. 2(a-1)] are relatively easy
to recognize, but densely distributed cells [Fig. 2(b-1)] are difficult
to distinguish from one another, even by humans. Therefore, people
can distinguish individual cells clearly [Figs. 2(b-3) and 2(b-5)] only
through living cell staining [Fig. 2(b-2)].

Table 1 presents the basic characteristics of our dataset. It reveals a
predominance of healthy cells, indicating a potential need to address
category imbalance during algorithm development. Images obtained
from multiple experiments exhibit similar patterns. Our images are de-
rived from cells cultivated according to standard procedures, hence the
ratio of healthy to unhealthy cells aligns with the expected outcomes
of real experiments, albeit somewhat exaggerated. Variability in cell
sizes and aspect ratios necessitates adjusting the segmentation approach
to accurately capture a wide range of cell shapes. Additionally, the
maximum number of objects per image varies across subsets, highlight-
ing the necessity for robust handling of different cell densities during
instance segmentation.

4. Methods

4.1. Introduction to our cascaded instance segmentation method

Our cascaded method is conceptually straightforward, divided into
three main steps, as shown in Fig. 3. The first main step consists of two

sub-steps. The first sub-step involves randomly dividing our dataset into

https://cellpose.readthedocs.io/en/latest/faq.html
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Fig. 2. Representative images from our dataset. (a-1) to (c-1) display raw DIC images used for training or interference. (a-2) to (c-2) present fluorescence images. Calcein AM-stained
living cells fluoresce green, while unhealthy or dead cells do not. (a-3) to (c-3) are merged images of raw DIC and fluorescence for facilitating manual annotation. (a-4) to (c-4)
showcase the annotated cell health states. Finally, (a-5) to (c-5) reveal the annotated ground truth.
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Fig. 3. Overview of our cascaded method. In Step 1, original and rotated images are fused to form the DVI dataset, offering advantages in cell detection. In Step 2, predictions
are refined through SMS based on connectivity. Step 3 involves iterative refinement and post-processing, culminating in the final visualized results.
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Fig. 4. An original image and its rotated counterpart.

Fig. 5. An original mask and its rotated counterpart.

three distinct subsets: a training set, a validation set, and a test set.
Then, every image from each subset is rotated by 45° and combined
with its original counterpart, forming three DVI subsets, namely ‘‘𝛼’’,
‘‘𝛽’’, and ‘‘𝛾 ’’ sets. The second sub-step involves training a Mask R-CNN
model on the 𝛼 subset, incorporating a relaxed NMS for RPN proposal
to generate numerous predictions.

Notably, in the first sub-step, we primarily use OpenCV’s functions
for image and mask rotation. For images, we add white pixels around
the rotated image, also referred to as padding with (255, 255, 255)
color, as demonstrated in Fig. 4. As for masks, since the background
is typically black, we append black pixels around the rotated mask,
known as padding with (0, 0, 0) color, as depicted in Fig. 5. The DVI
is processed as two separate images rather than being concatenated.
We use Python dictionaries and lists to maintain the correspondence
between an original image and its rotated counterpart, as well as the
predictions (binary masks) for each.

We proposed the DVI technique because when training and predict-
ing with a native Mask R-CNN on both unrotated and rotated images
separately, we observed that certain cells were not well detected and
segmented in the unrotated images, as indicated by the bboxes in
Fig. 6(b) bottom right corner, whereas these cells were adequately
detected and segmented at corresponding positions in the rotated im-
ages. Similarly, some cells were not well detected and segmented in
the rotated images, as seen in the colored bboxes on the left side
of Fig. 6(c), but were well-detected and segmented in the unrotated
images, as observed in Fig. 6(b).

Therefore, DVI provides two advantages. Firstly, it enhances the
visibility of certain cells with slender dimensions, inclined orientation,
or close adjacency, which might be overlooked by RPN. Such cells, as
delineated in Fig. 7(a-1), become more apparent after rotation, aligning
vertically or horizontally, as exemplified in Fig. 7(a-2). Secondly, cells
that are susceptible to confusion after bbox regression and NMS, as
7 
shown in Fig. 7(b-1), gain greater clarity, as shown in Fig. 7(b-2).
DVI has similarities with TTA in this article [34] and offers us a more
comprehensive set of output details.

In the second sub-step, the relaxed NMS for the RPN proposal
ensures the preservation of all possible predicted masks, including
those that might be redundant or overlapping, thus retaining valuable
information from both original and rotated perspectives.

In the second main step, the 𝛽 subset undergoes processing with
the trained Mask R-CNN. This processing yields a substantial number
of predictions, ranging from those requiring minimal refinement to
those demanding further attention. These predictions are subjected to
a connectivity-based filter, facilitating the retention of masks charac-
terized by simple connectivity. These retained masks, along with their
associated bboxes and classifications, are then compared to the ground
truth annotations. This results in a two-fold categorization based on
the IoU measurement of masks. Image (mask) patches classified as
‘‘to retain’’ constitute Class 1, while those classified as ‘‘to discard’’
comprise Class 2. The two categories are merged into a provisional
dataset for training a ResNet classifier.

This process, termed SMS, effectively replaces the second round of
NMS within the Mask R-CNN. In SMS, we employ a two-step approach
to refine and select the best segmentation masks. First, we use a trained
ResNet classifier to evaluate the predicted masks, classifying them as
either valid or invalid. This allows us to filter out low-quality masks.
For the valid masks, we apply a comparison process based on connected
components and IoU. Masks with more than six connected components
are discarded to eliminate noise. For the remaining masks, we compute
the IoU between each pair and use a scoring system that combines
connected components count, IoU, and classification confidence. The
mask with the lower score is discarded, while the higher-scoring one is
retained.

SMS ensures that only the most accurate masks are selected by
combining classification, IoU, and connected components analysis. As
a result, we improve segmentation quality and suppress false positives
or redundant masks, providing a refined set of binary masks for further
analysis.

SMS proves advantageous in scenarios with dense cell arrange-
ments, where NMS of bbox might fall short because the confidence
score of each prediction only reflects the likelihood of an object’s
presence, without considering the accuracy or proximity of a predicted
mask to the shape of an actual object. Hence, a few bboxes with low
confidence scores might still predict correct masks.

In the third main step of our method, the 𝛾 subset undergoes an
iterative process involving Steps 1 and 2. Once the ResNet classifier
generates a collection of ‘‘to-retain image patches’’, this set is subjected
to another round of SMS to derive the final masks. Finally, masks that
have the largest IoU (and also over 0.7) with the other masks at ‘‘each
spot’’ are preserved to prevent redundancies, as shown in Fig. 8.

4.2. Evaluation metrics

For our assessment, we employed common objects in context (COCO)
metrics due to their standardized application programming interfaces
(APIs), which seamlessly support detection and instance segmentation
across various object categories within a single image. This stan-
dardized approach allows direct comparisons between general-purpose
algorithms and those tailored for cell analysis. We used 13 advanced
metrics based on fundamental measurements including IoU, precision,
and recall to evaluate algorithm performance (see Table 2).

IoU (Jaccard index) quantifies object detection and segmentation
accuracy by measuring the overlap between predicted and ground
truth regions. Precision identifies correctly detected objects4 out of

4 true positives (TPs).



F. Pan et al. Computers in Biology and Medicine 182 (2024) 109151 
Fig. 6. Illustration of certain cells overlooked by a classic Mask R-CNN. (a) Ground truth of the sample cell image. (b) Inference results of the sample cell image show that the
cells detected in the upper bboxes are missed in (c). (c) Inference results of the rotated sample cell image reveal that the cell detected in the lower right bboxes is missed in (b).
Fig. 7. Illustration of image rotation and its benefits. (a-1) Illustrates certain cells prone
to being overlooked by the RPN due to their slender dimensions, inclined orientation,
or close adjacency. (a-2) Demonstrates enhanced visibility of these cells after a 45°
rotation, rendering them vertically or horizontally aligned and more discernible. (b-1)
Depicts cells susceptible to confusion after bbox regression and NMS. (b-2) Highlights
the increased clarity of these cells after undergoing the proposed approach.

all predicted objects,5 while recall measures the fraction of correctly
detected objects out of all ground truth objects.6 Higher precision
signifies fewer false positives and higher recall indicates better capture
of true positives.

AP represents the mean precision across different recall levels.
It is widely used in object detection tasks, calculated by generating
the precision–recall curve for a specific category and computing the
area under the curve (AUC). AP offers a comprehensive measure of

5 TPs + false positives (FPs).
6 TPs + false negatives (FNs).
8 
Fig. 8. Mask prediction selection. We finally keep the smaller mask prediction, which
tends to contain more comprehensive information.

model performance across various categories and serves as a common
benchmark for comparing different object detection models. Higher AP
or mAP indicates superior object detection across all object categories
in the dataset. Notably, APbbox focuses solely on bbox accuracy, while
APsegm incorporates both bbox and pixel-wise segmentation accuracy.

Specifically, AP (at IoU = 0.50 : 0.05 : 0.95) computes average
precision at multiple IoU thresholds ranging from 0.50 to 0.95 with
an increment of 0.05. This evaluates the model’s performance across a
wide range of IoU thresholds, capturing its ability to detect objects with
varying degrees of overlap between predicted and ground truth regions.
AP (at IoU = 0.50) is commonly used for comparison with results
from the pattern analysis, statistical modelling, and computational
learning (PASCAL) visual object classes (VOC) dataset, which employs
this specific IoU threshold for object detection evaluation. AP (at IoU
= 0.75) is calculated at a higher IoU threshold of 0.75, assessing the
model’s capability to produce more accurate bboxes or segmentation
masks by requiring a higher level of overlap between predicted and
ground truth regions.

Average recall (AR) is computed as the average of TPs divided
by the sum of TPs and FNs across all categories. A high AR score
indicates effective capture of positive cases without many omissions.
Specifically, AR1 evaluates a model’s performance when considering
only the most confident detection for each object in the image. AR10
considers up to 10 of the most confident detections per object, striking a
balance between precision and recall. AR considers up to 100 of the
100
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most confident detections per object, providing a more comprehensive
assessment of the model’s localization capabilities.

Despite the above metrics, we also follow this paper [29] and use
the average IoU at thresholds 𝛼 (also known as instance-wise mean IoU)
or performance evaluation. It is defined as AIoU𝛼 = 1

𝑁𝛼

(

∑𝑁𝛼
𝑖=1(IoU)𝑖

)

,

where 𝑁𝛼 is the total number of predictions that satisfy IoU ≥ 𝛼.

4.3. Implementation details

Here we denote our original dataset as 𝜙, comprising 520 images
and associated annotations encoded in a COCO-style JSON file. To
introduce diversity and address intricate segmentation scenarios, all
images undergo a 45° rotation. This rotation is propagated to align the
round truth annotations with the rotated images. Merging the rotated
mages and annotations with their unrotated counterparts and original
nnotations yields an adaptable interim dataset, referred to as 𝛷. For

focused analysis, we partition 𝛷 into three subsets: 𝛼, 𝛽, and 𝛾. The 𝛼
subset includes 312 unrotated images, their rotated versions, and the
associated annotations. The 𝛽 subset contains 104 unrotated images,
their rotated counterparts, and the corresponding annotations. The 𝛾
subset contains the rest 104 unrotated images, rotated versions, and
annotations.

5. Experimental results

This section presents a comprehensive comparison of our method
with several existing algorithms.

5.1. Quantitative results

Our research aims to achieve simultaneous detection and instance
segmentation of adherent cells with different health states within the
same image. We selected StarDist, ANCIS, Rotated Mask R-CNN, and
four generic instance segmentation algorithms (Mask R-CNN, Mask
Scoring R-CNN, PointRend, and QueryInst) from the MMDetection
toolbox to compare with our method. Among these algorithms, ANCIS
only natively supports the detection and segmentation of a single
category of cells in a single image. However, since our task required
multi-category segmentation, we revised ANCIS’s code to handle both
COCO-style and Kaggle-style ground truth annotations (ANCIS’ original
annotation style), enabling it to perform multi-category segmentation.
We trained and tested the adapted ANCIS on the large-scale LIVECell
dataset, which contains single-category cell PhC images. The Kaggle-
style results (APsegm

0.50 = 0.264) and the COCO-style results (APsegm
0.50 =

0.281) were very similar, with minor differences in AP calculation.
Based on this observation, we believe that our adaptation is effective.

Detailed comparison results are provided in Table 3. Our method
achieves a weighted average of 0.567 in APbbox

0.75 and a weighted average
of 0.673 in APsegm

0.75 . Both metrics are very stringent because they require
a high IoU threshold of 0.75. Our method’s performance in delineating
object boundaries accurately is well demonstrated, outperforming other
methods listed in Table 3. Fig. 9 further illustrates the accuracy of
our predictions. These visual results provide clear evidence that our
model achieves high quantitative scores under strict metrics and pro-
duces visually accurate and reliable predictions in practical scenarios.
However, our method still has room for improvement in detecting
and segmenting unhealthy cells. While certain metrics may outperform
the other algorithms, there remains some gap when compared to our
method’s AP values for healthy cells.

In addition, we conducted a comparison with Cell-DETR, an
attention-based transformer. However, we encountered certain limita-
tions in its native code, such as the lack of support for RGB images and
the small resolution (downsized to 128 pixel × 128 pixel) of input and
output. Despite setting the query count to 100, the algorithm’s built-in
metrics showed a mIoU of only around 0.27.
 m

9 
Table 2
Basic and advanced evaluation metrics for cell detection and instance segmentation.

Metrics Explanation

IoU IoU(GT, P) = area(GT ∩ P)
area(GT ∪ P)

a

Precision Precision =
∑TP

∑TP+∑ FP =
∑TP

all detections

Recall Recall =
∑TP

∑TP+∑ FN =
∑TP

all ground truths

Precision(𝜏) Precision(𝜏) =
∑TP(𝜏)

∑TP(𝜏)+∑ FP(𝜏) =
∑TP(𝜏)

all detections(𝜏)
b

Recall(𝜏) Recall(𝜏) =
∑TP(𝜏)

∑TP(𝜏)+∑ FN(𝜏)
=

∑TP(𝜏)
all ground truths

b

AP Area under a pre-processed Precision(𝜏) ×
Recall(𝜏) curvec

mAP The average of AP of all object categories
evaluated

AR The average of the maximum obtained Recall
across several IoU thresholds

mAR The average of AR of all object categories
evaluated

APbbox AP at IoU = 0.50 : 0.05 : 0.95 for object
detection, i.e., drawing bboxes of detected objects.

APbbox
0.50 AP at IoU = 0.50 (PASCAL VOC metric) for object

detection.
APbbox

0.75 AP at IoU = 0.75 (strict metric) for object
detection.

APsegm AP at IoU = 0.50 : 0.05 : 0.95 for instance
segmentation, i.e., generating individual masks of
detected objects.

APsegm
0.50 AP at IoU = 0.50 (PASCAL VOC metric) for

instance segmentation.
APsegm

0.75 AP at IoU = 0.75 (strict metric) for instance
segmentation.

ARbbox
1 AR given 1 detections per image.

ARbbox
10 AR given 10 detections per image.

ARbbox
100 AR given 100 detections per image.

ARsegm
1 AR given 1 detections per image. segmentation.

ARsegm
10 AR given 10 detections per image.

ARsegm
100 AR given 100 detections per image.

AIoU0.50 Instance-wise average IoU at the threshold 0.50.
AIoU0.75 Instance-wise average IoU at the threshold 0.75.

a GT represents ground truth, P represents prediction; GT and P can represent either
boxes or binary masks.
𝜏 is the confidence threshold for filtering predictions.
Microsoft COCO evaluation metrics use 101-point interpolation to calculate the AP,
hile the PASCAL VOC challenge uses 11-point or all-point interpolation.

.2. Qualitative results

The qualitative results of adherent cell instance segmentation are
resented in Fig. 9. At first glance, Mask R-CNN, Mask Scoring R-CNN,
ointRend, and QueryInst can apparently identify individual cells rela-
ively well, as echoed by their numerical results in Table 3. However,
heir segmentation details are unsatisfactory. A typical problem is that a
ew titled cells are always neglected, particularly when cells are densely
istributed.

Additionally, it appears that ANCIS, and Rotated Mask R-CNN ex-
ibit less satisfactory performance in comparison. This could be at-
ributed to several reasons: ANCIS incorporates attention mechanisms
n both object detection and post-detection segmentation stages, but
ts object detection results are somewhat inadequate, leading to less
ccurate segmentation. Similarly, Rotated Mask R-CNN adopts rotated
boxes for detection, but its experimental outcomes still fall short of
ur method’s performance.

Interestingly, StarDist performs well in the detection and segmenta-
ion of healthy cells. There are essentially no fragmented masks. This is
ikely due to its use of convex polygons to match cell contours, naturally
redicting each cell to be of an approximate elliptical shape. However,
ts drawbacks are also evident. Once it encounters cells that cannot be

atched with convex polygons, it becomes powerless. This can also be
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Table 3
Performance of several instance segmentation algorithms on our dataset.

Method Backbone Category APbbox APbbox
0.50 APbbox

0.75 ARbbox
1 ARbbox

10 ARbbox
100 APsegm APsegm

0.50 APsegm
0.75 ARsegm

1 ARsegm
10 ARsegm

100 AIoU0.50 AIoU0.75

Mask R-CNN

R-50 Cells 0.536 0.910 0.578 0.038 0.305 0.610 0.503 0.880 0.536 0.036 0.288 0.570
Sick cells 0.187 0.417 0.120 0.095 0.301 0.334 0.190 0.419 0.153 0.094 0.293 0.323
W. Avg. 0.495 0.851 0.524 0.045 0.305 0.577 0.466 0.825 0.490 0.043 0.289 0.541 0.760 0.833

R-101 Cells 0.552 0.904 0.617 0.039 0.313 0.622 0.508 0.867 0.576 0.036 0.294 0.573
Sick cells 0.194 0.411 0.154 0.097 0.312 0.36 0.189 0.431 0.152 0.096 0.298 0.336
W. Avg. 0.509 0.845 0.562 0.046 0.313 0.591 0.470 0.815 0.526 0.043 0.294 0.545 0.773 0.836

Mask Scoring R-CNN

R-50 Cells 0.517 0.899 0.554 0.038 0.296 0.591 0.501 0.878 0.543 0.037 0.294 0.550
Sick cells 0.179 0.411 0.134 0.101 0.292 0.333 0.187 0.443 0.128 0.096 0.298 0.327
W. Avg. 0.477 0.841 0.504 0.045 0.296 0.560 0.464 0.826 0.494 0.044 0.294 0.523 0.746 0.831

R-101 Cells 0.532 0.903 0.588 0.038 0.306 0.606 0.503 0.862 0.557 0.037 0.294 0.550
Sick cells 0.172 0.376 0.131 0.094 0.292 0.328 0.184 0.411 0.155 0.099 0.298 0.321
W. Avg. 0.489 0.840 0.534 0.045 0.304 0.573 0.465 0.808 0.509 0.044 0.294 0.523 0.762 0.831

PointRend
R-50 Cells 0.541 0.905 0.595 0.037 0.305 0.613 0.539 0.902 0.626 0.037 0.297 0.598

Sick cells 0.208 0.432 0.183 0.105 0.315 0.356 0.200 0.442 0.185 0.104 0.303 0.343
W. Avg. 0.501 0.849 0.546 0.045 0.306 0.582 0.499 0.847 0.574 0.045 0.298 0.568 0.766 0.831

QueryInst

R-50 Cells 0.329 0.673 0.276 0.028 0.211 0.548 0.355 0.671 0.351 0.029 0.222 0.559
Sick cells 0.072 0.186 0.044 0.064 0.230 0.342 0.071 0.184 0.048 0.065 0.227 0.338
W. Avg. 0.298 0.615 0.248 0.032 0.213 0.524 0.321 0.613 0.315 0.033 0.223 0.533 0.761 0.832

R-101 Cells 0.386 0.729 0.370 0.033 0.237 0.578 0.408 0.727 0.431 0.034 0.243 0.581
Sick cells 0.087 0.234 0.050 0.069 0.241 0.358 0.078 0.207 0.046 0.067 0.232 0.344
W. Avg. 0.350 0.670 0.332 0.037 0.237 0.552 0.369 0.665 0.385 0.038 0.242 0.553 0.771 0.834

Rotated Mask R-CNN

R-50 Cells 0.337 0.841 0.168 0.026 0.212 0.483 0.417 0.816 0.388 0.033 0.255 0.513
Sick cells 0.139 0.373 0.069 0.089 0.244 0.301 0.172 0.416 0.096 0.098 0.257 0.314
W. Avg. 0.313 0.785 0.156 0.033 0.216 0.461 0.388 0.768 0.353 0.041 0.255 0.489 0.698 0.815

R-101 Cells 0.345 0.837 0.187 0.026 0.216 0.490 0.429 0.828 0.404 0.032 0.257 0.539
Sick cells 0.026 0.216 0.490 0.077 0.241 0.295 0.157 0.406 0.082 0.085 0.240 0.297
W. Avg. 0.307 0.763 0.223 0.032 0.219 0.467 0.397 0.778 0.366 0.038 0.255 0.510 0.701 0.820

ANCIS

R-50 Cells 0.360 0.669 0.346 0.032 0.265 0.426 0.206 0.488 0.136 0.017 0.187 0.316
Sick cells 0.140 0.348 0.070 0.089 0.233 0.235 0.114 0.292 0.060 0.074 0.201 0.204
W. Avg. 0.334 0.631 0.313 0.039 0.261 0.403 0.195 0.465 0.127 0.024 0.189 0.303 0.740 0.823

R-101 Cells 0.387 0.690 0.403 0.033 0.282 0.454 0.218 0.501 0.150 0.018 0.188 0.330
Sick cells 0.167 0.351 0.131 0.089 0.290 0.296 0.133 0.330 0.079 0.074 0.243 0.249
W. Avg. 0.361 0.650 0.371 0.040 0.283 0.435 0.208 0.481 0.142 0.025 0.195 0.320 0.744 0.823

Oriented R-CNN

R-50 Cells 0.215 0.775 0.039 0.046 0.272 0.220 0.549 0.917 0.636 0.031 0.320 0.593
Sick cells 0.070 0.273 0.009 0.031 0.067 0.087 0.180 0.414 0.131 0.003 0.082 0.244
W. Avg. 0.198 0.715 0.035 0.044 0.248 0.204 0.505 0.857 0.576 0.028 0.292 0.552 0.717 0.826

R-101 Cells 0.245 0.813 0.066 0.113 0.295 0.252 0.562 0.930 0.667 0.008 0.342 0.605
Sick cells 0.083 0.311 0.017 0.019 0.080 0.100 0.196 0.438 0.168 0.005 0.089 0.269
W. Avg. 0.226 0.753 0.060 0.102 0.269 0.234 0.518 0.872 0.608 0.008 0.312 0.565 0.728 0.828

StarDist
U-Net Cells 0.150 0.493 0.047 0.016 0.129 0.280 0.334 0.796 0.170 0.026 0.208 0.421

Sick cells 0.059 0.172 0.031 0.045 0.113 0.113 0.078 0.207 0.044 0.052 0.124 0.125
W. Avg. 0.139 0.455 0.045 0.019 0.127 0.260 0.304 0.726 0.155 0.029 0.198 0.386 0.722 0.805

Our method

R-50 Cells 0.546 0.885 0.611 0.037 0.310 0.618 0.591 0.897 0.733 0.037 0.318 0.643
Sick cells 0.223 0.441 0.237 0.103 0.290 0.294 0.219 0.431 0.228 0.101 0.280 0.284
W. Avg. 0.508 0.832 0.567 0.045 0.308 0.579 0.547 0.842 0.673 0.045 0.313 0.600 0.819 0.848

R-101 Cells 0.535 0.883 0.599 0.037 0.307 0.609 0.582 0.896 0.720 0.037 0.315 0.634
Sick cells 0.228 0.446 0.207 0.109 0.306 0.311 0.225 0.443 0.220 0.103 0.297 0.303
W. Avg. 0.498 0.831 0.552 0.046 0.307 0.574 0.540 0.842 0.661 0.045 0.313 0.595 0.816 0.846

The overall best AP scores for both healthy and unhealthy cells are highlighted in bold. Specifically, our method achieves a weighted average of 0.673 in APsegm
0.75 , indicating

strong performance under the most stringent criteria for TP identification. While our method’s performance may be slightly less competitive in some other metrics, it stands out
in capturing nearly every cell, as shown in Fig. 9.
observed from Table 3, where its performance is not as satisfactory for
unhealthy cells, which exhibit diverse shapes.

Overall, our method demonstrates improvement. It can accurately
detect and segment cells in sparsely and densely distributed situations.

6. Discussion

6.1. Value of the proposed dataset for image cytometry and microinjection

Our dataset curated in this study can be valuable for image cy-
tometry, which involves the quantitative analysis of cellular properties
and processes at the single-cell level, such as cell cycle analysis, cell
morphology characterization, or cellular feature extraction. Our dataset
can also be used in cell microinjection, where specific substances or
10 
materials are injected into individual cells for various experimental
purposes.

6.2. Limitations of the proposed dataset

Our dataset has several limitations that need to be considered.
Firstly, the dataset is relatively small, which may restrict the diversity
and variability of the available data for training and evaluation. Sec-
ondly, the dataset only includes images of a single cell line, namely
HepG2 human liver cancer cells. This limitation raises concerns about
the generalizability of the proposed method to other cell types, as
different cells may exhibit distinct characteristics and segmentation
challenges. Lastly, the dataset comprises images captured at a single
magnification, lacking different imaging conditions and resolutions
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Fig. 9. Qualitative results of instance segmentation for a sample adherent cell image. Our method effectively captures nearly every cell, demonstrating high accuracy and robustness
in identifying and delineating individual cells.
commonly encountered in other biomedical scenarios. We recognize
these limitations and plan to address them in future work by expanding
the dataset to include additional cell lines and imaging conditions to
enhance generalizability.

6.3. Limitations of the proposed method

While our method is promising, it does have certain limitations
that should be improved. Firstly, it is not a fully end-to-end trainable
11 
network, necessitating multi-step training and inference procedures.
Secondly, its deployment as a real-time solution may pose challenges
due to the relatively extended inference process. Thirdly, the method
itself retains a dependence on bbox design and RPN, aspects that might
be considered somewhat intricate.

We also acknowledge the current weak performance for classifica-
tion, as there are minimal stable characteristics to distinguish between
them. It is worth noting that only increasing the dataset size is crucial
for introducing more information into the classification process. This
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is also our ongoing work; we are also trying to distinguish them by
introducing other information on this matter.

We know our method is slower and requires more disk space
even without quantitative measurements. However, the primary goal
of developing this method was to achieve high accuracy and superior
visualization results, thus we made some compromises in terms of effi-
ciency. Specifically, our method consists of one pre-processing step and
three major steps: pre-processing by rotating images and annotations to
create an interim dataset, training a Mask R-CNN, training a ResNet
classifier, and finally, predicting and evaluating. While the dataset
processing and network training are time-efficient and comparable to
other CNNs, the most time-consuming part is creating the interim
dataset for ResNet training. At this stage, every prediction produced by
Mask R-CNN must be compared against the ground truth to determine
if it should be kept or discarded, which involves three cascaded loops
and takes several hours due to non-optimized code. Additionally, the
mask selection stage in Step 3 also contains three cascaded loops, taking
approximately one hour. As it stands, our method is not yet suitable
for deployment due to these inefficiencies, but we plan to optimize the
algorithm and reduce computational complexity in future work.

6.4. Comparison with oriented R-CNN and TTA

When comparing our method with Oriented R-CNN, it can be ob-
served that at an IoU threshold of 0.50, Oriented R-CNN’s performance
is not bad, only slightly worse than our method. However, at an IoU
threshold of 0.75, its performance lags behind our method. Oriented R-
CNN is an innovation based on Mask R-CNN, where the innovation lies
in using oriented bbox proposals instead of the standard bbox proposals
of Mask R-CNN. It generates arbitrarily oriented bbox proposals by
increasing the RPN regression branch output parameters from four
to six, using a midpoint offset representation scheme. These oriented
bboxes are more effective for various inclined objects in remote sensing
images, such as tilted parked airplanes and ships. However, aside from
the bbox proposal, Oriented R-CNN and Mask R-CNN share the same
subsequent steps for mask training, prediction, and filtering.

In contrast, our method is independently designed for cell instance
segmentation. We simply rotate the images and ground truth by 45° and
eed them into Mask R-CNN, where the resulting bbox proposals are still
raditional rectangular bboxes with only four output parameters. This
pproach does not remarkably increase the memory requirements of a
raphics processing unit (GPU) during network training.

Our method, on the other hand, not only uses DVI for training
which serves a similar function to the oriented bbox proposal) but
lso abandons the NMS of bbox used by Mask R-CNN. Instead of first
etermining whether a bbox is a valid prediction and then comparing
he mask within this bbox with the ground truth, we directly determine
hether a mask is a valid prediction and compare this mask directly
ith the ground truth. This approach makes our method superior in

erms of mask details, particularly at an IoU threshold of 0.75, where
mask prediction is only considered valid if its IoU with the ground

ruth exceeds 0.75. Our method performs the best at this threshold.
While the DVI part in our method and TTA share similarities, our

ethod is not only DVI, the SMS also plays a vital role in improving
ur method’s overall performance. The difference can be summarized
s follows: TTA focuses on applying data augmentation during the test
tage to enhance model performance, whereas our method employs
VI during both training and testing to leverage additional information

rom different perspectives. Additionally, our approach introduces an
MS component, which is absent in traditional TTA. This SMS com-
onent directly processes the mask predictions from dual-view testing,

iming to improve the final outputs by selectively refining the results.

12 
6.5. Applicability to other domains and future work

We believe that this DVI and SMS can be applied to many biomed-
ical imaging tasks for object detection and instance segmentation, as
long as there are objects with various angles of inclination in those
biomedical images, such as cytology or histopathology images.

Cytology involves the study of individual cells, analyzing their struc-
ture, function, and behavior, and plays a critical role in cancer screen-
ing and diagnosis. For instance, the Pap smear is a common cytological
procedure used to examine cervical cells for signs of cervical cancer or
abnormalities. Due to cell overlap in cervical samples, researchers have
devoted special attention to addressing this challenge [39,40].

Histopathology is a subset of pathology focused on microscopic
examination of tissues to diagnose diseases. In this context, researchers
search for cellular changes indicative of specific diseases in micro-
scope images of tissue samples obtained from surgeries or biopsies. For
instance, characteristic Reed–Sternberg cells in a lymph node tissue
sample may lead to a diagnosis of Hodgkin’s lymphoma. Tissues are
typically stained and fixed, meaning that the cells are dead, and fluo-
rescence microscopy is often used for imaging [41]. One recent example
is Mesmer [14]. However, it is important to note that histopathology
images differ from PhC and DIC images, even though all can be referred
to as cell images. The researchers’ focus and the emphasis on the devel-
oped algorithms vary accordingly. Moreover, the metrics for semantic
segmentation and instance segmentation also differ. We hope to include
these specific algorithms for comparison in our future work.

7. Conclusion

In this study, we created a dataset comprising 520 DIC images of
12,198 unstained living HepG2 human liver cancer cells. Each DIC
image was paired with a corresponding fluorescence image stained
with calcein AM, ensuring high-quality annotations for ground-truth
labeling. Our dataset is a pioneer in considering the multi-state nature
of adherent cells, where both healthy and unhealthy cells can be
observed within a single image.

We developed a new cascaded method for instance segmentation
of unstained living adherent cells. Unlike existing approaches that
primarily support single-state cell detection and segmentation, our
method natively handles multi-state (multi-category) cell detection and
instance segmentation. The experimental results demonstrate that our
method achieves a weighted average of 0.567 in APbbox

0.75 and a weighted
average of 0.673 in APsegm

0.75 . Such an advantage can be attributed to two
novel methods, i.e., DVI to combine original and rotated views as input
to capture cell instances as much as possible and SMS to select the finest
instances in a supervised manner.

Overall, our study contributes a unique multi-state cell image
dataset and a novel method for cell detection and instance segmenta-
tion. Through comparisons, we demonstrate the effectiveness of using
rotated images and supervised mask refinement in our method. Our
work could be of broad interest to researchers and stimulate new ideas
in biological image analysis.
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